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Abstract. Non-linear systems are here tackled in a manner directly inherited from linear ones, that is, by using 
proper normal modes of motion. These are defined in terms of invariant manifolds in the system's phase space, 
on which the uncoupled system dynamics can be studied. Two different methodologies which were previously 
developed to derive the non-linear normal modes of continuous systems - one based on a purely continuous 
approach, and one based on a discretized approach to which the theory developed for discrete systems can be 
applied- are simultaneously applied to the same study case- an Euler-Bernoulli beam constrained by a non-linear 
spring - and compared as regards accuracy and reliability. Numerical simulations of pure non-linear modal motions 
are performed using these approaches, and compared to simulations of equations obtained by a classical projection 
onto the linear modes. The invariance properties of the non-linear normal modes are demonstrated, and it is also 
found that, for a pure non-linear modal motion, the invariant manifold approach achieves the same accuracy as 
that obtained using several linear normal modes, but with significantly reduced computational cost. This is mainly 
due to the possibility of obtaining high-order accuracy in the dynamics by solving only one non-linear ordinary 
differential equation. 
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1. Introduction 

The concept of normal modes of motion is well developed for linear oscillatory systems, due 
to the special features of the linear differential equations governing their dynamics. These 
features allow for a definition of normal modes in terms of eigenvectors (or eigenfunctions) 
and the expression of an arbitrary system response as a superposition of modal responses 
(see, for example, [1]). A normal mode motion for a linear oscillatory system is one which is 
analogous to that of an equivalent single-degree of freedom oscillator, and which takes place 
on a (two-dimensional) plane in the system's phase space. 

It is evident that no complete analogy of linear modal analysis can exist for non-linear 
systems, simply because superposition does not hold. However, many of the relevant ideas can 
be generalized. For example, much work has been done on the existence and stability of normal 
modes of motion for two-degree of freedom, conservative systems (see, for example, [2-4]). 
The purpose of the methodologies developed in [5-8] was to generalize these definitions 
to a very wide class of systems which includes non-conservative, gyroscopic, and infinite- 
dimensional systems. In particular, these results include (1) a definition of normal modes for 
a general class of non-linear systems, (2) constructive techniques for obtaining these modes 
for weakly non-linear systems and, (3) means of generating the differential equations which 
govern the dynamics of the system when it is undergoing a non-linear normal mode motion. 
Moreover, these developments clearly demonstrate the origins of the usual normal modes 
which exist in linearized systems. 
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In order to extend modal analysis ideas to non-linear systems - which is the ultimate 
goal of this line of research - an approach which is fundamentally different from the usual 
separation of variables and resulting eigenvalue problem must be adopted. Such an approach 
is offered by defining normal modes in terms of motions which occur on low - typically two - 
dimensional invariant manifolds in the system's phase space. Such a motion must be inherently 
like that of a lower dimensional system, and this is exactly what is desired for a normal mode 
motion. A constructive technique for generating such manifolds in terms of asymptotic series, 
without having to solve the equations of motion, is provided by a simple generalization of 
the method used in constructing approximate center manifolds in bifurcation theory (see [9]). 
Using this approach, it is possible to determine the manifolds which represent the normal 
modes for weakly non-linear systems. The equations of motion restricted to these manifolds 
then provide the dynamics of the associated normal modes. Along the same line, some recent 
advances include the treatment of strongly non-linear discrete systems, mode localization for 
multi-degree of freedom non-linear systems with cyclic symmetries, and systems with internal 
resonances (see [10-12]). 

For oscillatory systems, the invariant manifolds are two-dimensional and the modal dynam- 
ics on them are governed by second-order, non-linear oscillator equations. From these mani- 
folds, one can deduce the physical behavior of the system undergoing a purely modal motion 
and, in particular, the amplitude-dependent mode shapes can be obtained. From the non-linear 
modal oscillators, one can obtain information about the amplitude-dependent frequencies and 
the amplitude decay rates. For an N-degree of freedom system (N finite or infinite) there 
exists N such normal mode manifolds (under certain non-degeneracy conditions). The tan- 
gent planes to these manifolds at the equilibrium point are the planes on which the usual modal 
dynamics of the linearized system take place, i.e., they are the familiar eigenspaces. 

By definition, these non-linear normal mode manifolds are invariant, so that any motion 
starting exactly in one non-linear normal mode will be comprised only of that mode for all 
time, and will not generate any motion in the other non-linear normal modes. On the contrary, 
a standard linear modal analysis of the system's dynamics on that same manifold - obtained by 
mere projection of the equations of motion onto the linear modes - would produce a two-way 
exchange of energy, or "contamination", between the linear mode tangent to the manifold 
on which the motion is initiated and the other linear modes, due to the non-linear coupling 
terms between the projected equations obtained. (Note, these are linearly uncoupled if one 
projects on the exact linear modes). As will be demonstrated (see Section 3.4), this may yield 
inaccurate results if one includes only few linear modes, or expensive solutions if one includes 
many of them. 

To date, two different but consistent invariant manifold methodologies have been developed 
to determine the non-linear normal modes of continuous systems and the attendant dynamics: 
the first one - reviewed in Section 2.1 - treats continuous systems as such, so that the non- 
linear normal modes are directly obtained from the partial differential equation of motion 
(see [6]), while the second one - reviewed in Section 2.2 - first discretizes the system's 
equations of motion using the linear normal modes, and then applies the theory developed for 
non-linear discrete systems (see [5, 7, 8]). The first approach will hereafter be referred to as 
the "continuous non-linear normal mode method", whereas the second one will be referred to 
as the "discretized non-linear normal mode method". 

Section 3 contains a complete study of the application of both non-linear normal mode 
methods to a linear continuous system with a discrete non-linearity, namely, a simply supported 
Euler-Bernoulli beam constrained by a purely cubic spring. (See [7] for an example with both 
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quadratic and cubic non-linearities.) For this example, a comparison of both methods as regards 
accuracy and reliability is held in Section 3.3, which demonstrates that the "continuous" 
approach is less reliable. Standard projection of the partial differential equation (PDE) of 
motion onto the linear modes, followed by direct integration of the system of coupled non- 
linear equations thus obtained (e.g., using a fourth-order Runge-Kutta scheme) are also 
performed, and several motion simulations are carried out for all methods, so as to obtain 
quantitative comparisons of the performance of the "invariant manifold" approach versus that 
of the classical modal analysis technique for a continuous system. The invariance properties 
of the non-linear manifolds under a purely non-linear modal motion are clearly demonstrated 
by the simulations. It is also shown in Section 3.4 that a purely non-linear modal motion 
may require many linear modes (i.e., many coupled non-linear equations) to obtain a level 
of accuracy that can be achieved by only one non-linear equation (by definition of a non- 
linear mode) when using the invariant manifold formulation. For example, two widely used 
methods-  the linearization of the equations of motion, and the projection of them onto a single 
linear mode (the one that is tangent to the non-linear normal mode manifold considered at the 
equilibrium point) are shown to yield very poor and moderately good results only, respectively, 
at costs comparable to that of the non-linear manifold approach. Evidently, such results only 
apply to non-linear normal mode motions of the particular system studied here, but they do 
reveal the suspected potential the invariant manifold approach holds in the formulation of a 
non-linear modal analysis methodology. It is expected that significant savings could be also 
achieved for general motions of weakly non-linear systems. 

2. Normal Modes for Non-Linear Continuous Systems: A Brief Review 

The methods developed in [5-8] are quite simple in concept: determine a set of two- 
dimensional invariant manifolds in the system's phase space which represents normal mode 
motions for the non-linear oscillatory system, and then derive the equations of motion which 
dictate the dynamics on the manifolds. Utilizing the existence of the linear normal modes of 
the linearized system, one can theoretically construct locally, for weakly non-linear systems, 
formal asymptotic series expansions to any order for these non-linear normal mode manifolds 
and the attendant modal oscillators. These series systematically contain the non-linear correc- 
tions to the linear normal modes of the system, and exactly recover the linear dynamics when 
non-linearities are neglected. 

2.1. CONTINUOUS NON-LINEAR NORMAL MODE METHOD 

The definition of non-linear normal modes of vibration for one-dimensional continuous sys- 
tems is directly issued from the theory elaborated in [5] for discrete systems. Namely, a normal 
mode of  motion for a non-linear, autonomous oscillatory system is a motion which takes place 
on a two-dimensional invariant manifold in the system's phase space. This manifold passes 
through a stable equilibrium point o f  the system, and it is tangent to an eigenspace of  the 
system linearized about that equilibrium. 

Therefore, an invariant manifold, and the dynamics of the system on it, can be described 
by a pair of independent coordinates. These can be chosen to be the displacement uo(t) and 
the velocity vo(t) of a particular point s = so of the structure, as shown in Figure 1 (u0 and 
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Fig. 1. Generic one-dimensional continuous system. 

v0 are considered independent). The displacement and velocity fields of the entire system for 
a normal mode motion are then formulated as 

u(s , t )  = U(uo(t) ,vo(t) ,s ,  so) 

v(s, t) = V(uo(t),  vo(t), s, so) (1) 

which describes a two-dimensional manifold in the infinite-dimensional phase space of the 
system. 

The equations of motion of the continuous system are assumed to be in first-order form as 
follows 

{ Ot 
for s E f t  - 0ft, (2) 

Ov(s,t)  _ F ( u ( s , t ) , v ( s , t ) )  
Ot 

where F is a non-linear differential operator (note that obtaining F may require the inversion 
of an inertia-operator), ft is the domain of s, and Oft is its boundary, with the boundary 
conditions 

B(u(s , t ) ,  v (s , t ) )  = 0 s E Oft. (3) 

The geometric constraints, equation (1), can be used to eliminate the explicit time depen- 
dence in equation (2), hence yielding a set of equations which describes the geometry of 
the system's invariant manifolds. Once the geometry of these invariant manifolds is known 
(usually in a local sense, by means of a series expansion), i.e., once the functions U and V are 
solved for for each mode, the dynamics on each of them are easily obtained by first evaluating 
the equations of motion, equation (2), at the point s = so (to determine uo(t) and vo(t)), and 
then using the constraint equations, equation (1), to obtain the dynamics of any other point. 
The first step of this procedure yields a second-order non-linear oscillator equation describing 
the dynamics of the system undergoing a purely single non-linear mode motion, and allows 
for the derivation of some physical characteristics of the dynamics of this motion, such as 
the amplitude-dependent frequency or the amplitude decay rate. This methodology is fully 
explained in [6], and it is applied to the example considered in this paper hereafter. 

Note that this method is outlined here for one-dimensional systems under the assumption 
that all manifolds are two-dimensional, which implies simple, non-resonant eigenvalues and 
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underdamped modes for the linearized system. It can however be generalized to handle 
the cases of overdamped systems or of multiply repeated frequencies for multi-dimensional 
systems. It is also important to notice that the method can theoretically handle many types 
of forces, including dissipative, and other non-conservative or gyroscopic forces, as long 
as they are sufficiently smooth. Note also that when linear systems are considered, this 
approach is completely equivalent to the traditional eigenvalue problem, in the sense that the 
eigensolutions (i.e., the normal modes) are exactly recovered, although it does so in a novel 
manner [6]. 

2.2. DISCRETIZED NON-LINEAR NORMAL MODE METHOD 

An alternative and perhaps more practical methodology to determine the non-linear normal 
modes of a continuous system is one that is based on the prior Galerkin-type discretization 
of the partial differential equation governing the system, and the subsequent normal mode 
calculation for the non-linear discretized system. This approach has very recently been intro- 
duced in [8] for systems with cubic non-linearities, and extended to systems with quadratic 
and cubic non-linearities in [7]. 

The equations of motion are assumed to be of the form 

M L or2 (8,t) + L[u(s,t)] + N[u(s,t)] = 0 ,  

with the boundary conditions 

s Eft - Oft, (4) 

B(u(s , t ) ,v(s , t ) )  = 0 ,  s E Oft, (5) 

where L and M are the linear, self-adjoint, positive definite stiffness and mass differential 
operators(so that the linearized system undergoes oscillatory motions), respectively, and N 
is a non-linear differential operator. One can decompose the exact solution onto the normal 
modes of the linearized system, as 

= 

j=l  
(6) 

where the rlj'S are the linear modal coordinates corresponding to the linear mode shapes Cj, 
j =  l,. . . ,oo. 

Projecting the equations of motion onto the linear modes then yields 

~--~(¢i, M(¢j)}i~j + ~"~{¢i,L(¢j))rlj + ¢ i ,N  Cj~lj = O, i = 1 , . . . ,  cc (7) 
j=l j=l  

where (f,  g) denotes the usual inner product defined as (f,  g) = f~ f(s)g(s) ds. 
For the linearized system, the mode shapes satisfy 

(¢i, M ( ¢ j ) )  ---- #i6ij (8) 

(¢i, L(¢j ) )  = #iw~6ij (9) 
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Fig. 2. Simply-supported Euler-Bernoulli (linear) beam connected to a purely cubic spring. 

where 6ii is the Kronecker delta and #i is the modal mass, so that equation (7) becomes a set 
of non-linear ordinary differential equations (ODEs) decoupled at the linear order but coupled 
via non-linear terms: 

i~i + w~Tli + Ni(~) = 0, i = 1 , . . . ,  oc (10) 

where /7i = 02~7i/0t 2, ~ is the vector of all the linear modal coordinates, and Ni(~) = 

1/#i(¢i, N ( E F = l  ¢j.7/i)), i = 1 , . . . ,  oc. 
The theory developed in [5] for discrete systems can then be applied to this set of non- 

linear ODEs, which allows for the definition of the non-linear normal modes of vibration of a 
discrete system as two-dimensional invariant manifolds tangent to the modes of the linearized 
system near the equilibrium point of interest. For that purpose, one must define a pair of 
independent coordinates for each mode, so as to describe the invariant manifolds (at least in 
a local sense). 

Note that both the "continuous" and the "discretized" non-linear normal mode methods are 
consistent and theoretically yield equivalent non-linear normal modes for continuous systems. 
Also note that, while the "continuous" non-linear normal mode approach is primarily defined 
for one-dimensional systems and necessitates generalization for two- and three-dimensional 
systems, the "discretized" non-linear normal mode approach is directly appropriate for systems 
of any dimensions, since the partial differential equations of motion are discretized using the 
modes of the multi-dimensional linearized system. 

3. Non-Linear Normal Modes, Invariance, and Comparison of Modal Dynamics 
Approximations on a Study Case 

3.1. EQUATION OF MOTION FOR A LINEAR BEAM CONSTRAINED BY A PURELY NON-LINEAR 
SPRING 

The system chosen to implement the above methods and explore and compare their utility and 
performance is a homogeneous, simply supported Euler-Bemoulli beam with a non-linear 
cubic spring attached at its middle - see Figure 2. While the beam itself is assumed to deform 
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in the linear range, the spring was chosen as purely cubic so that the linearized system's normal 
modes were those of the simply supported beam alone (i.e., pure sine waves), and therefore 
so that the influence of the various linear modes on the non-linear ones could be visualized 
easily. Notice that, since the spring is located at a node of the antisymmetric (even) modes, 
it will not affect them, so that the antisymmetric modes of the non-linear system will be the 
same as those of the linearized system. Therefore, only the symmetric (odd) modes will be 
influenced by the non-linear spring and, furthermore, they will only feature contributions of 
the symmetric linear modes. 

If the beam is of  length I = 1, the equation of transverse motion can be shown to be 

m~+EIu,s,~+Tu36(s - 1 )  = 0 ,  sE]0 ,1[  (11) 

or in non-dimensional form: 

i2+ceU,ssss+/~u36(s - 1 )  =0, sE]O, l [  (12) 

where E is Young's modulus for the beam, I is the second moment of area for the cross-section, 
m is its mass per unit length, 7 is the non-linear stiffness of the spring, s represents the spatial 
coordinate along the beam, u(s, t) is the transverse deflection, (.),s denotes a derivative with 
respect to s, an overdot represents a derivative with respect to time, 6(.) is the Dirac function, 
a = EI/m and ~ = 7/m. 

The associated boundary conditions are 

= { u , . (o )  = o u(O) 0 and 
u(1) = 0  u,~(1) = 0 .  

(13) 

3.2. NON-LINEAR NORMAL MODES 

3.2.1. Continuous Non-Linear Normal Mode Method 

The method is described fully in [6]. Since for this example, most of  the derivation of the 
normal modes is fairly straightforward, only the essential steps are given here. 

The equation of motion is first written in first-order form as: 

- ~ - = v  

Ov (14) 1). 
In 

point 
point 

order to seek non-linear normal mode motions, the displacement and velocity of any 
on the beam are functionally related to the displacement and velocity of an arbitrary 
8 = 80 as follows 

{ u(s, t) = U(uo(t), vo(t), s, so) 
v(s, t) s, so) (15) 
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where uo(t) = u(so, t) and vo(t) = d/dt(uo)  = v(so, t). The time-derivatives of u and v on 
the modal manifold are obtained as follows 

Ou OU OU 
Ot - Ou---o x izo + -ff~vo x i~o 

Ov OV OV 
Ot - Ouo x izo + ~vo x i~o 

(16) 

with 

( ~O:vO 04 U ( ~ )  
~o = -~-b-74 (so, t ) -  ~o3~ so - . 

(17) 

Substitution of equations (16) and (17) into equation (14) results into a set of constraint 
equations for the geometry of the manifolds, in which the explicit time dependence of the 
problem has been removed: 

v = Ouo x vo + ~ -~-~Zs4 (so, t) - 

04U 3 

OW OW 04U __fl~Z3,(8 0 1)] 
= Ouo × vo + ~vo -~-6~s 4 (so, t) - . 

(18) 

Notice that so far, no assumption has been made on U and V, and therefore equation (18) 
describes the non-linear normal mode in a non-local sense, that is, if one can find the exact 
solution of equation (18), this solution will describe the exact shape of the manifold. However, 
this is in general not possible. 

For the system considered here, the exact solutions (i.e., the solution for each non-linear 
normal mode) to equation (18) could not be found explicitly (except for the even modes, 
which are not affected by the non-linearity). However, the local characteristics of the invariant 
manifold geometry (and also of the dynamics on them) can be determined by expanding U and 
V in Taylor series with respect to u0 and v0. To third order, this yields, for the ith non-linear 
mode: 

{ v, = a~uo + a~o  + ~ o  ~ + ~uo~o + a~o  ~ + ~ o  
+ a~g~o + ~ o ~  + a~g + . . .  

= bi~,o + bi~o + b i ~  + bi~,o~o + b~o + 
+ b i~vo  + bi~o~o ~ + b~vo ~ + ' "  

, ( 1 9 )  

where the a~-'s and the b~ 's are functions of the space variable s. 
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Substituting equation (19) into equation (18) and equating the coefficients of like powers 
i 's and the in u0 and v0 yields a set of differential equations which have to be solved for the aj 

b)'s, subject to the set of boundary conditions 

a}(1) 0 b}(1) = 0 (20) 
= o  ( b } ) " ( 0 )  = 0  

(a})"(1) = 0  (b~.)"(1) = 0 .  

Note that the following equalities must hold at so: 

{ a ~ ( s o ) = e  {a , ( so )=O,  j ~ l  (21) 
b~(so) 1 b}(so)--O, j ~ 2. 

Solving these boundary value problems in the a~.'s and b}'s is a fairly tedious but not 
complicated process. Besides, the calculations for the present example are similar to those for 
a beam on a non-linear elastic foundation, which was solved for in full detail in [6]. Therefore, 
only the results and the main features of their derivation are given here. 

Considering the ith non-linear mode, one first solves for the terms at the linear order, which 
are readily found to be 

a~(s) = bi2(s) - sin(iT, s) 
sin(i~so) ' i--- 1 , . . . , N  (22) 

a~(s) = b~(s)=0.  (23) 

Notice that up to the linear order, the normal modes of the linearized system are recovered 
- with a particular scaling - which is a direct consequence of the definition itself of the non- 
linear normal modes (which are tangent to their linear counterpart at the system's equilibrium 
point). Also note that equation (22) precludes so to be a node for the ith mode of the linearized 
system, i.e., we must have sin(iTrso) ¢ 0. 

The set of differential equations to be solved for the quadratic coefficients is linear and 
homogeneous with homogeneous boundary conditions, and its solutions are zero, as they 
ought to be in the absence of quadratic non-linearities. The equations for the cubic coefficients 
a~, a~, b~ and b~ are uncoupled from those involving the cubic coefficients a~, a~, b~ and b~, 
and are homogeneous, implying that their solutions are also zero. 

The coefficients b~ and b~ are easily eliminated from the remaining four equations, resulting 
in a boundary value problem to be solved for the cubic coefficients a~ and a~, given by 

aa~m'-3a(iTr)tai6+2a2(iTr)Sais=c~ai6m'(s°)~'sm[~Trso) [sin(/ s)13[sin(iTrs0)J 5 (s - 1)(24) 

aa~"' 7a(iTr)4a~ +6a~ aa i ' ' `  ~ sin(i~-s) 
- = s (25) 

for so ~ 1/2 (for singularity reasons) and sin(iTrs0) ~ O, with the corresponding homogeneous 
boundary conditions given in equations (20) and (21). 
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In order to solve accurately for the cubic coefficients, one has to perform first a change 
of unknown functions in order to improve the smoothness of the solutions. This is because 
the solutions of equations (24) and (25) are only twice continuously differentiable, due to the 
occurrence of the Dirac function in the non-homogeneous term in equation (24). Since these 
solutions will be sought in the form of infinitely differentiable series, this change of functions 
will improve the convergence of the series solution. This is achieved by defining 8~(s) as 

a~(s) = 4(s)  + F,(s) (26) 

while keeping a~ (s) unchanged. The function Fi (s) is chosen so that it carries the discontinuity 
of the higher derivatives, but does not perturb the boundary conditions, that is: 

{ 5!0) = =o 
F~ (0) = F~ (1) = 0 

(27) 

and 

F"'(s) =Z rsin(i s)]3 ( 1 )  
Lsin(iTrso)J 6 s -  . (28) 

Integrating equation (28) while enforcing continuity of Fi and of its first and second derivatives 
yields: 

Fi(s) =/3 
o~ 

s in( i{ ) ]  3 {-1-~[ s2-3] 
s ~ ) J  x (s]_ 2-1) [(s-l) 2-3 ] 

for 0 < s < l / 2  

for 1 / 2 < s <  1. 

(29) 

Carrying out the change of functions, equation (26), into equations (24) and (25) yields a new 
set of differential equations (valid for so # 1/2 and sin(iTrs0) # 0) in terms of g~ and a~, 
which are now six times continuously differentiable functions: 

ai,,, 3.i7r.4~ i + 2a.iTr.8ai aim, ̀  ~ sin(iTrs) 3(iTr)4Fi(s) 
6 - -  ( ) 6 ( ) 8 = 6 ~80)  . ~ .  x sm~.so) 

i tm • 4 i - i  i . .  sin(ira) 
~a 8 - 7~(z~) a8 + 6a6 = ~a8 ( s 0 ) ~  +6Fi(s)  

(30) 

with boundary conditions immediately following from equations (20), (26) and (27). The 
process can of course be iterated several times if needed, to achieve further smoothness of 
the solution. Equation (30) would be fairl.y complicated to solve exactly, but approximate 
solutions can be found by expanding a~, a~ and Fi into the modes of the linearized system, 
that is: 

oo 

a6 = E a} sin(jTrs) 
j = l  

(31) 

oo 

a~ = E f~} sin(jTrs) 
j = l  

(32) 
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OO 

Fi = ~_, f~ sin(jTrs). 
j=l 

(33) 

The resulting system of equations for the a) ' s  and the ~3}'s is linear in the unknowns and can 
be solved easily. Those coefficients are 

I i -3(iTr)a[(JTr) 4 - 7(i7r) 4] - 12(i7r) 8 
olj = [( jTr)a-  7(iTr)4][(jTr)4- 3(i7r)4]_ 12(iTr)S × f~ 

6(jTr) 4 
for j ¢ i (34) 

where 

f~ = 2~ 
sin(i~) 

sin(iTrs0) 

3 sin(j ~) 

(j7r) 4 
(35) 

and 

OQ 1 1 E[7o~} + 2oz(iTr)4/~jl(jTr) 4 sin(jTrso) 
9(i7r) 4 sin(iTrs0) j=l  

j¢i  

(36) 

oo 
/3~ = 1 1 ~ [ 2 a }  + c~(iTr)4/3~](jTr) 4 sin(jTrs0). (37) 

3a(iTr) 8 sin(iTrs0) j=l  
j# i  

The cubic coefficients ai6(s) and a~(s) are then recovered by equations (31), (32) and (26), 
while the coefficients b~(s) and b~(s) are given by 

{ b~(8) = 3a~(8)- 2(iT"f)4ai8(8) 
b (8) = a (8) (38) 

The ith non-linear normal mode is then determined up to third order by 

{ Ui = a~ (s)uo + a~(8)U3o + ai(s)uov~) + . . .  (39) 
= bi(8)vo + b (8)  vo + + . . .  

with the coefficients found above. 
Note that whenever u0 = 0, (i.e., when the displacement at the chosen point so is zero), then 

u(8, t) = 0 for all 8 at that instant of time. Likewise, when v0 = 0, then v(s, t) = 0 for all s, 
i.e., u(s, t) is extremum for all s. Consequently, the beam motion in a given non-linear normal 
mode is synchronous, since all points have zero deflection and reach their maximum amplitude 
at the same times. (For cases with both quadratic and cubic non-linearities, the motion is no 
longer synchronous and various points would not necessarily have zero deflection at the same 
time. They would however reach their maximum amplitude simultaneously (see [7]).) As in 
the linear case, the mode shape can then be plotted at any instant of time, in particular when 
v0 = 0. Notice, however, that the non-linear normal mode shapes are amplitude dependent. 
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The maximum deflection shape for vo = 0 depends non-linearly on the maximum amplitude, 
u0raax, as follows: 

Um x(S) = a (s) ,0m x + 4(s) '3m x + . . .  (4o) 

where, from this point on, the superscript on ui(s, t) (respectively, on Uimax(S)) refers to the 
deflection of the point of abscissa s at time t (respectively, to the maximum deflection of 
the point of abscissa s) when the system undergoes a motion in the ith non-linear normal 
mode. 

At this point, the dynamics of the ith non-linear mode for the special point so can be obtained 
by substituting equation (39) into the equation of motion, equation (12), and evaluating the 
result at s = so (where so ¢ 1/2 and sin(iTrs0) ¢ 0), yielding 

i/tit 3 
+ + a6 (so) o + + . . . .  0 

The dynamics at any other point follows from equation (39). 

3.2.2. Discretized Non-Linear Normal Mode Method 

Here the beam deflection, u(s, t), is first decomposed onto a subset of the normal modes of 
the linearized system, e j, using a standard Galerkin procedure: 

N 
u(s,t) 

j = l  
(41) 

/]i "4- a(iTr)4r]i -+- 2/3 [j=l r/j sin j 

3 

Sin ( i 2 ) = 0 ,  i = l , . . . , N .  (42) 

This set of N, coupled, non-linear ODEs describes the dynamics of the linear modal 
components of the motion. These equations can be numerically integrated (e.g., using a 
fourth-order accurate Runge-Kutta time-marching scheme) to obtain what can be considered 
(if N is large enough) as the "exact" dynamics of the system. It should be realized at this 
point that this may be computationaUy very demanding, since the more accurate the desired 
solution, the larger the number of coupled ODEs to be solved (recall that for a Runge-Kutta 
scheme, the actual number of first-order equations is 2N). 

One can also obtain approximations of the non-linear normal modes of the system by 
applying to this set of N non-linear ODEs the general method developed in [5]. In order to 
do so, one has first to express the problem into a set of 2N first-order ODEs, as 

{ x i  = Yi 

~li f i ( X l , . . . ,  XN, Y l , . . . ,  YN) 
i =  1 , . . . , N  (43) 

where N is the number of terms retained in the Galerkin expansion. Given that for the system 
in Figure 2, the constraining spring is purely non-linear, the linearized system reduces to a 
classical simply supported Euler-Bemoulli beam, whose linear modes are the well-known 
ej (s) = sin(jzrs). Substituting the Galerkin expansion, equation (41), into the equation of 
motion (12) and projecting onto the ith linear mode, one obtains 



where xi = rli, Yi =ili, and 

fi :--~(iTr)4xi--2~ [ £xjsin(j2)j=l 
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3 

sin ( i 2 )  • (44) 

Then, a pair of independent coordinates, (uk, vk), must be chosen to describe the geometry of 
the invariant manifold for each non-linear normal mode. It is here a natural choice to define 

uk = Xk = r/k (45) 
vk = Yk = r)k 

for the kth non-linear mode. The xi's and Yi'S (for i • k) are then assumed to be functionally 
related to uk and Vk as 

xi = Xi(uk,vk)  i =  1 , . . . , N ,  i C k (46) 
Yi = Yi(Uk,  Vk) 

o 

Taking the time-derivative of equation (46) yields: 

{ Xi - OXi OXi 
- O--U x ~ k +  b~v x/,k 

i = l , . . . , N ,  i ¢ k .  (47) 
= oY~ oyi 

Ou x i~k + ~ x i~k 

Note that one can define Xk(Uk, Vk) = Uk and Yk(uk, vk) = vk for consistency of notation in 
the derivations. 

Substituting equations (46) and (47) into equation (42), the equations governing the geom- 
etry of the invariant manifold of the kth non-linear normal mode are: 

OXi OXi 
Yi= Ou x v k +  avv x'fk 

i = l , . . . , N ,  i # k  (48) 
OYi OYi 

A -g~ x vk +-&-v x A 

which are to be solved for the Xi's and Yi's. 
An approximate local solution can be computed by assuming a Taylor series expansion of 

Xi and Y/with respect to uk and vk up to the desired order. In this case, because of the purely 
cubic non-linearity in the equation of motion and its conservative, non-gyroscopic nature, 
many terms are zero and the Taylor series expansions reduce to, up to third order: 

, 3  . . .  
X i = a~ Uk + a6u k + -]- 

i 3 i = l  . . . , N ,  i e k .  (49) 
y, = b~v,~ + b ~  + b9vk + . . .  

Substituting equation (49) into equation (48) and equating the coefficients of like powers 
in uk and vk, one obtains: 

(1) i lk  is even: 

a ; = a ~ = 0 ,  i = I , . . . , N ,  iT~k 
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(2) if k is odd: 
- if i is even: 

a ; = a ~ = 0 ,  i = l , . . . , N ,  i C k  

- if i is odd: 

a~ =2 f l ( -1 )  (k+i/2) [ i 4 _ 7 k  4] i =  1 , . . . , N ,  i 7  ~k  
aTr4[i4 _ ]¢4] [i4 _ 9k4] ' 

(50) 

a~ = - 1 2 f l ( - 1 )  (k+i/2) 1 
a27c8[i4 _ ~4] [ i4  _ 9k 4] ' i = 1 , . . . ,  N, i 7 ~ k (51) 

and, for all k andi  = 1 , . . . , N , i  ~ k: 

{ b ~ = a ~  = 0  and b k = a l  k = l ,  

b~ -2c~Ir4k4a~ + 3a~ (52) 

b; 

The coefficients a~ and a~ represent the non-linear correction in the kth non-linear normal 
mode due to the ith linear mode. Notice, as stated earlier, that only the symmetric modes are 
affected by the non-linearity (k odd), and that only the symmetric linear modes contribute to 
the symmetric non-linear ones (i odd). 

The linear modal amplitudes are then recovered as, for the kth non-linear mode (k odd): 

1 
~Tk -= Uk  

~i = 0 for i even i = 1 , . . . , N ,  i ~ k (53) 

i 3 a~ukv~ f o r i o d d  i 1 , . . . , N ,  i C k  ~i = a6u k + + . . . .  

and the kth non-linear normal mode is reconstructed as 

N 

uk(s,t) = ~-~ ~i(t)sin(i~s) 
i=1 

N 

= uk(t)sin(kTrs)+ Z ~i ( t ) s in( i~s)+. . .  
i = l  

i odd,i:~k 

N 

uk(s,t) = uk(t)sin(klrs)+ E [a~u3k(t)+aiSuk(t)V2k(t)] sin(i lrs)+' '"  (54) 
i=1 

i odd,iCk 

where here again, the superscript k in uk(s, t) refers to the deflection of the point of abscissa 
s at time t when the system undergoes a motion in the kth non-linear normal mode (not to be 
confused with uk(t) which is the non-linear modal coordinate and is not meant to represent 
the motion of any particular point). 
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Regarding the synchrony of the motion, the same considerations hold as for the "continu- 
ous" non-linear normal mode method, so that the mode shapes can be plotted when vk = 0, 
that is, when uk = Ukmax. The  maximum beam deflection is given to third order by 

N 

i----1 
i odd,iCk 

(55) 

The dynamics on one particular non-linear mode are obtained by back substitution of 
equation (53) into equation (42) for i = k, determination of the dynamics of uk( t )  (for 
example by numerical integration), and then by recombination of the beam non-linear modal 
displacement, u k (s, t), using equation (54). This process requires solving only one non-linear 
ODE to determine the motion on each non-linear mode, as compared to the N coupled ODEs 
involved in a direct integration of equation (42). The result of the substitution of equation (53) 
into equation (42) for i = k yields 

/ik --[- o~(kTl-)4Uk-[-2/~Sin2 (]g2) u3 

+ 6/3U3k( ~ j 2 j ' 2  ( 2 ) /  [a6u k + aSuk] sin j 
j=l 

j odd,j#k 

+ . . . .  O, k =  1 , . . . , N .  (56) 

The modal dynamics of the non-linear system on each two-dimensional invariant manifold 
are therefore described by a single-degree of freedom non-linear modal oscillator. Note that 
the dynamics of the N non-linear modal oscillators are decoupled from one another, which 
accounts for the invariance of the non-linear normal modes. 

A very interesting point here is that without any computational effort added to that of 
computing the third-order correction to the non-linear modes (that is, the a~'s and a~'s), one 
can obtain the dynamics on that non-linear mode up to an accuracy of fifth order in a perfectly 
consistent and legitimate way (see equation (56)), since any correction in the geometry of 
the invariant manifold of order at least five would yield terms of order at least seven in 
the dynamics, equation (56). Likewise, the fifth-order approximation of the normal mode 
geometry would give the dynamics on that mode up to seventh order correctly, and more 
generally, the accuracy of the dynamics is always two orders of magnitude higher than that of 
the manifold's geometry itself. This is of course very particular to those systems with only odd 
non-linearities, but it can be shown easily that even if the system had a quadratic non-linearity, 
the accuracy of the dynamics on a single non-linear mode would always be one order higher 
than that of the mode shape. 

Note that in our case the application of this result to the first-order non-linear approximation 
of the normal mode (i.e., the linearized mode) predicts a third order accuracy in the dynamics, 
which is consistent with the fact that the standard projection of the partial differential equation 
of motion onto a single linear mode yields the correct frequency correction up to third order. 
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and the "continuous" non-linear formulation (for two different values of s0). 

3.3. NON-LINEAR MODE SHAPES 

Figures 3a and 3b show, respectively, the maximum deflection shapes obtained to third order 
for the first and third non-linear modes by the two methods presented above, for the values 
a = 1,/3 = 104, and uk max = 0.15 (Uk being U 1 for the first mode and u3 for the third mode). 
For the "continuous" normal mode method, so was chosen first, and u0 was then determined 
such that the amplitude at so obtained by both methods matched. Note that in the case where 
So is close to 1/2, the mode shapes obtained by the two methods agree quite well (So could not 
be taken at the mid-span exactly since tht was an excluded poin; see Section 3.2.1). However, 
when so is chosen to be at some other location, the mode shape obtained by the "continuous" 
normal mode method changes. This has no particular physical meaning and was used in [6] 
to predict the limit of validity of the method. Moreover, recalling that the method fails when 
so is taken at a node of a linear mode, it is believed that the dependence of the "continuous" 
normal mode formulation on so makes it less desirable in general. Indeed, in this example, the 
method works best (for both the first and third non-linear modes) when so is as far as possible 
from the nodes (or the end points), i.e., when so is close (but not equal to) s = 1/2. 

Therefore, the "continuous" non-linear normal mode method, although more appealing in 
its formulation, was left aside for the remainder of the study. The simulation of the dynamics 
on the non-linear modes was thus carried out using the Galerkin discretization followed by 
the discrete non-linear normal mode formulation. 

Both methods capture the same qualitative features of the non-linear mode shapes, in which 
the influence of the various linear modes is evident. In particular, the first non-linear mode 
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Fig. 3b. Comparison of the third non-linear normal mode shapes obtained by the "discretized" non-linear formu- 
lation and the "continuous" non-linear formulation (for two different values of so). 

depicted in Figure 4a clearly illustrates the influence of the higher linear modes (mainly the 
third linear mode), indicating that several of them may be needed to recover its dynamics if 
a standard linear modal analysis of the non-linear system were performed. Figure 4a depicts 
the growing influence of the higher linear modes on the first non-linear mode shape as the 
peak amplitude is increased (this was obtained using only the discretized non-linear mode 
formulation). 

In Figure 4b, the influence of the various linear modes on the third non-linear one is evident 
as well. It is observed that the mode shape is "pulled down" at its middle, a counter-intuitive 
result. This is mainly due to the contribution of the first linear mode to the third non-linear 
mode, a61 sin(Tr/2), which is negative, and therefore acts in the same direction as the coefficient 
of the third linear mode. Likewise, for any odd non-linear mode, say the kth mode, it can 
be seen by inspection of a I sin(Tr/2) and from the form of the kth linear mode shape that 
those two components will always act in the same direction. Therefore, for k not too large 
(so that a 1 is still significant), this counter-intuitive phenomenon would be observed as well. 
Note that it is a fairly easy matter to solve the eigenvalue problem in which a linear spring 
replaces the non-linear one, and that in that case, the same qualitative mode shape distortions 
occur. Therefore, it appears that this phenomenon is not due to the non-linear nature of the 
constraint. 
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3.4.  NUMERICAL SIMULATIONS OF THE DYNAMICS ON A NON-LINEAR NORMAL MODE 

Numerical simulations were performed to check the invariance properties of  the non-linear 
normal modes and the accuracy of the series solutions as obtained by the discretized system 
methodology described in Sections 2.2 and 3.2.2. Another purpose of the simulations was, 
given the invariance of the non-linear normal modes, to determine how many linear modes 
were needed to capture the dynamics of  the system vibrating in an invariant non-linear normal 
mode. This gives an indication of the potential pay-off of  using non-linear modes in place of 
linear modes in the analysis of  non-linear systems. 

Clearly, the higher modes are less affected by the non-linear spring than the lower ones 
(which can be seen by inspection of  the coefficients a~ and a~), and thus the non-linear mode 
of  greatest interest is the first one. It was the one most studied below. Several simulations were 
carried out, all using a fourth-order Runge-Kutta time-marching scheme (which provided 
good convergence for all simulations for sufficiently small integration time-steps). Notice 
that, in practice, in order for the Taylor series expansions of Xi and I~ to be legitimate for a 
given non-linear normal mode, Uk and Vk should be of same order of magnitude, which can 
be obtained by rescaling time as r = At. This yields a new set of  discretized equations of 
motion (replacing equation (42)) where a and ~ are replaced by a' = A2a and 8' = A2/3, 
respectively (the a} coefficients are modified accordingly). In practice, A was set as a free 
coefficient which was determined by trial and error until the simulations showed that Uk and 
vk were of the same order of magnitude. 
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Fig. 4b. The amplitude-dependent shape of the third non-linear normal mode as the amplitude increases (for 
4 c~ = 1 and/3 = 10 ), using the' discretized normal mode formulation. The third linear mode shape is shown for 

u3 = 0.2. The middle-point amplitude is larger in the presence of a spring (non-linear or linear). 

The first numerical simulation was the so-called "exact" solution, computed by direct inte- 
gration of  the set of  2N,  non-linear, coupled, first-order ODEs in terms of the linear modal 
amplitudes and velocities (the rescaled equivalent of equation (42)). If N is large, this theo- 
retically yields a very good approximation of the solution. However, this is computationally 
expensive, all the more so as the critical time-step for the stability of the scheme is dictated 
by the Nth  pair of first-order equations, which involves frequencies increasing as N 2. This 
"exact" solution was used to verify the invariance of  the motion in a non-linear normal mode 
and to serve as a reference. Typically, the "exact" solution was calculated with N = 25 linear 
modes, which, in all cases, corresponded to a converged solution (in terms of  linear modal 
coordinates). 

The second type of simulations was performed by the non-linear normal mode formulation, 
but using the dynamics only up to third order (equation (56) up to third order) and then 
reconstructing the beam motion. The third set of simulations used the full fifth-order dynamics 
before recombination. The time integrations for these latter two types of simulations were 
again performed using a fourth-order Runge-Kutta scheme, but only two, first-order, non- 
linear ODEs in the non-linear modal amplitude and velocity had to be solved for a given 
non-linear mode in each case. The computational cost was obviously similar in both cases, 
whereas the results were not. The objective of  these two simulations was to validate the non- 
linear normal mode methodology by verifying the accuracy of the invariance of non-linear 
normal mode motions. 
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Other simulations were then carded out from the set of non-linear equations in terms of the 
linear modal amplitudes and velocities (equation (42), as for the first simulation), in which N 
was increased from one to five linear modes. Here, the purpose was to study, for a given non- 
linear mode motion, the modal convergence as the number of linear modes is varied, i.e., to 
study the influence of the various linear modes on a given non-linear one. Note that an increase 
of one in N yields two additional non-linear first-order equations, a smaller critical time-step 
for the stability of the numerical integration, and more complicated non-linear coupling terms. 
These simulations will be referred to as the linear modal analysis procedure (as opposed to 
the non-linear normal mode procedure). 

Finally, the linearized system, obtained by simple truncation of the higher-order terms in 
equation (43) was simulated to assess the effect of  the non-linearity. 

The initial conditions for the various simulations were chosen so that the motion was 
initiated from a deflection shape which was as close as possible to the first non-linear normal 
mode shape, with some amplitude and zero velocity. For the linear modal analysis simulations, 
this was achieved by equating the initial values of the linear modal amplitudes resulting from 
the Galerkin discretization to the linear mode components of the first non-linear mode shape 
(equation (55)). Clearly, the larger the number of terms in the Galerkin expansion, the closer 
the initial deflection shape to the non-linear mode, but the larger the system of non-linear 
coupled equations, which increases cost. On the other hand, the invariant manifold simulations 
always require solving only a single pair of ODEs, regardless of how many linear modes are 
considered in the non-linear mode calculation (equation (55)). Thus, insofar as the non-linear 
mode shape characteristics are known from previous calculations (namely, the coefficients a~, 
a~, etc . . . .  ), initiating the motion closer to the invariant manifold only means recombination 
of more linear components during the simulation to obtain the beam deflection pattern, without 
a significant increase in computational cost. 

The results shown here were obtained with a = 1,/3 = 1 0  4 and Ukmax = Ul ---~ 0 . 1 5 ,  

which gave a very significant non-linearity, since the ratio of the non-linear term to the linear 
one in equation (42) was approximately, for the first mode: 

2/3u3k ,~ 4. 
~(kTr)4uk 

Simulations were also performed for much smaller non-linearities, and, of course, the 
smaller the non-linearity, the more accurate were the results obtained using only one or 
two (odd) linear modes in the linear modal analysis procedure. The results with the larger 
non-linearity are shown to emphasize the robustness of the theory. 

Figure 5 depicts the motion of the mid-point of the beam as obtained by the various 
simulation schemes. Note that while all of the simulations start with zero initial velocity, 
which was explicitly imposed, they do not all start with the same initial deflection, due to 
the different approximations of the non-linear mode shape imposed by the number of linear 
modes used. It is of course hopeless to expect the correct dynamics on the non-linear mode 
by starting with as bad an approximation as that given by only one linear mode, although this 
is a traditional method (in particular to obtain the corresponding frequency correction). 

However, it would have been expected that with a large enough number of linear modes, 
the first non-linear mode would have been somewhat correctly approximated, so as to obtain 
a periodic motion occurring on the invariant manifold. Figures 5b and 5c show that this is not 
the case, as observed from the irregular velocities obtained for the "exact" solution. It should 
be noted at that point that, although this solution does not behave as nicely as expected, there 
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Fig. 5a. Deflection of the middle-point of the beam as obtained by the various simulations initiated on the third-order 
approximation of the non-linear normal mode manifold. Notice that the third order accurate modal dynamics yields 
the same frequency of motion (see equation (56) and (42)) as the one-term linear modal analysis, but with a more 
accurate amplitude. 

is here no problem of convergence (in terms of the number of linear modes) or stability (in 
terms of time-step), which have both thoroughly been checked. Inspection of the linear mode 
components of the deflection and of their velocities showed that they were very smooth, which 
was expected, but their relative amplitudes decayed slowly with increasing mode number. This 
indicates the importance of the contributions of higher linear modes to the motion. This was not 
anticipated to occur in the "exact" simulation of the first non-linear mode motion, but rather it 
was expected that the contributions of the various linear modes would match those predicted 
by the coefficients a~ and a~ from the non-linear normal mode formulation, which decay 
like i -4 and i -8, respectively (where i is the linear mode number). This larger-than-expected 
contribution of the higher linear modes to the motion, together with the non-periodicity of the 
response, mean that invariance is not achieved by the "exact" solution simulation and thus that 
the initial deflection shape is not a sufficiently accurate approximation of the first non-linear 
mode shape, yielding the contamination of the motion by other non-linear modes. 

Another puzzling point was that the frequencies of oscillations of the non-linear normal 
mode simulations differed from that of the "exact" solution in a significant manner. Of course, 
the fifth-order non-linear dynamics presented a much better agreement with the "exact" 
solution than the third-order dynamics. 

Those two unexpected results (the non-periodicity of the "exact" solution and the lack 
of agreement of the oscillation frequencies by the various approaches) suggested that the 
non-linear normal mode manifold was not approximated in a sufficiently accurate manner, 
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Fig. 5b. Velocity of the middle-point of the beam for the same simulations as in Figure 5a. Notice the very 
irregular behavior of the dynamics as determined "exactly" (motion initiated on the third-order approximation of 
the non-linear normal mode manifold). 

and therefore, that the initial conditions were not close enough to the first non-linear normal 
mode. 

In order to try to remedy this problem, the fifth-order approximation of the non-linear 
normal mode invariant manifolds was generated, following the procedure described in Sec- 
tion 3.2.2. This was thought to define the non-linear normal modes in a more accurate manner, 
hence addressing both above-mentioned problems at the same time. The geometry of the 
non-linear normal modes is expanded as 

i 3 i 2 i 5 ,-,i , , 3 , , 2  " 
Xi = a~uk + a6u k -t- a8ukv k + alSU k + t,17WkU k "~ a]9uk v4 + ' ' '  

i 3  i 4 h i . 2 . 3  i 5 Yi = b~vk + b~u~vk + b9v k + bl6UkVk -+- Vl8O~k~, k -q- b20v k + . . .  
i = l , . . . , N  (57) 

where only those terms consistent with synchronous motion are included. For k odd, the 
corresponding added coefficients are found to be 

b]8 3a~7 4c~(kTr)4a~9 

b~o a]9 

(58) 
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and 

a~5 

a]7 

a]9 

--O~271"8(i4 - -  17k4)(i 4 - 13k4)#~ -a t- 2o~37r12kS(i4 _ 13k4)/.t~- 72o~Tr4k8#] 
A 

- - O L 2 7 r S ( i 4 -  5 k 4 ) ( i  4 -  13k4)#~ + 20o~71"4(z 4 -  13k4)#~ 

where 

A 
--120#~ + 6o~71"4(i 4 - 5k4)/ . t~ 

A 

A = OL371"12[(i4 - -  5 k 4 ) ( i  4 - -  17k4)(i 4 - 13k4)#~ q- 32k8(i 4 q- 5k4)] 

#~ =2/3 [3 C~a~sin (j2))sin ( i2)+2a~-  b~] 

/z~ = 2/3 [3 C~a~sin (j2))sin ( i 2 ) -  22a~]. 

(59) 

(60) 
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These results yield: 

rlk = Uk 

~li = 0 
i 3  a~ukV2 i 5 ?]i = a6u k -]- "Jr- al5Uk 

,.,i ,, 3,, 2 i 4 
--~ ,,17 ,,k t, k -4- al9Uk V k -~ . . .  

for i even i = 1 , . . . ,  N, i # k 

f o r i o d d  i =  1 , . . . , N ,  i # k  

which in turn gives the kth non-linear normal mode as 

uk(s,t) = uk sin(k~-s) 

N 
• i 5 i 3 2 a~9ukv4]sin(iTrs)_ ... _ "4- Z [aSSu3k + a8UkV2 "4-al5u k -4-al7ukv k + + ' ' '  

i---1 
i odd,iCk 

(61) 

(62) 

, ,21] + 3 s i n  k j 2 j 2 [a6u k + asvk]sin j ~  sin k + . . . .  0. (64) 
j=l  

j odd,j¢k 

The various types of simulations were then carried out in exactly the manner described 
before, but by initiating the motion on the fifth-order approximation of the first non-linear 
normal mode invariant manifold, i.e., with the initial deflection shape given by equation (63). 
An additional set of simulations was also performed, using the non-linear formulation with 
the seventh-order dynamics governed by equation (64). 

The simulation results for the dynamics of the beam's mid-point obtained by the linear 
modal analysis formulation are shown in Figure 6, and those obtained by the non-linear 
normal mode formulation are depicted in Figure 7. Observe that the "exact" solution is still not 
perfectly regular and periodic, but, as shown on the phase-plane plot, Figure 6b, initiating the 
motion on a fifth-order accurate non-linear mode shape approximation has drastically reduced 

and the corresponding mode shape as 

N 

Ukax(8) UkmaxSin(kTTS) -r Z i 3 i 5 = [a6Ukmax + alSUkma~ ] sin(iTrs) + . . . .  (63/ 
i=1 

odd,i#k 

Recalling the remark made earlier, the dynamics on the kth non-linear normal mode can 
be determined up to seventh order using a fifth-order expansion in the mode geometry. In this 
case, the seventh-order modal oscillators are given by: 

fZk + c~(kTr)4uk + 2flU3k [sin (k 2 )  

+ 3 ~_, j 2 j 2 j 4 ~,j ~ 2 ,2 j 4 
[a6u k q- aSv k -4- al5~Zk q- ~17t%Uk q- ax9Vk] sin j 

j = l  
j odd,j~£k 
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Fig. 6a. Deflection of the middle-point of the beam, obtained by various linear modal analysis simulations initiated 
on the fifth-order approximation of the first non-linear normal mode manifold. 

the high-frequency part of  the dynamics from that in Figure 5c. Besides, the superposition 
of the initial deflection shapes and of the "exact" shape obtained after four periods, depicted 
in Figure 8, shows a relatively good agreement, suggesting that the invariance of the motion 
in the first non-linear normal mode is nearly achieved. (Note: it would indeed be exactly 
achieved if one started from the exact non-linear mode instead of from an approximation of 
it.) Indeed, for smaller non-linearities, it was observed that since the non-linear normal mode 
manifold is better approximated, the invariance of the motion initiated on it is better achieved. 
This is not a surprise, since invariance was the cornerstone of the definition of a non-linear 
normal mode. This is, however, the first time it has been checked for a continuous system. 

Several interesting features characterize the simulations. An important one is that the non- 
linear mode simulation using the seventh-order accurate dynamics agrees very well with the 
"exact" solution. In particular, both the amplitude and the frequency of the dynamics of the 
mid-point of  the beam have converged towards those of the "exact" solution. 

Both of the above results - invariance of the "exact" motion solution and the agreement, 
both in amplitude and frequency, between the "exact" solution and the non-linear normal 
mode simulation - confirm the validity of the invariant manifold formulation for non-linear 
normal modes. In the present case, given the strength of the non-linearity of the system, these 
invariant manifolds feature a significant non-linear geometry (i.e., non-negligible curvatures 
near the equilibrium point), hence necessitating high-order terms in their construction in 
order to capture the desired quantitative effects of  the dynamics on them for the amplitudes 
considered. 
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Once the approximation of the non-linear manifolds is sufficiently accurate to guarantee 
a legitimate use of the non-linear normal mode formulation, the accuracy of the dynamics 
that can legitimately be determined on them is at least one order higher - or, in the case 
of purely odd non-linearities, two orders higher - than that of  the manifold itself, so that 
exact non-linear modal motions can eventually be recovered by high-order approximations of 
both the manifold and the dynamics. Figure 7 shows the responses obtained using the third-, 
fifth- and seventh-order accurate dynamics, initiated on the fifth-order accurate non-linear 
mode shape, as compared to the "exact" solution. Given the very good accuracy obtained by 
the seventh-order dynamics, it is deemed useful here to recall that it is obtained at virtually 
no additional cost once the fifth-order mode shape is known, hence yielding an inexpensive 
way of obtaining very precise quantitative features of the system's behavior. Interestingly, 
the numerical simulations of the third-, fifth- and seventh-order accurate non-linear modal 
dynamics performed on the present example show a very smooth and periodic motion for the 
middle-point (see the closed curve on the phase-plane plot, Figure 9), as can be expected since 
only a single conservative non-linear modal oscillator ODE was simulated (the consecutive 
recombined motion being necessarily periodic as well). For given initial conditions, those 
non-linear modal simulations therefore result in a periodic motion which is some known 
approximation (e.g, fifth or seventh order) of the exact periodic motion occurring on the 
exact manifold, thereby allowing the evaluation of the associated natural frequency. For small 
non-linearities, an analytical expression of the approximation of the frequency of motion on 
the non-linear normal mode manifold can be obtained from the non-linear modal oscillator 
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Fig. 7. Deflection of the middle-point of the beam as calculated by the various non-linear normal mode dynamics 
approximations (initiated on the fifth-order accurate first non-linear normal mode manifold). 

equation (equation (56) or (64)) by use of traditional asymptotic techniques (e.g., Lindsted's 
method). For more general non-linear systems, including non-conservative ones, information 
on other physical quantities (e.g., damping rate) can be obtained in the same manner. 

It is also interesting to compare the results obtained by a single-term linear modal analysis 
(equation (42) for N = 1) and by the non-linear mode approach using the third-order dynamics 
(equation (56) up to third order), both initiated on the third-order non-linear normal mode 
shape. Both cases correspond to the same single dynamic equation and therefore yield the 
same frequency of motion. However, Figure 10 shows that the non-linear mode simulation 
yields a much more accurate amplitude of motion, due to the recombination of the beam 
deflection (using equation (54)), which takes into account some of the effects of the higher 
linear modes. It should be re-emphasized that using only the third-order modal dynamics is 
pointless, since the fifth-order accurate dynamics is available. A better comparison is obtained 
using a fifth-order accurate simulation initiated on the third-order non-linear mode shape, 
and a linear modal analysis simulation using only one linear mode, both of which involve 
only one second-order non-linear ODE. Figure 10 then clearly illustrates the advantage of the 
non-linear normal mode formulation over the traditional projection of the dynamics onto a 
single linear mode (a widely used discretization technique) in the case of motions occurring 
in a pure non-linear normal mode. 

For all simulations of interest initiated on the third-order accurate non-linear mode shape, 
Table 1 displays the error in the amplitude and the deviation in frequency (as measured from 
the "exact" solution initiated on the fifth-order mode shape). Similar results are gathered in 
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Fig. 8. Deflection shapes of the beam at t = 0 and at its maximum amplitude during the "exact" simulation. Note 
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Table 1. Errors in amplitudes and frequencies for various simulations initiated on the third-order 
accurate non-linear normal mode manifold approximation. 

Linear Modal Analysis Non-Linear Normal 
Mode Formulation 

linearized 1 linear 3 linear 5 linear third order fifth order 
system mode modes modes dynamics dynamics 

Error in amplitude 6.8% 6.8% 1.1% 0.4% 6.7% 0.7% 
Deviation from ~ 96% 5.6% 0.7% 0.2% 5.6% 0.6% 
"exact" frequency 

Table 2 for simulations of  interest initiated on the fifth-order mode  shape approximation. The 
amplitude error measure chosen here is the ratio of  the difference o f  the maximum amplitudes, 
after five periods of  the motion, between a given simulation and the "exac t"  solution to the 
maximum amplitude of  the "exac t"  solution. 

One notes from Table 1 that, in order to describe the dynamics on the first non-linear normal 
mode manifold by linear modal  analysis as accurately as by using a single non-linear normal 
mode  with fifth-order accurate dynamics,  the dynamics of  at least three or five linear modes 
(initiated on the third-order mode  shape) are required. Likewise,  the very  good accuracy 
obtained by the seventh-order dynamics simulation (initiated on the fifth-order mode  shape) 
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Table 2. Errors in amplitudes and frequencies for various simulations initiated on the fifth-order accurate non-linear 
normal mode manifold approximation. 

Linear Modal Analysis Non-Linear Normal 
Mode Formulation 

1 linear 3 linear 5 linear 7 linear third order fifth order seventh order 
mode modes modes modes dynamics dynamics dynamics 

Error in amplitude 6.8% 1.1% 0.4% 0.2% 6.7% 0.7% 0.6% 
Deviation from 5.6% 0.7% 0.2% 0.1% 5.6% 0.6% 0.1% 
"exact" frequency 

should be emphasized, along with the fact that at least five or seven linear modes (initiated on 
the same mode shape approximation) are needed to achieve the same accuracy, but at a much 
higher computational cost. Note that there remains a significant error in amplitude between 
the seventh-order dynamics and the "exact"  solution, and that the improvement in amplitude 
error between the fifth- and seventh-order accurate dynamics is only marginal (see Table 2). 
However, examination of  Figures 5c and 6b shows that, although the "exact"  solution is more 
regular when initiated on the fifth-order manifold approximation, the corresponding motion is 
still not perfectly periodic, and both phase-plane plots feature a maximum amplitude spread 
between 1% and 2%. Therefore, given that the amplitude error is measured at one point in time 
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Fig .  10. Dynamics of the middle-point of the beam initiated on the third order accurate non-linear manifold, and 
comparison with the "exact" dynamics initiated on the fifth-order accurate non-linear modal manifold. 

only, any measure of errors below 1% has no real significance. Once again, this reflects the 
fact that the exact geometry of the non-linear normal mode manifold is unknown. Iterating the 
process one more time (i.e., determining the seventh-order approximation of the manifolds' 
geometry, and subsequently, the ninth-order dynamics on them) would yield a more nearly 
closed state-space curve for the "exact" solution and a better agreement in the amplitudes of 
the various simulations for the given initial amplitude. Note that for both the linear modal 
analysis simulations and the non-linear normal mode simulations, accuracy is not noticeably 
improved by the use of a higher-order accuracy in the initial approximation of non-linear 
manifold. However, those small remaining errors are precisely those which cause the linear 
modal analysis simulations to behave non-smoothly (as can be observed from phase-plane 
plots). 

Finally, the very poor result obtained by the linearized system, and the moderately good 
results obtained by using only one linear mode, should be emphasized, since those two methods 
are the most commonly employed ones when the approximate dynamic behavior of a system 
is sought. At this point, it is worth recalling that, once the linear modes are known, the only 
extra work required by the non-linear normal mode formulation is to solve a linear system 
of equations for the non-linear coefficients aj 's  and bj's, which is a computationally easy 
task. Then, only a single (second-order) non-linear ODE must be solved, followed by the 
recombination of the overall system motion. 
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4. Conclusion and Future Directions 

The work presented here contains several features which significantly enlighten some aspects 
of the general theory of non-linear normal modes as developed in [5-8]. 

First, the simulations demonstrate the invariance of the non-linear normal modes, as 
expected, validating both the discrete and continuous formulations of this theory. Furthermore, 
as higher order terms are included in the analysis, the series representation of the non-linear 
normal modes does indeed converge to the desired invariant manifold. 

Another important feature is that although the "continuous" non-linear normal mode 
approach is a very appealing and direct extension to continuous systems of the theory con- 
structed for discrete systems, it may not be as reliable as it first appears, due to its dependence 
on the point so. This method was therefore left aside here. 

On the other hand, the quality and the robustness of the "discretized" non-linear normal 
mode approach (Galerkin-type discretization using the modes of the linearized system fol- 
lowed by the non-linear normal mode analysis developed for discrete systems) was clearly 
demonstrated, since for values of parameters and initial conditions which are far from leading 
to a weak non-linearity, this formulation provides, in this example, good qualitative as well as 
quantitative results when one uses the fifth-order accuracy in the non-linear modal dynamics. 
Although presented here on a one-dimensional example, this methodology is well suited for 
any multi-dimensional non-linear vibratory system, since the partial differential equations of 
motion can always be discretized with the modes of the linearized system. 

For systems with only odd order non-linearities, the dynamics on a non-linear normal mode 
is accurate up to an order N + 2 when the non-linear modal manifold geometry itself is of order 
N. In the case of purely cubic non-linearities, the fifth-order dynamics is achieved by taking 
into account only the first-order corrections of the non-linearities - since there are no quadratic 
effects - and then the use of any order of accuracy in the dynamics below five is pointless. 
Likewise, for more general systems involving quadratic non-linearities, the dynamics on a 
non-linear normal mode can be determined up to order N + 1 when the non-linear modal 
manifold geometry itself is known at order N. In such cases, the geometry of the non-linear 
modal manifolds may include quadratic terms, which are sufficient to capture the non-linear 
effects up to order three in the non-linear modal dynamics. 

All the non-linear modal motion results were obtained by solving only one non-linear 
differential equation, whereas a traditional linear modal analysis of the non-linear system 
requires the solution of a set of coupled non-linear ODEs (with at least three or five modes 
in the present example) to provide the same level of accuracy. This may result in potentially 
significant savings. Also note that if one is willing to use only one differential equation for 
the linear modal analysis (i.e., either only one linear mode or, even worse, the linearized 
equation), the predictions can become very poor. 

All these results suggest that, when it comes to the extension of the present non-linear mode 
ideas to the dynamics of several non-linear modes, that is, to non-linear modal analysis, fewer 
modes might be required to achieve a given level of accuracy. This is because the lower-order 
non-linear normal modes capture much of the influence of the higher-order linear modes, 
hence resulting in a reduced number of coupled non-linear ODEs to be solved. Significant 
modal convergence improvements are thus expected, along with corresponding computational 
savings. It should be emphasized at this point that this non-linear modal analysis is expected 
to be very easily implementable in most already existing finite element codes, hence easily 
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generating inexpensive, but quantitatively accurate, dynamical  behaviors of  engineering non- 
linear systems. 

The non-linear normal modes as currently defined are only individually invariant (i.e., a 
motion started in one of  them only will remain in that one for all time). This might be thought to 
be perfectly suited for the construction of  reduced-order models, essentially by truncating the 
system at a finite number of  non-linear normal modes, say N,  and then studying the dynamics 
of the reduced system in a 2N-dimensional  phase-space. However, the non-linear normal 
manifolds, being only individually invariant, this process does produce undesirable coupling 
among the non-linear modes, which cannot be removed by the current formulation. Conse- 
quently, a non-linear modal analysis capable of  systematically generating suitable invariant 
reduced-order models will require a generalization of  the existing non-linear normal modes. In 
such a case, the invariance of  a set of  modeled non-linear modes would be necessary in order 
to ensure that no contamination from the ignored modes would occur. This has potentially 
important implications for many application areas, including modal convergence in structural 
dynamics and modal reduction for implementation of  control systems. Future work therefore 
includes a complete non-linear modal analysis for discretized systems, including a study of  
modal convergence using both the current formulation and a generalization of  it. 
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