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Abstract. The near-resonant response of suspended, elastic cables driven by planar excitation is investigated using a two 
degree-of-freedom model. The model captures the interaction of a symmetric in-plane mode and an out-of-plane mode 
with near commensurable natural frequencies in a 2:1 ratio. The modes are coupled through quadratic and cubic 
nonlinearities arising from nonlinear cable stretching. The existence and stability of periodic solutions are investigated 
using a second order perturbation analysis. The first order analysis shows that suspended cables may exhibit saturation and 
jump phenomena. The second order analysis, however, reveals that the cubic nonlinearities and higher order corrections 
disrupt saturation. The stable, steady state solutions for the second order analysis compare favorably with results obtained 
by numerically integrating the equations of motion. 

Key words: Cables, modal interactions, perturbation analysis, saturation. 

1. Introduction 

Cables are used in engineering applications that demand lightweight, flexible, or easily deployable 
structural members or conductors. For example, cables are suitable for transmitting electrical or 
optical signals, tethering objects over long distances, and towing and mooring marine vessels. In 
addition, underwater instrumentation arrays are often supported by individual cables or multiple 
cable networks. The overall flexibility of the cable, however, may render it susceptible to 
performance impairing oscillations. 

A historical review of cable dynamics, along with a summary of recent contributions specific 
to suspended cables, can be found in [1]-[3]. The prominent linear theory developed by Irvine 
and Caughey [4] describes the free vibration of a suspended cable about a planar equilibrium with 
small sag and horizontal supports. For linear motions, the in-plane response decouples from the 
out-of-plane response. Moreover, the in-plane response can be decomposed into vibration modes 
that are either symmetric or anti-symmetric with respect to the cable mid-span. The anti- 
symmetric in-plane modes and all of the out-of-plane modes are identical to those of a taut string, 
The symmetric in-plane modes are distinguished by the fact that they induce first-order dynamic 
cable stretching. 

Hagedorn and Shafer [5] were the first to extend the (in-plane) linear theory to account for 
geometric nonlinearities. Free planar, nonlinear cable oscillations were further studied in [6]-[9]. 
Two degree-of-freedom models were proposed to study free nonplanar, nonlinear cable oscilla- 
tions with [10] and without [11] internal resonance. Various one and two degree of freedom 
models, without internal resonance [12]-[14] and with internal resonance [15], have been used to 
examine forced nonlinear oscillations. A recent theoretical study [16] demonstrates the key role 
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played by a two-to-one internal resonance in initiating non-planar response for cables subjected to 
support oscillations. Companion experiments [17] provide the first response measurements in 
support of a nonlinear theory of suspended cables. 

Internal resonances are known to enhance modal coupling and may produce strongly coupled 
nonlinear response in multi-degree-of-freedom dynamical systems; see, for example, [18]-[20]. 
Such systems may exhibit complex behavior such as vibration saturation and periodically, 
aperiodically, or chaotically modulated response. An extensive bibliography on this subject is 
presented in [21]. Of particular importance to the current study is the saturation phenomena 
which has been studied in the context of beam structures [22], ships [23], and shells [24] which 
contain a specific class of quadratic nonlinearities and a two-to-one internal resonance. A 
simplified, quadratically nonlinear model is used to show that suspended cables may also exhibit 
saturation [25]. Second order nonlinear cable stretching, however, is neglected. Experimental 
confirmation of vibration saturation was first reported by Haddow et al. [22]. 

This study focuses on the near-resonant response of suspended, elastic cables driven by planar 
excitation in the presence of a two-to-one internal resonance. The investigation begins with the 
presentation of a geometrically nonlinear continuum cable model that describes three-dimensional 
response. An asymptotic form of the model, describing suspensions with small equilibrium 
curvature (sag) and horizontal supports, is discretized using the Galerkin method. A two-degree- 
of-freedom discrete model is used to examine the coupling between a symmetric in-plane mode 
and an out-of-plane mode. These modes are coupled through quadratic and cubic nonlinearities 
which originate from nonlinear cable stretching. Two-to-one internal resonances naturally arise for 
specific sag levels where the natural frequency of the in-plane mode is, approximately, twice that 
of the out-of-plane mode. Planar and non-planar response of the cable is examined for conditions 
near primary resonance of the in-plane mode. 

A perturbation analysis is carried out to second nonlinear order to examine the existence and 
stability of weakly nonlinear periodic motions. At the first nonlinear order, the discrete model is 
shown to possess the particular quadratic nonlinear terms that lead to saturation. The analysis is 
extended to second nonlinear order to capture the additional effects of the cubic nonlinearities 
and to include higher order corrections due to the quadratic nonlinearities. Examples illustrate 
that the saturation phenomena is disrupted and that higher order effects may qualitatively alter 
the nature of the steady state response. The accuracy of the higher order solutions are verified by 
comparison to results obtained by numerically integrating the equations of motion. 

2. Theoretical Model 

2.1. General Continuum Model 

Figure 1 illustrates an elastic cable suspended between two level supports a distance H apart. The 
equilibrium cable (dotted curve) has length L and sags an amount D at the mid-span, due to 
gravity. Dynamic displacement of the cable from equilibrium (solid curve) is described by 
U(S, T) = Ua(S, T)I 1 + U2(S, T)! 2 + U3(S, T)I 3 where S represents the equilibrium arc length 
coordinate measured from the left support and T represents time. The unit vectors, 11, 12, and 13, 
define the tangential, normal, and bi-normal directions with respect to the equilibrium configu- 
ration. 
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Fig. 1. An elastic cable, length L, is suspended between horizontal supports a distance H apart and has sag D at the 
mid-span. U describes three-dimensional displacement from the equilibrium configuration and is referred to the Frenet 
triad (i I , i 2,13). Equilibrium configuration: dashed curve; dynamic configuration: solid curve. 

Fol lowing [26], the nonl inear  equat ions  of  mo t ion  are der ived  f rom H a m i l t o n ' s  pr inciple  

unde r  the  fol lowing assumpt ions .  

1. T h e  cable is a h o m o g e n e o u s ,  one-d imens iona l  elastic con t inuum obey ing  a l inear  stress- 

s train re la t ionship.  

2. Axial  extens ions  of  the cable are descr ibed by the Lagrang ian  strain of  the center l ine.  

3. The  flexural,  tors ional ,  and shear  rigidities of  the cable are negligible.  

T h e  nond imens iona l  equat ions  describing mot ion  abou t  the equi l ibr ium are [26] 

tangential direction, 

2 _ k u 2 ) e ] .  _ k [ ( v e p + v 2 1 e ) ( u 2 . , + k u l ) ] + f l = u 1 . , , ,  [ o T p ( U l ,  s - -  k/d2) + 01(1 + Ul, s (1) 

normal  direction, 

2 
[ (v~p + v ,e) (u2,  s + k u , ) l ,  , + k[v2/(l + u,,  s - ku2)e  + vTp(u,,  , - ku:)] + L  = u2,,,, (2) 

hi-normal  direction, 

2 
[(v2,P + v te)(U3,s)], .  + L = u3,,, , 

w h e r e  

1 
e(s. t) = Ul, s - ku 2 + -~ [(uL~ - ku2) ~ + (H2, s + k.1) 2 + ( .3 , )  

(3) 

(4) 

is the  dynamic  c o m p o n e n t  of  the Lagrang ian  strain and the b o u n d a r y  condi t ions  are 

u,(O, t) = u,(1,  t) = O, i = 1 , 2 , 3 .  (5) 

T h e  fol lowing nond imens iona l  quant i t ies  are used in ( 1 ) - ( 5 ) '  

S T F i U i 
. . . . .  u i i = 1 , 2 , 3  • s =  L , t =  x / - L ~  , fi p g L  ' = - L  ' 

2 Po 2 E A  
v, = • and v l - , 

p g L  ' p g L  
(6) 
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where g is the gravitational constant, p is the cable mass/length, E A  is the axial stiffness of the 
cable cross-section, P0 is the equilibrium tension of the cable at the mid-span (S = L/2),  and F~ are 
(possible) distributed dynamic force components. The constant coefficients, v t and vt, represent 
the nondimensional propagation speed of transverse and longitudinal waves, respectively. The 
non-constant coefficients, k(s) and p(s),  represent the equilibrium curvature and tension of the 
classical catenary and are given by 

[(v~) 2 + (s - ½)211/2 v~ 
p(s)  = v2 and k(s) = (V2t)2 "k (S - -  1 ) 2  " (7) 

t 

Note that the equations of in-plane motion (1) and (2) are coupled through linear terms 
proportional to the equilibrium curvature. Furthermore, the in-plane and out-of-plane equations 
(1)-(3) are coupled through quadratic and cubic nonlinear terms which arise from nonlinear 
stretching (4). The quadratic nonlinearities, which capture the softening (hardening) of the cable 
as it deflects towards (away from) the center of equilibrium curvature, vanish in the limit of zero 
equilibrium curvature (k-->0). In this limit, (1)-(5) describe the nonlinear response of a taut 
string. 

2.2. Asymptotic Model for  Small Curvature 

In many applications, the cable supports substantial static tension (P0 >> p g L )  and the resulting 
equilibrium curvature is small. In the small curvature regime, D / H  < 1/8 [4], the catenary is well 
approximated by a parabola and the equilibrium tension and curvature (7) are constant to first 
order in the small curvature parameter k: 

1 D 
p = l  and k = - 7 = 8 H  " v ,  (8) 

Substituting (8) into (1)-(4) and neglecting terms on the order of k 2 or smaller, leads to: 

tangential direction 

2 Iv,el., = U l , t t ,  (9) 

normal direction 

2 2 
[(v~ + vle)u2,sl.s + kvze + F2(s ) cos a t  = u2, . , (10) 

bi-normal direction 

2 (11) [(V~ + vle),3,s],s = u3,tt , 

with 

e(s, t) = Ul, s - k u 2  + [(U2,s)" + (12) 

where harmonic excitation in the normal direction is considered: f2 = Fz(s) cos lit, fl = f3 = 0. 



NONLINEAR OSCILLATIONS OF SUSPENDED CABLES 469 

As detailed in [4], longitudinal waves propagate along the cable with a speed (v~) that is 
orders of magnitude greater than that associated with transverse waves (v,); i.e., v~/v~ <-k. 
Consequently, on the time scale of lower frequency transverse motions, the stretching of the cable 
occurs nearly instantaneously or quasi-statically. Employing this assumption, the longitudinal 
inertia term in (9) is neglected resulting in spatially uniform dynamic tension: 

[v~el,, = 0 .  (13) 

Integrating (13) twice and using (12) leads to 

1 (u3,s)2]} dr/ u~(s , t )=g( t ) s+  f f  ( k u 2 - - ~  [(u2.,) 2 + + h(t) ,  (14) 

where the two functions of integration g(t) and h(t) are determined from application of the 
boundary conditions ul(O, t) = ul ( l ,  t) = O: 

h(t) = 0 

v-te~ = g ( t ) =  -ku2  + 5 [(u2"')2 + (u3")2 dr/. (15) 

Thus, the tangential component, u~, which is of order k, is formally eliminated as an unknown. 
Substituting (15) and (8) into (10) and (11) leads to the following equations of transverse motion: 

2 
° 2 vt (16) [v7 + vtg(t)]u2,,, + --5 g(t)+ F2(s ) cos f~t = u2.tt 

Ot 

[v2t + v2zg(t)lu3,,s = u3." . (17) 

with the boundary conditions (5). 
Equations (14)-(17) and (5) are an asymptotic form of the equations of three-dimensional 

motion and are valid in the limit of small equilibrium curvature. In (16) and (17), the term 
[v 2, + v~g(t)] represents the overall cable tension comprising a static component, v~, and a dynamic 
component,  v21g(t). This asymptotic model represents a nonlinear extension of lrvine and 
Caughey's linear theory [4]. Upon linearization, the equations (15)-(17), for free response, 
provide the natural frequencies and mode shapes of a suspended elastic cable as given in [4] and 
reviewed in Appendix A. These modes form the basis for the following discretization. 

2.3. Discrete Model 

Coupled in-plane and out-of-plane cable motion is investigated using a two-degree-of-freedom 
model. The asymptotic model for transverse response (15)-(17) is discretized using the separable 
solutions 

Uz(S, t) = O,i(s)a,(t ) and u3(s, t) = O,k(s)[32(t ) , (18) 

where O~i(s ) and 02k(s ) are the ith and kth in-plane and out-of-plane cable mode shapes with 
natural frequencies co 1 and 6o 2, respectively; refer to Appendix A. 
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Substitution of (18) into (15)-(17) and application of the Galerkin method leads to 
discrete model 

the 

2 2 3 + A413 ~ + Asa,132 = 1# cos(12t) ~1 "l-2ffltOl& 1 + (.0 10/1 -t- A 2 a  1 + A 3 a  1 (19) 

/32 + 2 ~'2°92/32 + w2" flz + B2fi{  + B3eqfl~. + B 4 oe 2,32 = O, (20) 

where modal damping terms have been introduced. The coefficients in (19) and (20) are defined 
in Appendix B. There, it is noted that the coefficients of the quadratic nonlinear terms vanish if 0,i 
is taken to be an anti-symmetric mode. For a symmetric mode, however, these coefficients are 
never zero for nonzero equilibrium curvature (k ~ 0). Furthermore, the quadratic terms with the 
coefficients A 4 and B 3 enhance modal coupling whenever the frequency of the in-plane mode is, 
approximately, twice that of the out-of-plane mode; i.e. o) 1 = 2oJ 2. This two-to-one frequency ratio 
occurs naturally for the suspended cable near any of the 'cross-over' points noted by Irvine and 

Caughey [4]; refer to Figure A1. 

3. Perturbat ion Analys is  

Periodic solutions to (19)-(20) are found for weakly nonlinear response near primary resonance 
of the in-plane mode. Solutions will be determined up to second (cubic) nonlinear order using a 
generalization of the method of multiple scales developed in [27]. 

Accordingly, the new independent time scales 

T n = e"~ t  n = 0, 1, 2 . . . .  (21) 

are introduced where e represents a small positive parameter and Tn, n = 1, 2 . . . .  are 'slow' time 
scales which capture the response due to the nonlinearities, damping, and external excitation. To 
second nonlinear order, O(e3), the displacements are represented by three-term uniform expan- 
sion in the new time scales: 

3 3 

at(T; e) = ~,  e"eq,,(To, T , ,  T2) and ¢lz(T; e) = ~ e"~z , (T  o, T 1, T , ) .  (22) 
n=l n=l 

Ordering the excitation and damping terms so that they first appear at the first nonlinear order, 
O(e2), the excitation frequency and the damping coefficients are expanded as [27]: 

2~1t°111 = e/x1 = ~(~"£11 -~- E~'LI2) 

2~2o~2~ = E~2 = e(~/t + et~22). 

Similarly, the excitation amplitude is expanded as: 

P = ~2F = E2(f l  -~ efz)" 

(23) 

(24) 

(25) 

(26) 
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The quantities G , / z ~ ,  #2,, and f ,  (n = 1, 2) are used in (23)-(26) to introduce external detuning, 
damping, and excitation at each nonlinear order. They are combined as shown to form the overall 
external detuning, damping, and excitation parameters given, respectively, by o-, /z~, /z2, and F. 
Near a cross-over point, the natural frequency of a symmetric in-plane mode is nearly twice that of 
an out-of-plane mode. This relationship is expressed by 

20)2 = (91 ql_ ep = % + ~(Pl + 6P2)  , (27) 

where p is an overall internal detuning parameter. 
Substituting (21)-(26) into (19) and (20), defining ~/= % / % ,  and collecting terms with like 

powers of ~, leads to the zeroth, first, and second nonlinear order equations below. 

O(e~), zeroth nonlinear order (linear): 

0 2 "~ 0axl + a ; i  = 0 ,  
" 2 

D o/3:1 + T//321 = 0.  (28) 

O(E :), first nonlinear order (quadratic): 

' °'1 " /'~1 A,  2 
DoOtl2 + Ol12 -2DoDltXll - --7 Docql 4 Doall , a l l  

0")I 0) 1 0) 1 

, 1 fl___~ A4 [3~, + ~ w~ eir° + cc ,  
0)1 

o O'1 D 0 ~ 2 1  ~'£21 Do f12~ + "r/2f122 = -2DoD1/32~- ~ - Dofle~- --  
0) 1 0) I 

9 3 
O~llfl21 q- CC, 

(-0 1 
(29) 

O(E3), second nonlinear order (cubic): 

2 
Doa13 + o~13 -2DoD 1 a12 - (DE + 2DoD2)a11 - __ 

O'1 2 
(Docq2 + 2DoD1 cq 1) 

0) 1 

O'o , ]d.i1 (D0O/l  2 q- Dial1) 1.1.1~ Doall T - - -  Doa11 
0) 1 0) 1 0)1 

2A2 A3 3 2A4 A 2 1 f2 eirO 
2 0'110¢12 --  ~ Ogll --  - -  ~21]~22 50/11/~21 _{_ -~- CC 

0) 1 0) 1 0) 1 0) 1 2 ~212 ' 

o 2 O-1 
D o  &3 + ,~ ]323 = - 2 D o D l J ~ 2 2  - ( D ~  Jr- 2DoO2)f121 - -  ~ (D~ J~22 q- 2 D o D I ] 3 2 1 )  

&)l 

- - - ~  D O & l  - - -  ( D o & 2  + D~/32 , )  - - - ~  O0/321 
(2) 1 0.) I O) 1 

B2 3 B B 4 
± /321 --  4 (O~ii/~22 -[- Of12J~21 ) - -  - - ~  O~i1~21 q'- e c ,  (30) 

0J 1 0) 1 (-01 

where D n = O/OT n, n = 0, 1, 2 and cc stands for the complex conjugate of the preceding terms. 

Zeroth Order Expansion 
The solution to (28) is 

o ¢ 1 i ( T i ,  T 2 )  ~- K I ( T I ,  T,_)e it° + cc a n d  ~ 2 1 ( T I ,  Z 2 )  = g 2 ( Z l ,  T2)e iÈr° + c c ,  ( 3 1 )  
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where gn(T1,  T2),n = 1, 2 are slowly varying (complex) amplitudes determined by the following 
higher-order expansions. 

First Order Expansion 
Substitution of (31) into (29) leads to secular terms and small divisor terms which become secular 
in the presence of the internal resonance (27). Elimination of these secular terms leads to the two 
state equations 

(~---~2 tz11) A 2~,,p/~l)r, 1 f l - 0  (32) - 2 i D I K  1 + - i ---7 K1 - ~ K2e + 2 ' 

\0)1 0)1" 0)1 2 0)1 

_2i~DIK2 + 2 -- i ----Y 77 K2 - ~ g i g 2  e-i(o/°q)T1 = 0 , 
\ 0 )  1 0) 1 601 

(33) 

which govern the response of the (complex) amplitudes K 1 and K 2 o n  the time scale T 1. In (32) 
and (33), the overbar denotes a complex conjugate. 

Introducing the polar form, 

1 
K, = -~ a,(T1, Tz)e i°"(r''r21 , n = 1, 2 (34) 

into (32) and (33) and separating these equations into real and imaginary parts results in the 
following four state equations, 

1 o" 1 1 A 4 a22 cos 3'1 + 1 L2 . . . .  COS 01 = 0,  (35) aiD101+2 ~ a l  4 o) 1 2 w 1 

1 /xl__~al+ 1 A 1 fl 
D i a l + 2  0)1 4 0)! a22sin3'1+~ ~ s i n 0  l 0 ,  (36) 

1 o" 1 , 1 B 3 ala2 cos 3'1 = 0 (37) 
rla2D102 + 2 ~ l  "q'a2 4 w21 

1 /x21 1 B 3 
- -  ala 2 sin % = 0 (38) ~ODla2 + 2 0)21 r/a2 4 o)21 

where 3'1 = 202 - 0l + (Pl0)1)TI" The solutions to these state equations have been studied exten- 
sively and may exhibit the saturation phenomena; see, for example, [20] and [22]. Therefore, to 
first nonlinear order, the suspended cable may also exhibit saturation [25]. 

Steady state periodic solutions are fixed points of (35)-(38). At steady state, Dla 1 = D~a 2 = 
DtO 1 = 0 and DIO 2 = -p/2o~ 1 and (35)-(38) reduce to the algebraic equations, 

A 4  2 
alo" 1 = - ~  a 2 cos 2/1 - f l  cos 01 , (39) 

A 4  2 • 
a1~11 - 2 a2 sin 3'1 - f l  sin 01 , (40) 

9 3 
azo'l = --'71 (0)2pa 2 + -~- ala 2 cos 3'1) , (41) 

r/ 



N O N L I N E A R  O S C I L L A T I O N S  O F  S U S P E N D E D  C A B L E S  473 

B3 
a2kl,21 = ~ a l a  2 sin 71 , (42) 

which provide the steady state amplitudes and phases on the T~ time scale. These solutions are 
reviewed in Appendix C. Complete discussions of the solutions and their stability are detailed in 
[22]. The perturbation analysis is now extended to second order in order to account for, (1) the 
contribution of the cubic nonlinearities, and (2) the higher order corrections due to the quadratic 
nonlinearities. 

Second  Order  Expans ion  

Extending the perturbation analysis to second order requires finding the particular solutions to 
(29). After eliminating the secular terms, the particular solutions are 

c q 2 -  - ~  r~e  - --=- K1R 1 + -  K~K~ + cc ,  
3~o- l w~ o~ l - - 

Bs K I K . _ e  ~ I+È~T ' '  + c c .  (43) 
/3= - o_~ + 2~,~_~ 

Substituting (31) and (43) into (30) leads to equations for ~13 and ~23 which govern the variations 
of the (complex) amplitudes on the T 2 time scale. Elimination of the secular terms at this order 
requires 

- D - ~ K I - 2 i D ~ K  1 -  2 i ~ +  D x K I +  c r ~ - i  

+ _____aA1/~IK l +_________;SA2/~1K2K: + - __ _ 

.12) 
¢0 I 

1 k - 0  (44) 
2 w~ 

- D-~K, - 2i~ID2K~ - 2i  ~ ~7 + D1K,  + 
. _ 1..07 0.) 1 / - 

+ 8A3K22K2 + 8 A 4 K I K 1 K ,  = O, 

'172 -- i >2~ ~/)K2 
O) 1 

(45)  

where 

A I =  4 A , A  3 -  A ; - 3 A 3 w -  I . A ~ = 7 - 5  4 A , A  4 - 2 A  2 - r - - -  / ,  
8(.O 1 " 3 - - 8(.O 1 - 5£01 W l  + 2 ~ l O J  2 

1 ( 2 A 4 B 3 _ 3 B ,  to~) ' and A 4 -  1 2 A , B 3 _ 2 B 4 t o ~  z . (46) 
A , -  8~o~ - 8 , .~  " ~o 1 % 

The above equations contain derivatives with respect to both T 1 and T, time scales. However, 
since those equations describe modulations on the T 2 time scale only, they should be taken to be 
independent of T1127 ]. Neglecting derivatives with respect to T 1, using (34), and separating the 
real and imaginary parts yields the amplitude and phase state equations 

1 %  3 ~ 1 f 2  c o s 0 1 = 0  
a iD201  + 2 ¢.o~ al  + A , a a  + A2aia 'g  + -~ oo~ (47) 
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1 ~.L12 1 f2 
D2al + 2 7 a l + ~ ~ sin 01 = 0 

1 o" 2 3 2 
rla2D202 4- -~ -~1 ~Tza~- + A3a2 + A4ala2  = 0 

1 ~1,22 
Dza 2 + ~ -----f a 2 = O. 

w l  

(48) 

(49) 

(50) 

The algebraic equations governing steady state periodic motions on the T 2 time scale are 

2 3 2 
a ,o '2  = - 2 o 9 1 ( A , a l  + A 2 a l a 2 )  - f 2  cos  01 (51) 

a,tz,2 = -f2 sin 01 (52) 

2 
a2or 2 = ~- (ABa32 + A4a la2 )  (53)  

a2~22 = O. (54) 

Finally, combining (39)-(42) and (51)-(54) into (23)-(25) yields the algebraic equations 
governing steady-state oscillations on the original time scale T (to second nonlinear order): 

al['~=alo)~+t5 a cos'Y1 - - ,  (2O)l)(A,a +A2aia2)-eFcosO (55) 

A 4 a22 sin % - F sin 01 (56) 
a~/x~ - 2 

2 i1) (  ) 2 2 1,_3 2 a2a2=a2m21+e o)2pa2 + -~- ala2 cos y 1 - e \ V ]U~.3a2 + A4ala2) (57) 

n 3 
a 2 ~  2 =~-~aaa2sin N . (58) 

The equations above can be solved simultaneously for a I , a2, 3q, and 0, for specified cable and 
excitation parameters. Note that the first order approximation (39)-(42) is recovered from 
(55)-(58) by neglecting terms of O(e2). As with the first order approximation, (55)-(58) admits 
two types of solutions: planar (a~ ¢ 0, a 2 = 0) and non-planar (a, ~ O,a 2 ~ 0). 

Planar Solution(a2 = O) 
Simultaneous solution of (55) and (56) leads to a cubic equation for a~: 

2 4A2 6 2 4 2 2 F 2 • o ) t l ~ l a l + 4 • w , A a o ' a l + ( o ' 2 + l . z , ) a ,  - =0  (59) 

and 

O, = t a n - ' (  --2I'Ll )~ ) 
cr + 2ew,A,a~ 

(60) 
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to second nonlinear order. To first nonlinear order, (55) and (56) lead to a linear equation in a~ 
and provide a solution for linear response. The second order approximation (59) results in a 
singular perturbation of the first order approximation; although, for small ~ and/or small a~ 
values, a 1 deviates little from the linear approximation. The stability of the periodic, planar 
solutions are determined by following the procedure described in Appendix D. 

Non-Planar Solution 
For this case, a 1, a2, Yl, and 01 are determined numerically from (55)-(58) using a hybrid Powell 
root finding algorithm. The stability of these solutions are determined by following the procedure 
described in Appendix D. 

4. Results 

A series of examples is presented to illustrate the major features of the periodic solutions. In all 
examples, solid (dashed) lines denote stable (unstable) periodic solutions obtained from the 
perturbation analysis. The diamonds represent results obtained by numerically integrating the 
equations of motion (19)-(20). The numerical integrations were performed using the ODEPACK 
subroutine LSODA [28]. After specifying initial conditions, the integration was carried out until 
the system reached steady state. This was deemed to have occurred when the peak-to-peak 
amplitudes over five consecutive excitation periods deviated by less than 0.1% from the average 
peak-to-peak amplitude during those five periods. Using an integration time step of AT = 0.1, 
steady state typically occurred before T=  30,000. The in-plane oscillations were not centered 
about al =0.  The quadratic nonlinearities in (19) cause the midpoint of the steady state 
oscillations to drift [20] from the equilibrium position toward the center of curvature of the 
equilibrium configuration. 

4.1. Comparison of  First Order and Second Order Expansions 

The three examples given in this section highlight the key differences between the first order and 
the second order expansions. To facilitate a comparison with published results for the first order 
expansions, the system parameters are chosen to be similar to those used in [22]. Parameters 
specific to a suspended cable are considered in the example described in the following subsection. 

The coefficients of the nonlinear terms used in all of the examples are given in Table I. For 
the first three examples, the coefficients of the quadratic nonlinearities responsible for saturation, 
A4 and B 3, are identical to those used in [22]. 

T A B L E  I. 
Coefficients of nonlinear terms 

Examples 1 & 2 Example 3 Suspended Cable 

A ~ -6 .00 -6 .00  - 121.761 

A~ -4.22 -39.78 100.145 
A 4 -8 .00  - 8.00 - 10.147 
A 5 4.00 4.00 25.036 
B_, -5 .33 -5.33 18.778 
B3 -4 .00 -4 .00  -60.881 
B~ 11.00 -315.00 75.109 
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The first example is distinguished by the damping and frequency parameters,  ~'1 = 0.04, 
if2 = 0.02, wl = 1.9999, ~o 2 = 1.0000, and lq = 1.9999. Here ,  there is no external detuning and very 
little internal detuning, Ep =0.0001. Figure 2a shows the steady state amplitudes, a 1 and az,  as 
functions of the excitation amplitude F as determined by the first order expansion, When 

F = 63.99 x 10 -4, the stable response changes from a purely one degree-of-freedom motion to a 
strongly coupled, two degree-of-freedom motion in which the amplitude of the excited coordinate,  

* = 2.0 x 10 -2. In contrast, the results of the second order expansion a l ,  sa turates  at the value a 1 
demonstrate  that saturation does not occur; see Figure 2b. Instead of saturating, the amplitude a 1 
slowly and monotonically increases as the excitation amplitude is increased. Thus, increases in 
excitation energy are distributed, to some degree, to both  modes. The second order expansion 
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Fig. 2. Modal amplitudes (al, a2) vs. excitation amplitude (F) for Example 1 with ~ =0.04, ~2 =0.02, o~ z = 1.9999, 
co 2 = 1.0000, and I~ = 1.9999. (a) First order expansion; (b) Second order expansion. Stable solutions: solid curves; unstable 
solutions: dashed curves; numerical results: diamonds. 
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also predicts that a slightly greater excitation level is required to initiate coupled response 
( F  = 64.00 × 10-4). Note the overall good agreement between the results obtained by numerical 
integration and by the second order expansion. 

In the second example, ~1 = 0.005, ~'2 = 0.0025, ~t = 1.9999, (o 2 = 1.0000, and l)--2.0170. 
Compared to the first example, the damping has been decreased by an order of magnitude and 
significant external detuning, e~r = 0.069, has been added. Results of the first order expansion, 
plotted in Figure 3a, illustrate both saturation and jump phenomena. For 5.22 x 10 4< F <  
7.17 × 10 -4, two stable periodic solutions exist: one describing single degree-of-freedom response 
and the other describing coupled response. In this excitation range, a solution for a t describing 
unstable coupled response co-exists with the stable solution branch for a t at the saturation value, 
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Fig. 3. Modal amplitudes (a 1, az) vs. excitation amplitude (F)  for Example 2 with ~'t = 0.005, g2 = 0.00252, w t = 1.9999, 
w., = 1.0000, and 13 = 2.0170. (a) First order expansion; (b) Second order expansion. Stable solutions: solid curves; unstable 
solutions: dashed curves; numerical results: diamonds. 
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al  = 0.90 × 10 -2. In comparison to the first example, the coupled response now appears at a 
significantly lower excitation (F = 5.22 × 10 -4) due to the decreased dissipation. Results for the 
second order expansion, shown in Figure 3b, again confirm that the amplitude of the directly 
excited mode, al, never saturates. Moreover, the second order expansion splits the (formerly 
degenerate) stable and unstable at solution branches in the excitation range 5.22 × 10-4.< F ~  
7.17 × 10 -4. It should be noted that for specific sets of parameters, the amplitude of the directly 
excited mode may decrease as the excitation amplitude is increased. This occurs for the present 
system if, for example, the external excitation frequency is fl = 1.9800 (E~r = -0.079). 

Selected frequency-response results for the second example are illustrated in Figure 4. The 
results of the first order expansion (Figure 4a) and the second order expansion (Figure 4b) were 
computed using F = 0.001 (refer to Figure 3). For the first order expansion, the single degree-of- 
freedom solution possesses an unstable resonant peak at 12 = o~a = 1.9999. This solution is stable 
away from resonance for 12< 1.979 and 1)>2.021. A stable coupled solution exists for the 
frequency range 1.965 < 12 < 2.032, which overlaps the stability region for the single degree-of- 
freedom solution. Thus, the two stable periodic solutions co-exist for 1.965 < 12 < 1.979 and 
2.021 < 12 < 2.032. In these two frequency ranges, the stable and unstable solution branches for a~ 
are degenerate. Furthermore, the internal resonance shifts the solution branches for the coupled 
response to the left, causing these solution branches to be asymmetric with respect to the 
resonance ~1 = w 1. The corresponding solution branches in Figure 4b for the second order 
expansion possess a greater degree of asymmetry and are shifted further to the left. Moreover, the 
stable and unstable a~ solution branches are no longer degenerate in the frequency ranges noted 
above. Again, the results obtained by numerical integration compare favorably with those 
obtained by the second order expansion. 

The stability of all periodic solutions are determined following the procedure in Appendix D. 
There, it is observed that, for the second order expansion, there may be up to two points where a 
coupled solution bifurcates from the single degree-of-freedom solution. This observation follows 
from the fact that (94) may admit up to two real solutions for a~b, depending on the particular 
system parameters chosen. For the system parameters defined in the first two examples, two 
bifurcations exist. In Figures 2 and 3, however, the second bifurcations (not shown) are 
substantially delayed and do not appear until the excitation amPlitude is on the order of F = 10. 

This is not the case for the third example defined in Table I for which the coefficients A 3 and 
B4 are greater in magnitude. This system is perfectly tuned, wa = 2% = 2.00, and lightly damped, 
ffl--2ff2 = 0.005. Figure 5a illustrates the steady state amplitudes as functions of the excitation 
amplitude for the second order expansion in the case of vanishing external detuning (12 = 2.00). 
For F < 5.15 × 10 4, the response is qualitatively similar to that of Figure 2b. In particular, for the 
coupled response, the amplitude of the directly excited mode, a 1, does not saturate but increases 
slightly with increasing F. However, when the excitation amplitude is increased to F = 5.15 × 10 4 
a second (unstable) coupled solution bifurcates from the single degree-of-freedom solution. 
Moreover, at this bifurcation point, the single degree-of-freedom solution regains stability. For 
F >5.15 × 10 -4, stable single and two degree-of-freedom solutions co-exist. The results of the 
second order expansion compare favorably with those obtained by numerical integration for the 
stable coupled solution but slightly underpredict the amplitude of the single degree-of-freedom 
solution beyond the second bifurcation point. Third and higher order expansions would 'soften' 
the perturbation solution and improve the approximation. It is emphasized here that the first order 
approximation cannot predict (1) the existence of the second bifurcation, and (2) the subsequent 
re-stabilization of the single degree-of-freedom periodic solution. 
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Figure 5b illustrates an example frequency response solution for the third example system 
computed for F --- 6.00 × 10 4. The solution branches for coupled response display a large degree 
of asymmetry with respect to the primary resonance ~q = o~ = 2.00. The single degree-of-freedom 
response remains stable at primary resonance in contrast to the example of Figure 4b. 

Inspection of (46) reveals that both the quadratic and the cubic nonlinearities contribute to 
the second order corrections. For a system with quadratic nonlinearities only, the second order 
corrections will have the same form as (51)-(54) since A N, n = 1, 4 ~ 0 .  
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4.2. A Suspended Cable Example  

The above examples illustrate possible periodic solutions for a class of two degree-of-freedom 
dynamical systems governed by (19) and (20). The particular solution characteristics displayed 
depend strongly upon the system parameters. Parameters specific to a suspended cable are listed 
in Table I, and are measured from a cable used in recent experiments [17]. The cable considered is 
a small diameter woven nylon cord of length L =26.3m,  weight/length pg  =0.117N/m, and 

2 = 7.10, v~ = 1.25), the natural E A  = 1900N. For a sag-to-span ratio D / H =  1/10 (A 2 ~4zr 2, v t 
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f requenc ies  w~ = 7.025 and  % = 3.512 are in a two- to-one  ratio.  The  damping  coefficients 

cons ide red  are ~'1 = 0.0007 and  ~'2 = 0.00035. 

F igure  6a shows the s teady state response  ampl i tudes  as funct ions  of the exci tat ion ampl i tude  

for the second  order  expans ion ,  for the case of nea r  r e sonan t  exci tat ion f requency  1) = 7.015. In  

the contex t  of the oscillating cable,  the single degree-of - f reedom response  describes m o t i o n  lying 

pure ly  in the equ i l ib r ium plane.  The  coupled  response  describes a s teady n o n - p l a n a r  whir l ing of 

the cable in which the in-p lane  (normal )  mot ion  completes  two cycles for every one cycle of 

ou t -o f -p lane  mot ion .  
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As shown in Figure 6a, the cable executes planar response for (relatively) small excitation 
levels. The planar response looses stability at the first bifurcation (F = 1.80 × 10 -4) and regains 
stability at the second bifurcation (not shown). In this example, the second bifurcation would 
occur at an extremely large excitation level (F-~ 10) which would render the weakly nonlinear 
assumption suspect. For excitation amplitudes above F = 1.20 × 10 -4, the cable executes non- 
planar whirling similar to that generated experimentally by small support oscillations [17]. The 
second order expansion again predicts that the amplitude of the in-plane response a 1 increases 
(very) slowly with F. In the excitation region, 1.20 × 10-4< F <  1.80 × 10 -4, both planar and 
non-planar responses are stable. When F < 1.80 × 10 -4, only the non-planar response is stable. 
The frequency response of the cable for the case F = 1.50 × 10 -4  is shown in Figure 6b. Note that 
in the region about primary resonance, the stable periodic motion of the cable describes 
non-planar whirling. As with the previous examples, the second order expansion splits degenerate 
stable and unstable a I solution branches associated with the first order expansion. For the current 
example, however, the separation of these solution branches is extremely small. 

5. Summary and Conclusion 

A nonlinear continuum model of a suspended, elastic cable is presented which contains the 
quadratic and cubic nonlinear terms describing nonlinear cable stretching. An asymptotic form of 
this model is derived which is valid for suspensions having small equilibrium curvature. The 
asymptotic model is discretized using a symmetric in-plane mode and an out-of-plane mode. The 
resulting two degree-of-freedom model captures the modal interactions which arise when the 
natural frequency of the in-plane mode is nearly twice that of the out-of-plane mode. A 
perturbation analysis is used to determine periodic solutions and their stability for near resonant 
in-plane harmonic excitation. 

A first order perturbation analysis confirms that the the quadratic nonlinearities lead to 
non-planar cable response exhibiting saturation and jump phenomena. Extending the perturbation 
analysis to second nonlinear order, however, reveals that saturation is disrupted by second order 
corrections associated with both the quadratic and the cubic nonlinear terms. Instead of saturat- 
ing, the amplitude of the directly excited mode changes with excitation amplitude to a degree that 
depends strongly upon the system parameters. Moreover, the second order corrections split the 
degenerate periodic solutions predicted by the first order analysis. For the second order expan- 
sion, there may be up to two points where a non-planar solution bifurcates from a planar solution. 
In all of the examples presented, two bifurcation points exist and the planar solution regains 
stability beyond the second bifurcation. The accuracy of the second order analysis is validated 
through a comparison with results obtained by numerically integrating the equations of motion. 
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Appendix  A: Linear  Theory  

From (15)-(17), the linearized equations of free motion about an equilibrium with small 

curvature (sag) are 

f0 t A2 1 u~ ,,~- u, d~7 = ---; u, ,, (61) 
. . . . .  Ut -" 

and 

1 
U3,s. = -5 u3. . ,  (62) 

U t 

with the boundary conditions 

u i ( O ,  t) = Ui(1,  t) = O,  i = 2, 3 .  (63) 

In ( 6 1 ) ,  Z2 ~ , , 3 = vT/tG ) is the nondimensional cable parameter introduced by Irvine and Caughey [4] 
to characterize the geometry and elasticity of the cable. The solutions of the eigenvalue problems 
governing the in-plane and out-of-plane vibration are provided below. 

In-Plane Vibration 

The solution to the eigenvalue problem associated with (61) and (63) provides the natural 
frequencies and the normal component of the in-plane mode shapes. The mode shapes are either 
symmetric or anti-symmetric with respect to the mid-span of the cable (s = ½). 

The symmetric in-plane modes are 

OliOS)- [1-tan( s)] 
(w~lv~) \ 2 v , /  v, v, 

i =  1, 3, 5 . . . . .  (64) 

where Cli is an arbitrary constant and % is the natural frequency determined by the characteristic 

equation 

+ 2 tan = 0 (65) 
A- vt ~0~ " 

The anti-symmetric in-plane modes are 

O,j(s) = Clj sin(jrrs) ,  j = 2, 4, 6 . . . . .  (66) 

where Ctj is an arbitrary constant. The natural frequencies are 

% = i~'G , i = 2, 4, 6 . . . . .  (67) 

In contrast to the symmetric modes, the anti-symmetric modes to not induce first order cable 
stretching and are the same as taut string modes. 
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Out-of-Plane Vibration 

The eigenvalue problem associated with (62) and (63) is identical to that of a taut string and 
admits the eigensolutions 

02k = C2k sin(krrs) , k = 1, 2, 3 , . . .  (68) 

and 

w 2=kTrv  t ,  k = 1 , 2 , 3  . . . .  (69) 

Figure A1 illustrates the natural frequency spectrum of a suspended cable which depends 
solely on the cable parameter A 2. The natural frequency loci of the symmetric in-plane modes 
(solid curves) strongly depend upon A/Tr and 'cross-over' the natural frequency loci of the 
anti-symmetric in-plane modes (dashed curves) and the out-of-plane modes (dotted curves) which 
are both independent of A/Tr. As discussed in [4], the suspended elastic cable model provides a 
smooth transition between the natural frequency spectra of a taut string (A/~---~0) and an 
inextensible cable ( A/~'--~ ~). 
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modes: solid curves; anti-symmetric in-plane modes: dashed curves; out-of-plane modes: dotted curves. The nth crossover 
occurs at A/Tr=2n,  n = l , 2 , . . . .  
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Appendix B: Coefficients of the Discrete Model 

The coefficients of the discrete model (19) and (20) are 

3 vgt r l r  2 1 , r~ 1 v~ r l r  3 
~, , A 3 = 0 7 = , A 4 -  , 

A . -  2 V 7 r 4 -2 r 4 2 v t r 4 
- - ~  A 5 

1 2 r 2 r 3  
= -~ u l - -  

r4 

2 

1 ~ r~  v t  r l r  3 1 , r ~ r  3 
B ~ = ~  v T - = ,  B ~ -  ~ , B 4 =  vT=-- 

- r ,  - v 7 r s 2 r 5 
, and P r~ 

r4 

where 

r I = 01i ds  , r,  = O~i., ds  , r 3 = O]k,  ds  , 
0 ) - "~ 

f01 -~ fl fl r 4 = O l i  d s ,  r s = O] k d s ,  and r 6 = 01iF2 d s ,  
0 ~ 0 

(70) 

(71) 

The vibration mode shapes 01i and 02~ are given in Appendix A. Note that r I and the coefficients 
A2,  A4,  and B 3 would vanish if 0,i was an anti-symmetric in-plane mode. 

Appendix C: Solution to the First Order Expansion 

For the first-order expansion (only), f~ = F,  ].3"11 = ILl, /£21 : /£2' and o- I = O'. Following [20] and [22] 
there are two sets of solutions, which in the context of the cable model,  describe planar and 
non-planar responses. 

P l a n a r  so lu t ion  : 

The  planar solution, 

F a1 = -t- -x/7:+/, 

represents the linear response. 

N o n - p l a n a r  so lu t ion:  

The non-planar solution is given by 

and 0~ = tan- l ( /x l /o  -) , (72) 

2 
a! ~ [(720 - -- ~oep) 2 + _] , (73) 

a 2 = -- - F I  + - F , (74) 
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and 

4 
r l  -- ['I)].~I~[,L 2 -- O'(T~20" -- 09219)] 

A 4 B 3  

and 

16 
r~ - ~ 2 [ ~ ( n  ~ - ,o2o) + n ~ l  ~ 

A4B3 

2 A4 2 
/zlal + K "q/x2az 

01 "~- tan - 1 3'1 = tan- ~ /xz 
2 __ A4 77o"- 091/9 K(2 

The non-planar solution, which exists only for excitation amplitudes, f~ > Y~ where 

(75) 

(76) 

(77) 

1 IAaF21 (78) Y1 = ~ 

bifurcates from the planar solution at fl = Y2 where 

y2 = 21 IA4I(FT + F2z) '/2 

Note that for f~ > Y1, the in-plane amplitude, al, saturates at the value given by (73). 

(79) 

Appendix D: Stability Analysis 

Planar Solution 
The determination of planar stability begins with an expression for the modulation of the complex 
displacement amplitudes on the original time scale T: 

Kn = ED1Kn + E2D2K,, , n = 1, 2. (80) 

Using (32)-(33) and (44)-(45), in (80) provides 

2iK1 = ---5 °'K1 - i ~ l K l  - A 4 K ~  ei(o/~°l)rl + 2 + 8¢ ( A 1 g i g  1 + A2KIK2/~2) (81) 
6o I 

( B3 ) 8E2 (A3K2/~2 + A4K1/~IK,) (82) 2i/~ 2 = ~e mTK2_ iI~2K2_ ~ glK2e_i(p/O~l,T1 "1- - ~  _ . 

Let 

K I = K ~ + 6 K  x and K z = g K  2 (83) 
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where (K~, K~ =0)  is the steady state planar solution and 6K,, ,  n = 1,2 represent small 
perturbations. Substituting (83) into (81) and (82) and retaining linear terms in 6K,, and 6/~,, leads 
to 

-- . R K . 2 ~ =  * -* i8I~i = R18K1 iR .SK1  + 3 1 i51tl + 2 R 3 K 1 K I S K ,  . (84) 

. . . .  ~ --.,g i aR .  = $ 1 8 K  ~ - i S . 8 K .  - S3e "(P/"ITIKTaK. 2 + & K  1 K t S K  2 , (85) 

where 

E o r  
m - -  

R, 2w21 

_ er/o" 

$1 2o)2 , 

R. E~I R 3 = 4e2Ax 
2~o~ 

e/z2 eB3 and S 4 = 4e---~2 
$ 2 -  2w~ ' $ 3 -  2o9~w 2 r/ A4. (86) 

Substitution of K~' = a t e  i°; and 

. n  x iO 
6 K  1 = (Olr + 1Dli)e and •K 2 = (B2r + iB,~i)e -i((°/2'°OTl-(l/2)°D , (87) 

where Bnr and B m, n =  1, 2 are real into (84) and (85) and separating real and imaginary terms 
yields: 

3 R3a12] [31i + R2Bli  + R 1+ ~ B l r = O  

[ ' *'-] 
[11r+ R z B l r +  - R  1 - . ~  R3a ~ B l i = O  (88) 

and 

B 2 i  + S 2 B 2 i  -[" - -  S3a~ + $1 2 w 1 

B2r + S2Bzr + - ~  S3aT + $1 2 w~ 

- -  - - -  + "~ S 4 a  1 B 2 r  = 0  

1 S a*2]]B~ - - - - + ~  4 , / j  _ , = 0 .  (89) 

Harmonic solutions 

B n r  = b.re  '~r and B,, i = bni eaT° , n = 1,2 (90) 

exist provided the eigenvalues, A, satisfy: 

/~1,2 -Ra  + n2 ,4 ** = -- -- R IR3a  I - - R - -  / '~ 3 a  1 

[ ( "P 1 . 2  ,2 $1 2 % 
/~3 ,4  = - $ 2  q -  4 ~ 3 a l  - -  

(91) 

1 ) 2 ]  1/2 
- - - -  + ~ S4a{ 2 (92) 

The eigenvalues A1, 2 and A3,4, respectively, define the stability of the planar solution with 
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respect to perturbations in the in-plane (a~) and out-of-plane ( a 2 )  directions. The planar solution 
is stable if and only if Re[A~] < 0, i = 1, 2, 3, 4. Although stability could possibly be lost through a 
Hopf bifurcation, for the examples presented in this paper, it is observed that planar stability is 
always exchanged through either a turning point or a pitchfork bifurcation where either &.2 = 0 or 
/~3,4 = 0. Furthermore, when )%,4 = 0 (pitchfork), a non-planar solution bifurcates from the planar 
solution. Thus, up to two distinct bifurcations of a non-planar solution from the planar solution 
may exist depending upon the system parameters. 

The in-plane amplitude at a bifurcation point, al*b, can be determined from either (91) or 
* satisfies either (92). Accordingly, alb 

3 ,,2 ,4 ,2 
1---6 t%alb + RlR3alt' + (R21 + Rz2)=0 or 

l o 2  *4 [ ~ (  " ~ l ) S  1, ,2] .2 
1"6 o4alb + S1 2 4 -  4 ~ 3 J a l b  q- 

(93) 

[ ("  ] 
Only one bifurcation exists for the first order analysis; see for example [22]. The corresponding 
excitation amplitude or excitation frequency at a bifurcation can be found using (59). 

Non-Planar Solution 
In this case, the stability analysis begins with 

2 2 
(l = E D l a  ~ + E D 2 a  . and 6. = EDIO ~ + e D20 ~ n = 1, 2 ,  (95) 

which describe the amplitude and phase modulations with respect to the original time scale T. 
Substituting (35)-(38) and (47)-(50), into (95) yields 

,( ) a ~ -  - 2  Pqal + a~sin +Fsin0~ 2w~ ~ 71 , (96) 

- -  - -  E ( A l a  1 + A2axa 2 , (97) aa61 2~o~ ° a l  a2 c o s  y l  + F c o s  01) _ 2 3 "~ 

,( 83 ) 
4 2 - -  2021 I.~2a2 - ~ a la  2 sin'/l , 

, ( B3 ) 2  
a20z -- 2w~ ~q°'az - ~ ala2 cos 71 - -~- (A3a~ 

(98) 

2) 
+ A 4 a ~ a  2 . (99) 

Using 5'1 = 262 - 61 along with 

a . = a . * + 6 a ,  and On=O*+60.,  n = l , 2 ,  (100) 

where ( )* denotes a steady state value and 6( ) denotes a small perturbation, in (96)-(99) leads 
to the linear variational equations: 

5a 1 -  -~ tx116al +[FcosO~]60~ +[A4a~sinT~]6a2+ a, cosy  6y I , 
2w7 

(101) 
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I *2 , 

E COS0~ A 4 a 2 c o s T 1  

601 = 2w t at *2 F ,2 2 a~ 4ew12AtaTJ6al + [ F  sin O~ ]60~ 

a~ cos y~ 4Ew~A2a 2 6a,  + " 6y~ (102) + A 4 , , , 
a~ - 2 a~ 

6dr 2 - 4w~r I {[B3a* sin 3'T16a, + [-2"0/x2 + B3a~ sin y~]6a 2 + [B3a~a ~ cos y~]6%} , 

{(B3 &/,1 = ~ - + - - - -  
2w~ ~ -  

*2 
A 4 a 2 ~ • cos 0~ 

,z]  cos T~ - F ,2 
2 a 1 a I 

8 

[ e "~ ~sinO~'] [ e a*cosy~,  ~ , (  2 ) ]  
+ - 7 - 7 F - - - 2 7 - 1 6 0 1 +  - 7 - - 7 A 4  - + 2 e - a  2 A 2 - - A  ~ 6ao 

2w I 20) 1 al rl - - 

e 4 a2 B~ 
+ = - 7  sin 3' , " a 6 y  1 , 

2wi a~ r/ 

(103) 

(104) 

which can be written in the form 

{x} = [A]{x},  (105) 

where {x} : {6al,  301, 6a 2, 63,1} r. 
The eigenvalues of [A] govern stability of the non-planar solutions and are determined 

numerically. Note that stability of the planar solution cannot be assessed from equations 
(101)-(104) by simply setting a* = 0; since, equations (103) and (104) vanish, decoupling the 
in-plane and out-of-plane motions. 

References  

1. Irvine, H. M., Cable Structures, MIT Press, Cambridge, 1981. 
2. Triantafyllou, M. S., 'Linear dynamics of cables and chains', Shock and Vibration Digest 16, 1984, 9-17. 
3. TriantafyUou, M. S., 'Dynamics of cables and chains', Shock and Vibration Digest 19, 1987, 3-5. 
4. Irvine, H. M. and Caughey, T. K., 'The linear theory of free vibrations of a suspended cable', Proceedings of the 

Royal Society of London A341, 1974, 299-315. 
5. Hagedorn, P. and Schafer, B., 'On non-linear free vibrations of an elastic cable', International Journal of Non-Linear 

Mechanics 15, 1980, 333-340. 
6. Rega, G. and Luongo, A., 'Natural vibrations of suspended cables with flexible supports', Computers & Structures 12, 

1980, 65-75. 
7. Rega, G., Vestroni, F., and Benedettini, F., "Parametric analysis of large amplitude free vibrations of a suspended 

cable', International Journal of Solids and Structures 20, 1980, 95-105. 
8. Luongo, A., Rega, G. and Vestroni, F., 'Planar non-linear free vibration of an elastic cable', International Journal of 

Non-Linear Mechanics 19, 1984, 39-52. 
9. Takahashi, K. and Konishi, Y., 'Nonlinear vibrations of cables in three dimensions, part I: nonlinear free vibrations', 

Journal of Sound and Vibration 118, 1987, 69-84. 
10. Benedettini, F., Rega, G. and Vestroni, F., 'Modal coupling in the free nonptanar finite motion of an elastic cable', 

Meccanica 21, 1986, 38-46. 
11. Luongo, A., Rega, G. and Vestroni, F., 'Monofrequent oscillations of a non-linear model of a suspended cable', 

Journal of Sound and Vibration 82, 1982, 247-259. 
12. Benedettini, F. and Rega, G., 'Nonlinear dynamics of an elastic cable under planar excitation', International Journal of 

Non-Linear Mechanics 22, 1987, 497-509. 



490 CHRISTOPHER L. LEE AND NOEL C. PERKINS 

13. Takahashi, K. and Konishi, Y., 'Nonlinear vibrations of cables in three dimensions, part II: out-ot-plane vibrations 
under in-plane sinusoidatly time-varying load', Journal of Sound and Vibration 118, 1987, 85-97. 

14. Benedettini, F. and Rega, G., 'Numerical simulations of chaotic dynamics in a model of an elastic cable', Nonlinear 
Dynamics 1, 1990, 23-38. 

15. Rao, G. V. and lyengar, R. N., 'Internal resonance and non-linear response of a cable under periodic excitation', 
Journal of Sound and Vibration 149, 1991, 25-41. 

16. Perkins, N. C., 'Planar and non-planar response of a suspended cable driven by small support oscillations', in 
Proceedings First International Offshore and Polar Engineering Conference, Edinburgh, U.K., Aug. 11-16, 1991, 
210-215. 

17. Perkins, N. C., 'Modal interactions in the nonlinear response of elastic cables under parametric/external excitation', 
International Journal of Non-Linear Mechanics, in press. 

18. Miles, J. W., "Stability of forced oscillations of a spherical pendulum', Quarterly of Applied Mathematics 20, 1962, 
21-32. 

19. Sethna, P. R. and Bajaj, A. K., 'Bifurcations in dynamical systems with internal resonance', Journal of Applied 
Mechanics 45, 1978, 895-902. 

20. Nayfeh, A. H. and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley, New York. 
21. Nayfeh, A. H. and Balachandran, B., 'Modal interactions in dynamical and structural systems', Applied Mechanics 

Review 42, 1989, S175-$202. 
22. Haddow, A. G., Barr, A. D. S., and Mook, D. T., 'Theoretical and experimental study of modal interaction in a 

two-degree-of-freedom structure', Journal of Sound and Vibration 97, 1984, 451-473. 
23. Nayfeh, A. H., 'On the undesirable roll characteristics of ships in regular seas', Journal of Ship Research 32, 1988, 

92-100. 
24. Nayfeh, A. H. and Raouf, R. A., 'Nonlinear oscillation of circular cylindrical shells', International Journal of Solids 

and Structures 23, 1987, 1625-1638. 
25. Tadjbakhsh, I. G. and Wang, Y. M., 'Wind-driven nonlinear oscillations of cables', Nonlinear Dynamics 1, 1990, 

265-291. 
26. Perkins, N. C. and Mote, C. D., Jr., 'Three-dimensional vibration of travelling elastic cables', Journal of Sound and 

Vibration 114, 1987, 325-240. 
27. Rahman, Z. and Burton, T. D., 'On higher order methods of multiples scales in non-linear oscillations-periodic steady 

state response', Journal of Sound and Vibration 133, 1989, 369-379. 
28. Hindmarsh, A. C., 'ODEPACK, a systematized collection of ODE solvers', in Scientific Computing 1, R. S. 

Stepleman et al. (eds,) North Holland, Amsterdam, 1983, 55-64. 


