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Abstract. In this paper, a new scheme of stochastic averaging using elliptic functions is presented that approximates 
nonlinear dynamical systems with strong cubic nonlinearities in the presence of noise by a set of It6 differential equations. 
This is an extension of some recent results presented in deterministic dynamical systems. The second order nonlinear 

differential equation that is examined in this work can be expressed as 5b + clx + c3x 3 + e f ( x ,  ~e) + el/2g(x, ~, ~(t)) = O, 
where cl and c3 are given constants, ~(t) is stationary stochastic process with zero mean and e << 1 is a small parameter. 
This method involves the laborious manipulation of Jacobian elliptic functions such as cn, dn and sn rather than the usual 
trigonometric functions. The use of a symbolic language such as Mathematica reduces the computational effort and allows 
us to express the results in a convenient form. The resulting equations are Markov approximations of amplitude and phase 
involving integrals of elliptic functions. Finally, this method was applied to study some standard second order systems. 
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1. Introduction 

The method of stochastic averaging involves the convergence of a parametrized sequence {x ' ( t ) )  

of processes to a limit process in some specific sense. Consider a physical model 2~( t )=  
b e (x ~ (t)) + a c (x ~ ( t ) ) ~  (t) defined in a suitable parametrized family; the averaging method,  then, 

finds a process x° ( t )  such that x~(t)  ~ x° ( t )  in some specific sense as e ~ 0. It is important  that the 
limit process x°( t )  obtained by this procedure be much more tractable mathematically than the 
true physical process, and the parameter  value s, corresponding to the physical process, be small 
enough to yield a good approximation. The classical stochastic averaging method,  which was 
established by Stratonovich [15] by a physically rigorous method,  has been widely used to 

approximate physical  processes with certain smoothness and differentiability conditions by a 
diffusive Markov process. A mathematically rigorous proof of this result was given by Khasminskii 
[6]. The applicability of this method to engineering problems is obvious from the overwhelming 
number  of papers in the literature, notably, Ariaratnam and Srikantaiah [1], Roberts  and Spanos 
[11] and Sri Namachchivaya and Ariaratnam [13]. A physical interpretation of this method which 
is more appealing to engineers is given by Lin [8]. This method provides Markov approximation 
solutions to quasi-linear differential equations of the form 

£ + oJZx + e f ( x ,  2 )  + e~/2g(x, 2, ~(t))  = 0 (1) 
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where oJ is system frequency and ~(t) represents a parametric random excitation. However, there 
are some disadvantages to this method as we shall point out in the following examples. 

The first example is the Duffing's equation with parametric random excitation given by 

5~ + ooZx + e(ax 3 + pJc) + el/Zx~(t) = O. (2) 

The solution of the unperturbed equation can be written as x = A cos(~ot + qS), where A and ~b 
represent the amplitude and phase of the excitation, respectively. One of the motivations for the 
use of averaging is to obtain an amplitude equation which is independent of phase, so that the 
response of equation (2) is studied using the amplitude equation alone. Thus, by using the 
classical stochastic averaging method, the It6 equations of A and ¢h are obtained as 

[ - p A  3A ] el/z[AZS~(2w)]l/2 
dA = e - ~ -  + S~(2w) dt + 16oJ 2 I_ 80) 2 J dw (3) 

]1/2 [ 3aA 2 1 1/2[ Pc(O) S~(2o9)] dw (4) 
d~ = e[-~-~- w + 8w 2 ~ ( 2 w )  d t +  e [~--w2 + 8w ~ 

where dw is the Wiener process and 

S¢~(') = 2 f /R~(~- )  cos(-)~" d~', qJ~¢(-) = 2 f o  R¢¢(~') sin(.)~- d~'. 

Re~(l") is defined as E[~(t)~(t+ z)]. From equations (3) and (4) we observe that the cubic 
nonlinearity appears only in the phase equation. Furthermore, the amplitude equation contains 
only the linear expression. Thus, the effect of nonlinearity in equation (2) is eliminated in the 
averaging procedure yielding only the linear response. 

As a second example we consider the Duffing-van der Pol equation which represents a large 
amount of nonlinear phenomena 

5~ + o~Zx + e(ax 3 + ~x2A) + el/Zx~(t) = O. (5) 

As in the previous example, the It6 equations of A and ¢k are 

[ - 6 A  3 3A Sg~(2w)]dt+el/z[A2S~g(2oJ)]l/Zdw (6) 
dA = e - - ~  + 16w~ L ~ J ' 

+ a w  

Although nonlinear damping in this example appears in the amplitude equation (6), the cubic 
nonlinearity still has no influence on this equation and only appears in the phase equation. It is 
worth mentioning that, in the past, only damping type nonlinearities were considered while using 
the method of averaging for second order systems. 

From the examples given above, it is necessary for us to develop a new scheme to overcome 
the disadvantage of the classical method. A general procedure will be to accommodate all strong 
potential nonlinearities. In this paper, however, due to the tedious algebra for the general cases, 
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we shall extend the classical stochastic averaging method to the case of stochastically excited 
systems with strong cubic nonlinearity, i.e., 

2 + c ,x  + c3x 3 + e l (x ,  2 )  + eJ/Zg(x, 2, ~(t)) = 0  (8) 

where c I and c 3 are constants, e is a small constant coefficient, and so(t) represents a real valued 
zero mean stochastic process with autocorrelations that go to zero rapidly for large times, i.e., it 
satisfies a strong mixing condition 

, TmR~¢(~ " ) d r < 2 ,  m = 0 , 1 , 2 .  

The above condition implies that the power spectral density of the ~:(t) processes, and their first 
two derivatives are bounded at zero frequency. With the assumption given above, the model can 
be treated using the results of stochastic averaging. In this paper, we extend the results of Coppola 
and Rand [4] and Coppola [5] for nonlinear second order deterministic system to include 
stochastic excitations. The Markov approximation of this dynamical system will be used to study 
the nonlinear behavior by obtaining the stationary probability density function and moment 
response. It is worth mentioning that the second order system similar to equation (8) has been 
studied by Roberts [12] and Sri Namachchivaya [14] using energy envelope formulation. However, 
the methodology presented there is quite different from those reported by previous results. 

2. Variation of Parameters 

In order to obtain a set of equations in "standard form" necessary for the method of averaging, 
we first consider the unperturbed system of the form 

JC Jr- C1X -~- C3 x3 = O. (9) 

Equation (9) possesses a general solution of the form 

x = A c n ( u ,  k )  = A c n ( w t  + ~, k)  (lOa) 

/c = Ao~ Ocn(u, k )  
Ou (10b) 

with 

w 2 = c I + c3 A2 k 2 - C3 A2 
, 2(Cl + c3A2) (10c) 

where amplitude A and frequency w are positive constants. The cn(u,  k )  function represents a 
Jacobian elliptic function which is a periodic function depending on both its argument u = wt + q; 
and its modulus k = k ( A ) .  In this paper, all formulas and conventions concerning Jacobian elliptic 
functions are taken from Byrd and Friedman [3]. Furthermore, the k and w are known in terms of 
A. Hence, the amplitude A and the phase angle q~ are two arbitrary constants determined by the 
initial conditions. 
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In order to obtain a solution to equation (8) when s ~ 0, we use the variation of parameters 
method so that A = A ( t )  and q~ = ~0(t). The methodology presented herein is similar to that given 
by Coppola and Rand [4]. Differentiating (10a), we obtain 

= A c n  + A Ocn d__uu + A Oc__nn d k  
Ou dt  Ok dt  

( = ogAcn' + f t cn  + A c n '  dot + (~ - ~-k 1¢ (11) 

where Ocn/Ok = - c n ' S u / 3 k  and 

~ u / ~ k  = u / K  d K / d k  + z ( u ) / ( k ( 1  - k2) )  - k / ( 1  - k2)sn  c n / d n .  

K =- K ( k )  denotes the complete elliptic integral of the first kind, z (u)  denotes the Jacobian Zeta 
function (.)' denotes O(.)/Ou [e.g., c n ' =  Ocn/Ou = - d n s n ] ,  and the arguments (u, k) of the 
Jacobian elliptic functions have been suppressed. The notation 8 u / S k  has been used instead of 
d u / d k  in Coppola [4, 5] to emphasize that the expression is not a total derivative. These notations 
will be used throughout this paper. By using equation (10c), we find 

do = c3A A k = 2 cI k3 
o9 c3 ~ -SA.  (12) 

Substituting equations (12) into equation (11), one obtains 

c3 A2 c I k 3 8u ) 
= w A c n ' + A  c n +  t c n ' - 2  A2 cn'  + A c n ' ~  (13) 

o9 c 3 ~k " 

Differentiating 2 in equation (10b), we obtain 

clk2 sn 3 
2 = o92Acn" + A w c n " ~  + A w c n '  + 2k2wcn ' + - -  

o9 dn 

+ cn"c2A2t-  cn" clk2 ~u I q 
7 'J (14) 

Comparing equations (13) and (10b) yields 

~t (cn  + 
c3A 2 c 1 ~u ) 

t c n ' -  k cn'  o9 --~ ~-k + A c n ' ~  = 0 .  (15) 

From equations (14) and (8), another restricted equation can be written as 

[ c1 kzsn3 ( 
A~ocn"(~ + / t  (2k2w + w)cn '  + - -  + cn" - -  k o9 ~ c3A2 t -  cl ~u 

o9 

+ e f ( A c n ,  Aogcn ' )  + e l /2g(Acn ,  Aogcn',  ~(t)) = O. (16) 

Equations (15) and (16) are solved for .4 and ~b. Substituting ~b from equation (15) into equation 
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(16), we obtain 

Jt[-~ocn"cn + (2k 2 + 1)w(cn ' )  2 - (1 - 2k2)k2wsn 4] + e f  + el/2g = O. 

After  some simplification, the slowly varying amplitude equation of order e can be obtained as 

= - 1  ( e f c n ' +  e ' / 2 g c n ' ) .  (17) 
O9 

Due to the non-periodicity for the equation of ~b derived from equation (10), the ~b equation is not 
suitable for the averaging procedure. A new angle variable 4, is chosen such that the variational 
equation will be periodic. To this end, let u = wt + ¢ = 4Kq~, ~ can be derived as 

w oSt ~b u dK . 
= + + - -  

4K 4K 2 dk k .  (18) 

By substituting equations (14) and (17) into the above equation, we obtain 

w 1 [ ( 1 -  2k 2) (z(u)cn'+ k 2 ( 1  - CFI2)CFI)]. 4 = ~ + ~ ( e f  + E1/ag) Or/ (1 -- k 2) (19) 

Now the amplitude equation and phase angle equation are in the "standard form" and ready for 
averaging. In order to simplify the notation we rewrite equations (17) and (19) as 

~t = eFI (A  , 4)) + eI /ZG,(A,  4~, ~(t)) 

~b = 12(A) + eF2(A , qb) + e ' /ZGz(A,  &, ~(t)) (20) 

where 

- 1  - 1  
F 1 = -  f c n '  G I = ~ -  g c n '  

a ( A )  : ~  

- 4KAoJ cn 

G 2 = 4 K g w I c n  ~1 --  2kk~) ) 

(1 - 2k 2) cnZ)cn)] ~ - ~  (Z(")Cn' -[- k 2 ( 1  - 

( z (u)cn '  + k2(1 - cnZ)cn)] . 

The Jacobian elliptic functions are dependent on the independent variables (A, ~b) and their 
differentiation with respect to A and 4, are periodic, for instance, 

Ocn 
- (z sn dn - k2cn(1 - cn2)) - -  

OA 

O c n  
= - 4 K  dn s n .  a¢  

C 1 

k ' A w  2 
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3. Method of Stochastic Averaging 

The stochastic averaging procedure was proposed by Stratonovich [15] and later justified 
rigorously by Khasminskii [6]. Since then, several authors have expanded on this theory. 
Papanicolaou and Borodin [2] provided the same results under essentially less stringent assump- 
tions. Furthermore, the application of stochastic averaging theory to singular-perturbation prob- 
lem was given by Khasminskii [7] and Papanicolaou et al. [10]. Let's consider the process x7 of the 
following equation 

fc = e2F°(x, t) + 8FI(x, ~t, t ) ,  x(O) = Xo, x E R ~ 

where £, represents a stationary stochastic process with zero mean, F ° and F 1 are periodic in t with 
period T. According to the stochastic averaging theorem, this process will converge weakly on a 
time interval of order 1/e 2 to a diffusive Markov process x°t which is continuous almost surely and 
satisfies the It6 stochastic differential equation with the drift term mi(x ) and diffusion matrix 
(O'(X) o'T(x)) given as 

= + (0 _ _  t 

_ ~ OX 1 

(cr(x)crr(x)) = M {S_~ E[F:(x ,  ~,, t)F~(x, ~ ,+, , t+ $)] dr} 

where 

M(-) = lim 1 fj0 r 
r--.~ T ( . )dt  

and E[.] denotes the expectation. 

3.1. Deterministic Systems 

As a first step we perform the averaging by considering only the deterministic part (i.e., ~(t) = 0) 

of equation (20) 

Jt = eF , (A ,  ok) ~ = a ( A )  + eF2(A, ok). (21) 

By defining a near-identity transformation of the form 

A = f i  + eWI(A,  4)) + e2VI(A, 4)) 

4) = ~ + eW2(A , ~b) + e2V2(A, 4)) (22) 

where W~ and V~ are first and second order transformations, respectively, and are taken to be 
functions of (A, 40 which is different from the approach of Coppola [5]. In this paper, however, 
we only compute the averaged equations up to first order. The second order averaging will be 
necessary when the averaged of F I become zero in equation (21) (for example, when the 
deterministic perturbation in equation (8) has the form of el/Zxn2 m, n: integer, m: odd integer) as 
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indicated in the Appendix. We can write down the averaged equations up to O(e 2) as 

= eF, + O(e 2) ~ = fi + eF 2 + O(s 2) (23) 

where fi = f~(fi~) and 

= F , ( A ,  u ) d u  a n d  u = 4K(k(A))4,. (24) 

The detailed derivation of equation (23), IV, and V i can be found in the Appendix. 

3.2. Stochastic Systems 

We now consider equation (20) including the stochastic part. The set of It5 equations which 
include stochastic terms for the approximate amplitude fi~ and phase ~ can be obtained as follows 
(we drop the overbar on A and 4' from now on for convenient notation) 

dA = emA(A ) dt + E1/20"A d w  A (25) 

d4, = [(~ + em,(A)]  dt + 61/2o'(b dw+ (26) 

where 

ma(A) = FI + M ~ \ OA GL¢ 

i f  o ma(A) = F2 + M ~ \ OA GL¢ 

[o'O']AA= M { f ~  (GIG,.,)R,~O')d~'} 

[(rO'lA+= M { f \  (G, G2.¢)R~(r)d'r}=O 

= M { ; ~  (G2G2,¢)Raa('r)d'r}. 

OG 1 
+ ~ -  G2,~}R~(r) dr} 

OG2 G2,~. }R,~('r) d'r] 

Gi.~(" ) = Gi(', t+ r), R~(~')= E[~(t)~(t+ r)], w A and w+ are independent standard Wiener 
process and the averaging operator is defined as 

If M(') = ~ ) (') du (u: the argument of Jacobian elliptic function). (27) 

Furthermore, the integrand in [o'(r]A,~ consists only of odd functions in u for the case of linear 
parametric stochastic excitation. It is evident from [O'O']A ~ = 0 the It5 equations of A (equation 
(25)) and 4, (equation (26)) are decoupled. Unlike the classical stochastic averaging method 
dealing with trigonometric functions in equation (20), it is difficult to find the closed form of the 
integral in equations (25) and (26) due to the presence of Jacobian elliptic functions with time 
shift. The following two approximate approaches can be used to obtain satisfactory results when c 1 
and c 3 are positive constants. 
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The first approximation is to expand each of the Jacobian elliptic functions (cn, dn, sn etc.) by 
its corresponding Fourier series, such as 

cn(u, k) = -~K ~oSeCh[ (2n + l ) ~ K '  ] cos[ (2n + l)Tru ] : 2K ~/~ j ,  etc.  

The second approximation follows from equation (10c), 0 < k 2 < 0.5 when c 1 and c 3 are positive 
constants. We can, thus, use the addition formulas of Jacobian elliptic functions, such as 

cn( u + v) = [ cnu cnv + snu snv dnu dnv ] / (1 - k Zsn2u snZv ) , etc.  

and Taylor expand those formulas up to a high order of k 2 about k = 0 without expanding the 

elliptic functions themselves. 

4. Probability Density Function 

Since the It6 equation for amplitude A (equation (25)) is uncoupled from the phase 4~ (equation 
(26)), the amplitude equation A by itself constitutes a diffusive Markov process having a 

differential generator 

L(.)  = emA(A  ) a(') 1 02(") (28) + e ~ [o-OlA A OA 2 . 

Moreover,  the transition probability density p ( A ,  t l A  o, to), t > t  o of the response process is 
governed by the Fokker-Planck equation 

OP(A, t) _ O [mAP(A , t)] + 1 0 2 
at OA ~ - ~  [[O'O']AAP(A , t)] (29) 

with initial condition P(A ,  t I Ao,  to)---> 6(A - Ao) as t---~ t 0. The stationary solution of equation 

(29) is 

psi(A) - N E x p [ f  A 2ma da] (30) 
[O'O']A A [OvOrla a 

where N is the normalization constant. The solution of equation (30) can only be solved 
numerically due to the fact that the expression for the amplitude involves complicated combina- 
tions of Jacobian elliptic functions. Furthermore, the moment response can be obtained as 

E [ A  m] = f Ampst(A) d A .  (31) 

5. Examples 

Let us first consider the following nonlinear stochastic equation 

£ + clx + c3x 3 + e~Yc + el/2x£(t) = 0 (32) 



STOCHASTIC AVERAGING 381 

where c,-> 0, c 3->0 and /3 is the damping coefficient. Equation (32) can be modeled as the 
equation of motion of beam subjected to stochastic excitation at the support. 

In order to examine the instability regions of the trivial solution, we only have to study the 
linear problem, i.e. c 3 = 0 in equation (32). In this case and elliptic averaging is same as the 
trigonometric averaging, thus we first study equation (32) with c 3 = 0 by using the classical 
stochastic averaging method. The It6 equation for amplitude A, where x = A cos 4~, can be 
obtained as 

- /3A 3ASo] 1/2(5o] 
d A = e ( ~ +  16cl / d t + e  \ 8c l / dWA (33) 

and the stationary probability density function P,, can be given as 

c, A(-S~,,l+So)/So 
Pst(A) = U ~o (34) 

where So is the spectral density of the white noise ~:(t) and N is the normalization constant. The 
almost sure stability of A is characterized by the Lyapunov exponent A < 0 which is obtained as 

So (35) 
A = + 8c--~ " 

The sample stability boundary of process A of So v.s. /3 is shown in Figure 1. We observe that in 
the stable region of Figure 1, the trivial solution A = 0 is stable and thus expect the probability 
density function of A to be a delta function. On the other hand, in the unstable region of Figure 1, 
the trivial solution A = 0 loses its stability and the amplitude A will increase without bound. 
However, in real physical system, the amplitude cannot become arbitrarily large. Thus, the 
corresponding nonlinear analysis as we derived in the previous sections is important in order to 
obtain the stationary amplitude densities. 

So 
0.5- 

unstable 

0.4 ,  

0.3" 

0.2- 

0. 

I I I 1 | 
0 . 0 2  0 .04  0 . 0 6  0 . 0 8  0 .1  

Fig. 1. Almost sure stability boundary. 

damping 
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For the reasons stated above, we perform the nonlinear analysis by considering the cubic 
nonlinearity of equation (32) as the unperturbed term. The drift term and diffusion term of the It6 
equation of amplitude A (equations (23) and (26)) can be obtained as 

mA(A ) = M {-jSAdn2sn 2} 

where 

M o 

M 0 

M o 

M o 

[Kl(-cn2dn 2 + dn2sn 2 + kZcn2sn2)k2cna]R**(r) dr} 

2 2 2 2 } [K2(cn2drt 2 -- dn2sn 2 -- k cn sn )cn.lRee(r ) dr 

[K3(cn dn3cn + k2cn3dn sn - k2cn dn sn3)cn~dn,sn,]Ree(r) dr} 

[(Klk '2 + K3)cn dn sn cn,dn,sn,]Ree(r ) dr} 

2 2 2 } [K3(--cnidn 2 + dn2srt 2 + k cn sn )zcn,dn,sn,]Ree(r ) dr 

2 2 2 } [Kl(--cn2dn 2 + drt2srl 2 + k cn sn )z,cn,dn~sn~]Ree(r) dr 

A(2k  2 -  1) A ( 2 k 4 + k ' 2 - k  2) Ac I k, 2 k2 
K 1 - -  k , 2 w  2 , K 2 =  k , 2 w  2 , K 3 - -  k , 2  4 , = 1 -  . 

[O'O']AA= M { f ~  [--~2 cndnsncn~_dn.~sn~]R,,f(T) dT"}. 

(36) 

(37) 

The subscript r of the Jacobian elliptic functions represents the time shift from t to t + r. The 
average equations of (36) and (37) thus, becomes 

m A ( A  ) = mA(Z)deterministic + mA(A)stochasti c 

where 

1 E 2 
mA(A)deterministic=-~A(~--~ + - ~ + ( - - g ) ( ' 3  31k2)) 

mA(A)st°chastic = KASO 30 10k ~ ~ + 3-0 + 30 30k 4 

2 3  2)1 
+ K + 15k ~ 4  10k 2 15 

+ KzSo 15 15k 4 ~ + K + 15k ~ 15k 2 

+ [ 1  1 1 + k 2 + ( E ) 2 ( - 1  1 + 30-~) 
K3S° + 10k ------~ 6k -----5 ~ 30 30k 4 

E ( 1  1 + 1 k2)]  

15 15k ~ 15k ~ 15 

(38a) 

+ (38b) 
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(-1 1 
- -s S o  - -  + + + - - -  ( 3 9 )  

[ °-°-I A A O9- 15 15k  4 ~ g ~ l Z k  4 1 5 k  2 

where K =- K(k)  and E =- E(k)  are the complete elliptic integrals of the first and second kind, 
respectively. Fur thermore ,  equations (38) and (39) are only dependent  on amplitude A through k, 
via (10c). 

The stationary probability density function Ps, and moment  response then, can be obtained 
from equations (30) and (31), respectively. From the numerical calculation of P,,, we can compare 
the linear results from Figure 1 and find that the unstable points (/3, So) initially in Figure 1 can 
have probability densities and most probable value other than A = 0 as shown in Figure 2. Where 
the stable points (/3, So) in Figure 1 correspond to the delta functions at A = 0 and the unstable 
points (/3, So) under the nonlinear analysis will have smooth density functions. Physically, as we 
mentioned before,  this new elliptic averaging method give us more realistic results. The stationary 
density functions are plotted for different values of So in Figure 3. 

The second example we would like to examine in a codimension two bifurcation system 
per turbed by multiplicative noise studied by Sri Namachchivaya [14] 

2 =  y , .9= - c , x -  x 3 + e[(c o -  ax2)]y + e~/zx~(t) (40) 

where c o and c I are the unfolding parameters and c o = c I = 0 defines the codimension two 
singularity point. In this example, we restrict our attention to the case in which c o < 0 and c I > 0 
and reverse the analysis of the remaining cases for a later paper. 

The drift term and diffusion term of the It6 equation of amplitude A, where A = x/cn(u,  k) ,  
are similar to equations (38) and (39) respectively. However ,  there is one additional drift term 

3(1 , 2 (E)(2 2 2 ) )  
M{-olA3cn2dn2sn2} = - o l A  ~ + 5k 2 l S k  ~ + 2 ~ 15k 2 15k 4 

P.D,F. 
Cl =I, c3=I, So=0.1 

:t- 

0.6' 

0.I- 

0,2- 

13=0.04 
/ 

I I I I I 
1 2 3 4 5 

i i J A 6 7 8 

Fig. 2. Probability density function of amplitude A. 
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P.D.F .  

0 , 4 -  

0.3 '  

0.2- 

0 .1 -  

C l = l ,  C3=I, 13=0.01 

/ \ 

I I 
2 4 6 8 ;o 

Fig. 3. Variation of density function with S o . 

from the deterministic t e r m  ax2y of equation (40). That is 

1 mA(A)deterministic=--COm(~31 q- -~  -I- (E)(2 3 1 2 ) )  

- a A  -i-ff + 5k ~ 1 5 k  4 + 15 
2 2))  

1 5 k  2 1 5 k  4 

m A ( A  ) = mA(A)deterministic[in ( 4 1 a ) ]  + mA(A)stochastic[in ( 3 8 b ) 1 .  

A 

(41a) 

(41b) 

P.D.F.  c i  = i ,  c o -- -0.01, a = 0.01 

0.6 

0.5 

So=0.1 
o.4 ( So=0.3 

0.2 

0.1 

1 2 3 4 S 

Fig. 4. Variation of density function with S 0. 

A 
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A stable limit cycle of amplitude A = 1.8673 can be found by numerically solving mA(A ) = 0 in 
equation (41b) for deterministic system at c I = 1, c o = -0.01 and a = 0.01. The parametric noise 
to the system will have a shift effect from the most probable value point of view as shown in 
Figure 4, where the stationary density functions are plotted for different values of So. 

6. Conclusion 

In this paper, we have developed the method of stochastic averaging by using elliptic functions. 
Unlike the "regular" trigonometric stochastic averaging, this method considers the strong (cubic) 
nonlinearity as a part of the unperturbed equation and uses elliptic functions to express the 
averaged equations. We also provided some examples and demonstrated the importance of the 
nonlinear terms in the stochastic systems. The elliptic averaging methods retains those terms in the 
response equations. Moreover, by using these response equations, we can describe the behavior of 
nonlinear stochastic systems in a more realistic manner. However, the extension of this method 
for multi-degree-of-freedom systems will be cumbersome even with the use of symbolic man- 
ipulator such as Mathematica, Macsyma and Maple. 
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Appendix: Derivation of Deterministic Averaging 

The following derivation is slightly different from that contained in Coppola [5] but equivalent to 
first order. We would like to obtain the averaged equations corresponding to equation (21) as 

= eQl(A,  4)) + e2QE(A, 4)) + O(E '3) 

4) = ~ ( A  )+ eR,(7t, ~b)+ e2n2(A, 4))+ O(e3) • (A1) 

Differentiating equation (22) and substituting terms from equation (A1), we obtain the following 
equation in (A, ~) 

A = E(Q l -~ ~=~WI& ) --~ E2(Q2 ~- Q1WIA ~- RIWI¢ ~ + Vltb~=~) -[- O(£~ 3) 

~b = ~ + e(R 1 + ~W~,)  + e2(R2 + Q,W2A + R1W2, + V 2 ~  ) + O(e 3) (A2) 

where we let ~(.4)  =1~, OW1/OA = WIA , OW1/O ~ = W1, , etc. We now expand Ft, F 2 and ~ in a 
power series in e: 
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F~(A, 4)) = FI(A , ~b ) + eW1F~a(A , 8)) + eW2FI6(A , qb ) + O(e 2) 

F2(A, ~b) = F2(A , ~) + eW, FzA(7t , 8)) + eWzFz6(A, 4)) + O(s 2) 
1 2- 2 

f t (A)  = H + E~-~AW 1 -~- E2HAV1 -~- ~ 6 ~-~AAW1 q- O(E3) . (A3) 

Substituting equation (A3) into equation (21) and comparing this with equation (12) we obtain 
the following equations 

e t e r m s :  

El(A,  6)  = 0 1 ( ~ )  + (~(fi~)W~6(A, 6)  

F2(A , 4))+ f t ( A ) A W I ( A  , ~b)= RI(A ) + H(.4)W2,~(A , ~b). (A4) 

2 
e t e r m s :  

WI(A,  6 )FIA( f t ,  8)) + W2(A, ~b)Fa,~(A, 6)  

= 02(.4) + QI(.4)WlA(A, 6) + RI(.4)Wl~(A, 6) + VI~(.4, 8))fi(.4) 

1 
fiA(-4)V,(.4, 8)) + ~ fiAA(-4)W~(-4, 6) + W1(.4, 8))F2A(A, 6) + W2(A, 6)F2,(A, 6) 

= e2(.4) + Q,(.4)W2~(A, 6) + RI(.4)W2~(A, 8,) + v~(.4, 8))a(A). (AS) 

Substituting equations (A4) and (A5) for Q~, Q2, R1 and R 2 into equation (A1) we obtain the 
following equations in (,4, ~b) 

.~ = E[F~(.~,  8)) - f iW~, ]  + ~ [ H I ( A ,  6 )  - Vl~f i ]  + O(~ ~) 

(o = H + e[F2(A, 49) + H A W  1 -- ~'~W2q5 ] -~- e2[H2(A, 49) - v2~H] + O(e 3) (A6) 

where 

H I ( A ,  6 )  = W1F1A J¢- W2Fld) - QI W1A -- R1WI6 

1 - 2 
H2( A ,  6 )  = HA VI ..t- -~ ~Am W l  ~- W1F2A ..t- W2F2~ b - QI W2A -- RI W26 . (17)  

W~6 and V~6 in (A4) and (A5), respectively, must satisfy in order for equations (22) and (A1) to 
hold. 

Since each F~ is periodic, F~ can be considered as the sum of its mean value F~(A ) and an 
oscillating part with zero mean (/~/) where 

,f4  ~ = ~ F~(ii, ~)da and a = 4 K ( k ( A ) ) 8 ) .  (18) 

Upon requiring equation (22) be a valid asymptotic series for all time, the natural choice for W i 
and ~ in (A4) and (A5) are to require W~ and ~ to be periodic with zero mean so that W~ and ~ 
themselves are periodic and bounded. This leads to the choices: 



and 

O l  = F1 

if if W, : ~ W , ~ d 6 =  -o2 (F l (A 'a ) -F l )du+W'°  
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(A9) 

R1 = F  2 

~'~ W2o : [~'2 + f i  A Wl = F2 -- F2 + b A W l  ( A I O )  

if W 2 = ~ W2, ~ d~b = -m (F2( 'z i '  /~) -- ~ + •AWI) d~ + W~ o_ 

where the integration constants W~0 have been chosen so that IV; have zero mean. This completes 
the first order averaging. Furthermore, equation (A6) implies 

1 
f (H;(A, t~) - /~i) d~ + Vi0 ( A l l )  v,:: 

where,  again, the integration constant V;0 is chosen such that V~ has zero mean. Finally, from 
equations (A4), (A5), (A9) and (A10) the averaged equations can be written as equation (23). 
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