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1. Introduction 

If a heated plate is oriented vertically in a fluid which is at rest and acted upon by 
gravitational forces, for large values of the Grashof number, the fluid moves upward 
along the plate in a thin boundary layer and then forms a thin plume above the plate. 
Early studies of this motion are discussed in the review articles by Ostrach [1] and 
Ede [2]. For a semi-infinite plate the equations for the laminar free-convection 
boundary layer have solutions of the similarity type, as noted by Schmidt and Beck- 
mann [3] and Ostrach [4], who also gave numerical solutions of the corresponding 
ordinary differential equations. These analyses used the Boussinesq approximation, 
and therefore assumed small temperature changes. 

In an effort to obtain a better approximation for a finite plate at moderate Grashof 
numbers, Yang and Jerger [5] looked for a perturbation solution of the Boussinesq 
equations, in terms of an inner expansion for the boundary layer along the plate and 
an outer expansion for the small external flow induced by the entrainment of fluid into 
the boundary layer. They assumed that the entrainment of fluid into the plume had 
negligible effect on the velocity just outside the boundary layer at the plate. It was noted 
that their expansions are singular at the leading edge, but the expression obtained for 
the second-order local heat transfer is integrable, and the corresponding correction to 
the average Nusselt number was estimated by integration along the plate. In a separate 
paper Yang [6] examined the plume development near the trailing edge and drew the 
conclusion that neglecting the effects of plume entrainment introduced no significant 
errors in the calculation of heat transfer from the plate. Hardwick and Levy [7] 
obtained a numerical solution of the Boussinesq equations for the trailing-edge region 
and noted an upstream influence of the trailing edge. A closely related problem was 
considered by Kelleher [8], who obtained analytical solutions for the velocity and 
temperature just downstream of a jump in the prescribed plate temperature. In an 
analysis of the effect of transpiration cooling on free convection, Clarke [9] pointed 
out that the restriction to small temperature differences can easily be avoided by use of 
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a Howarth transformation of the boundary-layer coordinate measuring distance 
normal to the plate, if the plate has constant temperature. For  a semi-infinite plate he 
obtained inner and outer solutions for large values of a Grashof number based on a 
reference distance along the plate, and questioned the omission of plume entrainment 
effects for a finite plate as proposed by Yang [6]. 

The present work is concerned with understanding the rather complicated local 
asymptotic flow structure near a discontinuity in one of the plate boundary conditions, 
as at a leading or trailing edge or at a jump in plate temperature, and points out the 
various effects which must be considered for the calculation of the second-order heat 
transfer from an isothermal plate of finite length. Section 2 describes the boundary- 
layer formulation and solutions for an isothermal plate, and notes the regions where 
the boundary-layer equations are expected to be in error. In Section 3 it is noted that 
the full Navier-Stokes equations are required for a small region near the leading 
(i.e., lower) edge, and the leading-edge contribution to the heat transfer is calculated. 
Section 4 gives the forms assumed for the inner and outer asymptotic expansions, at 
large Grashof numbers, near the trailing (i.e., upper) edge, and shows the order of 
magnitude of the trailing-edge correction to the total heat transfer. In Section 5 a 
somewhat similar formulation is given for a small region near a discontinuity in plate 
temperature, and a solution for the local pressure distribution is obtained. 

2. Boundary-Layer and wake solutions 

We consider steady, laminar, two-dimensional free-convection flow past a vertical 
fiat plate of length L, at uniform temperature T~. The temperature and density far 
from the plate, taken to be constant, are T~ and p~ respectively. In the Boussinesq 
approximation the nondimensional conservation equations are 

ux + vy = 0 (2.1) 

uux + vu~ = - p ~  + 0 + Gr -1/2 (u~ + u~y) (2.2) 

uvx + vv~ = - p y  + Gr -1/~ (vx~ + vy~) (2.3) 

uO,~ + vO~ = Gr -1/2 Pr -~ (0~x + 0~) (2.4) 

Here x and y are rectangular coordinates made nondimensional with L; the origin is 
at the leading edge, with x measured vertically upward along the plate and y measured 
normal to the plate. The velocity components u and v, in the x and y directions re- 
spectively, have been made nondimensional with a typical convection velocity Vc 
= {g(Tw - To~)L /T~}  ~/2, where g is the gravitational acceleration. The nondimensional 
temperature is 0 = ( T  - T ~ ) / ( T w  - T ~ )  andp  is the pressure rise above the ambient 
pressure p~, made nondimensional with p~ V~. The Reynolds, Grashof, and Prandtl 
numbers are Re = p~ V c L / ~ o ,  Gr = (Re) 2, and Pr = ix~ocp/k~, where/z and k are the 
viscosity coefficient and the thermal conductivity, with the subscript oo indicating con- 
ditions far from the plate, and ep is the specific heat at constant pressure. The approxi- 
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mations used in Eqns. (2.1) through (2.4) assume small temperature changes, so that  

Tw - To << To, tz and k are everywhere taken equal to their undisturbed values, and 

changes in the density o are neglected in the continuity equation. We have also assumed 

that  relative changes in p are much smaller than relative changes in T, and that vis- 

cous dissipation is negligible. The kinetic energy ~e~l. V 2c is therefore assumed much 

smaller than the changes in enthalpy, and so gL << c~T~o ; corresponding neglected 

terms are extremely small for typical values o f  L and Too. For  related problems in 

rotating systems, however, the body force is centrifugal rather than gravitational, and 

the accelerations may be much larger than g; if the parameter  analogous to gL/(cpT~) 
is not  negligible, a second-order correction accounting for viscous dissipation can 

be worked out [10]. Finally, since the mot ion is symmetric about  y = 0, we need 

only consider the half-plane y > 0. The boundary  conditions for Eqns. (2.1) through 

(2.4) are then 

y = O ,  O < x <  1: u = v = O ,  O =  1 (2.5) 

y = O, - o e  < x < 0 and 1 < x < oc: v = 0 ,  u~ = Oy-- 0 (2.6) 

x 2 + y 2 - +  oe: u ,v ,O ,p -+O (2.7) 

At  large values o f  the Grashof  number,  heat is conducted away f rom the plate 

very slowly, so that the heated fluid remains in a thin boundary  layer along the plate 

and in a thin plume, or wake, above the plate (provided that  Pr Gr 1/2 is also large). 

The fluid outside these regions is undisturbed in a first approximation,  so that the 

approximate solutions valid outside the boundary  layer and plume are 

u = v = 0 = p  = 0 (2.8) 

In the thin layers the velocity and temperature are described by boundary-layer  
equations:  

ux + vy = 0 (2.9) 

uux + vuy = 0 + e2uy~ (2.10) 

0 = p~ ~ p  = 0 (2.11) 

uO,~ + rOy = e 2 Pr -1 0yy (2.12) 

where we have set e 2 ~ Gr-1/2. It was recognized by Clarke [9] that the assumption 

of  small temperature and density changes is unnecessary if the y-coordinate  in Eqns. 

(2.9) through (2.12) is interpreted as a new variable defined according to a Howar th  

transformation.  N o w  we take pt~/(p~t~oo) = C, where the constant  C is a representa- 

tive value, and Pr is also assumed constant. The required replacements are 

f0 y ~ ~ a'y (2.13) 
P~ 

v - + s  + u dy (2.14) 

Gr  1/2 --+ Grl/2/C (2.15) 
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Since the boundary-layer  equations are parabolic, no signals are sent upstream, 

and so in the boundary-layer  approximation the presence of  the trailing edge does not 

influence the flow along the plate. Thus the first-order solution for 0 < x < 1 is the 

similarity solution for a semi-infinite plate [3, 4]: 

u = (4x)l/2fo'(r/) (2.16) 

v = - e(4x)- 1/4(3/o - r/fo) (2. I 7) 

0 = go(q) (2.18) 

where 

r / = Y(4x) -1/4, Y = y / s ,  e = Re -1/2 = Gr  -1/4 (2.19) 

and fo, go satisfy the ordinary differential equations 

f~" + 3fof~' - 2fo '2 + go = 0 (2.20) 

g~ + 3 Prfogo = 0 (2.21) 

subject to boundary  conditions 

fo(0) = fo'(0) = fo ' (~)  = go(0) - 1 = go(OO) = 0 (2.22) 

The local nondimensional  heat flux f rom the plate is 

- O z , ( x  , O) = - C - 1 / 2  Grl/ ,  (4x)-1/4g;(0) (2.23) 

The Nusselt number  to be used here is an average value equal to the total heat flux 

made nondimensional  with k w L ( T w  - T| where kw = k ( T w ) :  

f~  4a/4 C -  1/2 Grl/4 Nu = - 0~ d x  = - g~)(0) (2.24) 

Values ofg~(0) were tabulated by Ostrach [4] for several values o f P r ;  Ede [2] has sum- 

marized these and other numerical results. Kuiken [11, 12] has derived asymptotic 

expansions for g~(0) for  large and small Pr. 

In the plume, for 1 < x < oo, no simple solution exists, but the asymptotic 

behavior for x -+  1 and x -+  oo can be determined. For  x -+  oo, Yih [13] gave simi- 
larity solutions expressing u x -  1/5 and Ox 3/~ as functions of  Y x -  2/5, consistent with the 

differential equations and boundary  conditions and with the requirement that the 

heat convected across surfaces x -- constant be independent of  x. For  x -+  1 a solution 

analogous to Goldstein's [14] near-wake solution was given by Yang [6]. Near  Y = 0, 

the first terms in u ( x  - 1) -1/3 and 0 - I are functions o f  a similarity variable 

Y ( x  - 1)- z/3. In the remainder o f  the thin plume, for x -+  1 with Y fixed, the leading 

terms in u and 0 are obtained from the boundary-layer  solutions (2.16) and (2.18) 
evaluated at the trailing edge x = 1. The acceleration of  the fluid for Y = O ( ( x  - 1) 1/3) 

requires a small inflow toward Y = 0, and in the main par t  of  the thin layer the result- 
ing displacement effect gives v = O ( e ( x  - 1)-2/3), singular at x = 1 and implying a 

second term in u which is of  order (x - 1) 1/~. Yang constructed inner and outer series 
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solutions proceeding in powers of (x - 1) 1/3 with functions of  Y ( x  - 1)-1/3 and of Y, 
respectively, as coefficients. Boundary conditions are satisfied at Y ( x  - 1) -1/3 = 0 

and as Y-+ 0% and the inner and outer expansions are required to match asymptoti- 
cally as Y-+ 0 and Y ( x  - 1)-1/3 _+ oo. Yang then completed the plume solution in an 

approximate way by using an integral method to effect a joining of the solutions for 
x - + l  and for x - +  oo. 

Outside the boundary layer and plume the effects of  viscosity and heat conduction 
are very small, so that the first approximation to the complex velocity u - iv is an 
analytic function of z = x + iy .  For a semi-infinite plate the value of v as y -+ 0 for 
x > 0 describes the mass entrained in the boundary layer, and is found by letting 
~/--+oo in Eqn. (2.17) to be v ~ - 3 e ( 4 x ) - l / 4 f o ( o o ) .  For x < 0, symmetry requires 
v - +  0 as y - +  0. The solution for the induced external flow has the form u - iv 

( C R  + i C i ) z - 1 / 4 ,  where the real constants CR, Cz are found from the boundary values 
of  v for arg z -+ 0 and arg z -+ rr. One obtains 

u ,~ 3 e f ~ 1 7 6 1 7 6  + Y 2 ) - l / ~ s i n { l t a n - l Y -  + (2.25) 

v ~ - 3 e f ~ 1 7 6 1 7 6  + Y Z ) - l / S c ~  + (2.26) 

An equivalent result was given by Clarke [9]. 
Equation (2.25), evaluated as y - +  0 for x > 0, is used to provide a matching 

condition as ~ - +  oo for the second-order term in the boundary layer solution for u 

for the semi-infinite plate [5, 9]. The corresponding perturbation in 0 is found to be 
zero, and so there is no second-order term in the local heat transfer 0y. For a finite 
plate, Yang and Jerger [5] considered mass entrainment only along the plate, setting 
v ~ -3~(4x)-l/4f0(oo)for0 < x < l a n d v  ~ 0 f o r l  < x < 0% a s y - + 0 a n d ~ 7 ~ o o .  
Since the corresponding second-order boundary-layer solution does not have a 
similarity form, the term of order e in 0 is not zero, for the finite plate, and a term of  
order one in the Nusselt number is obtained. However, as Clarke [9] has noted, 
numerical values for the effect of  plume entrainment on this term have not been given. 
The effect could probably be estimated rather accurately from the results of the integral 
method used by Yang [6] for an approximate joining of the near- and far-wake solu- 
tions. 

However, improved accuracy in the local heat transfer over most of the plate is 
not sufficient for calculation of the correct second-order term in the integrated heat 
transfer Nu. The similarity solution for a semi-infinite plate is singular at the leading 
edge and Yang's [6] plume solution is singular at the trailing edge. Thus it should be 
clear that the boundary-layer equations must be modified near the edges, and that 
higher-order terms in the integrated Nusselt number can be influenced by changes in 
the local heat transfer in regions near the edges. In other words, the solution of Yang 

and Jerger for the second-order Nusselt number may be somewhat inaccurate because 
of the incomplete calculation of the local heat transfer at points away from the edges, 
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and still larger contributions may  be missing because the effects of  leading and trailing 
edges have not been included. The leading-edge contr ibut ion to the Nusselt  number  is 
given explicitly below in Section 3, and the order of  magni tude of  the trailing-edge 
correction is shown in Section 4. 

3. The leading-edge region 

For  a semi-infinite plate the geometric  length L is artificial. We introduce a dif- 
ferent characteristic length and characteristic velocity, respectively, as 

where we have set v~o = t~oo/p~ and A = (Tw - To~)/Too; as before, s : Gr  -1/~ = 
(VcL/v.o) -1/2 and Vo 2 = gLA.  The new reference values are independent of  L, and are 
chosen in such a way that  all the parameters  disappear f rom the differential equations 
and boundary  conditions. A set o f  variables made nondimensional  with these values 

can be related to the variables used previously by 

x = s4/*~, y = s4/3f (3.1) 

bl ~" E2/SLI, /) = E'2/3/~, p = S4/a/~, 0 = 0 (3.2) 

The length L disappears in each of  these definitions. We could also have obtained the 
orders of  magni tude shown by observing that  the similarity solution, Eqns. (2.16) 
through (2.19), gives v/u << 1 as required for the validity of the boundary- layer  
equations only if x >> s 4/3, u >> s 2/3, etc. In the Boussinesq approximat ion the dif- 

ferential equations are Eqns. (2.1) through (2.4) with a tilde placed over each variable 
and with the factors e 2 omitted. 

The asymptot ic  behavior  of  the solution to these equations in the new variables 
can be studied for  small and large values of  the coordinates.  If2.  2 + j72 ~+ 0, the largest 

terms in the energy equation give Laplace 's  equation for d, corresponding to steady- 
state heat conduction. The solution satisfying 0(~, 0) = 1 for  :~ > 0 and 0b(2., 0) = 0 
for ~ < 0 is 0 ~ 1 + A? 1/2 sin �89 where 72 = ~72 + 372, ~ = tan-l(y/2.) ,  and A is a 

constant  which could be determined if the full solution were known. I f  2.--> co, the 
similarity solution in the form given by Eqns. (2.16) through (2.19) is recovered; the 
definition (2.19) for the similarity variable ~ is equivalent to ~ = y/(42.) z/4. Improve-  
ment  of  this approximat ion  by the construction of  asymptot ic  expansions for Gr  --+ oo 
was considered briefly at the end of  Section 2. For  the semi-infinite plate these para-  
meter  expansions are more  properly written as coordinate  expansions for i f -+  oo. 
I f  second-order  terms given by Yang  and Jerger [5] and Clarke [9] are retained, we 

have 

~7 = (42.)1/2fo' + (42") z/4f, + . . .  (3.3) 

~7 = (42.)-z/~(-3/'o + ~Tfo) + (42.)-~:Tf~' + " "  (3.4) 

0 = go + o(2. -~/~) (3.5) 
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where f0 and go are the same functions of  ~1 = Y(4x)- 1/4 = )7(497)- 1/4 as introduced 

in Eqns. (2.16) through (2.18) and satisfy Eqns. (2.20) through (2.22);f~ satisfies 

f;" + 3fof;' - f o f ;  = 0 (3.6) 

fz(0) = f~'(0) = 0, f~'(~) = 3f0(~) (3.7) 

and 0 contains no term of  order 97-3/4. 
The coordinate expansions in Eqns. (3.3) through (3.5) describe the flow for 

97 >> 1, and the second-order term in the local heat transfer is zero, as also found by 
use of  the parameter expansions for G r - +  ~ with x fixed, described in Section 2. 

Therefore integration of  0~ along the plate from x = 0 to x = 1 appears to give the 

result that  the second term in Nu  is zero. However,  the boundary-layer  equations are 

not correct near the leading edge, for 2 = O(1), and the first-order boundary-layer  

solution for 0y has an error of  order e- ~/a when x = O(P/3). Thus by integrating this 

solution along the plate we lose a term in Nu which is of  order one. 

Without  actually obtaining the details for x = O(P/3), however, we can obtain 

the integrated heat transfer from the plate up to a location ea/397 = x = 1 by using an 

integrated energy equation. The procedure is analogous to Imai 's  [15] calculation of  

the leading-edge contribution to the drag coefficient for a flat plate in a uniform in- 

compressible stream at high Reynolds number. We first combine the energy equation 

with the continuity equation and rewrite it in the nondimensional  integral form 

Prr VO.B dA = 0~.~ dA (3.8) 

where differentiation and integration are carried out with respect to 97 and y. The con- 

trol surface S can be taken as a large rectangle with sides, say, x -- + 1, y = 0, and 
y = 1. A l o n g y  = 0, the convection term is zero because ~ = 0, and the heat conduction 

term contributes only for 2 > 0 because 0~7 = 0 for 2 < 0. At  x = 1, within the boun-  

dary layer the convection term contributes quantities which are 0 (2  a/4) and 0(1), 

whereas the conduction term is 0(97-3/% Finally, outside the boundary  layer the 

velocity is of  order eve, so that c ~ ( T -  T~) = O(e2V~) and 0 is extremely small. 

Thus the largest terms in the integrated energy equation are the terms representing 

heat conduction from the plate and convection of  heat within the boundary  layer: 

- f ~  0~d97 ~ Pr .(~ {g0(~/) + o(97-aJ~)}{(497)l/2f~('q) + 

+.-.}(497) ~/~ d~ (3.9) 

On the right-hand side we integrate the largest term by parts and replace g~fo by 
- (3 Pr) -  ~ g;.  I f  the temperature changes are not  small, the t ransformation given by 

Eqns. (2.1 3) through (2.1 5) can be used, and the Nusselt number  for the port ion o f  the 

plate up to a distance L from the leading edge is then found by setting 97 = e-4/a: 

4~/~ C -~/2 Gr  1/~ g;(0) + Pr f ~  go(rl)f~(~l) d~7 (3.10) N u  = ---~- 
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As noted above, for a semi-infinite plate the second-order term in the local heat 
transfer is correctly given as zero by the perturbation procedure which leads to Eqns. 
(3.3) through (3.5). Equation (3.10) accounts for the leading-edge contribution to the 
integrated heat transfer in terms of the function f ; ,  wheref~' is obtained by perturbing 
about the boundary-layer solution at a distance from the leading edge which is large 
in comparison with v~3(gA)-2/3. The result, of  course, refers to the idealized case of a 
plate having zero thickness, which would be approximated satisfactorily if the leading- 
edge shape were that of a very slender wedge. For  a plate of finite length, the second- 
order local heat transfer would not be zero. The velocity perturbation given by f ;  
in Eqn. (3.10) would no longer have a similarity form, and the right-hand side of 
Eqn. (3.8) would give an additional term in the integrated heat transfer shown in 
Eqn. (3.10), equal to the integral of J0'(~) multiplied by the second term in 0. The effect 
of the leading edge, however, would not be changed, since each of these additional 
effects in Eqn. (3.10) would be proportional to a positive power of the distance from 
the leading edge, and so would decrease toward zero as this distance is decreased. 

For Pr = 0.72 and Pr = 10.0 the values of the correction given in Eqn. (3.10) 
are found by numerical integration to be 0.623 and 0.457, respectively. For the same 
values of Pr, the corrections obtained by Yang and Jerger [5] to account for finite 
plate length are, respectively, -0 .312 and -0.216. The latter results represent a de- 
crease in heat transfer from the plate, probably somewhat overestimated because the 
effect of entrainment into the plume was neglected. The leading-edge correction, on 
the other hand, gives an increase in Nu, and the combined results likewise show an 
increase. For example, if Gr = 104 the net increase is about 6.5 per cent for Pr = 0.72 
and about 2.2 per cent i fPr  = 10.0, and the corrections become increasingly important 
as Gr decreases. The remaining second-order correction, for the effect of the trailing 
edge, is discussed in the next section. 

4. The trailing-edge region 

In this section we will obtain the equations for a first approximation to the flow 
near the trailing edge in the limit as e = Gr-l/4--+ 0. For convenience we redefine 
the length L as four times the plate length, so that at the trailing edge 4x = 1 and 
~7 -= Y(4x)-2/4 = y. We also define a coordinate xz measured from the trailing edge 
by xl = x - �88 

The asymptotic flow structure near the trailing edge is in some ways similar to that 
for a flat plate placed in a uniform incompressible stream. The discontinuous change 
in boundary conditions at the edge implies large derivatives with respect to x in some 
small region. The accelerations are much larger than their values upstream, but the 
velocity changes are small, so that an approximate velocity profile is found from Eqn. 
(2.16) evaluated at the trailing edge, and the viscous forces are changed only slightly 
from their values just upstream. One therefore anticipates a description of the per- 
turbations in the boundary-layer flow in terms of  inviscid-flow equations. Since 
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solutions to these equations will not  satisfy all the boundary  conditions at Y = 0, 

one further expects that  the flow in a viscous sublayer near Y = 0 must  still be de- 

scribed by boundary-layer  equations, but  with a nonzero pressure gradient. For  the 

trailing-edge problem considered by Stewartson [16] and Messiter [17] the pressure 

gradient was necessary because of  interaction of  the boundary  layer with the external 

flow. In  the present case there is no external flow in the limit as e--+ 0, and so the 

pressure outside the boundary  layer is very nearly constant.  In order that  a stream- 

wise pressure gradient Px may appear in the sublayer equations, the transverse pres- 

sure gradient py must  be nonzero in the first approximation for the main part  o f  the 

boundary  layer. 

These ideas are expressed in a formal way by the introduction o f  assumed asymp- 

totic forms for the flow variables in the sublayer. Six small parameters are to be deter- 

mined:  the characteristic lengths in the x and y directions and the quantities which 

measure the sizes o f  the dependent variables u, v, p, 0 - 1 in terms of  e. As in the 

case o f  a flat plate placed in a uniform stream, the differential equations provide three 

o f  the six conditions needed. In the continuity equation the terms ux and vv are o f  the 

same order;  in the sublayer momentum equation the viscous and inertia forces are o f  

the same order;  and p and u 2 are of  the same order in the sublayer. Two more condi- 

tions follow from the requirements that upstream of  the trailing-edge region the sub- 

layer solutions for u and 0 - 1 match asymptotically with the undisturbed velocity 

and temperature profiles, found by evaluating Eqns. (2.16) and (2.18) for x = �88 

and Y--~ 0. I f  the sublayer is assumed to have thickness o f  order e ~, we have Y = 

O(e ~) and y = O(e 1 +~) there, where c~ is a number  to be determined. It then follows 

f rom the preceding considerations that the length of  the region of  interest is o f  order 

e a~, so that xl = O(ea~). Thus we take the limit e --+ 0 with e-3"xl and e-~ Yheld fixed. 

It  also follows that u = O(e~), v = O(e~-~),p = O(e2"), and 0 - 1 = O(e ~) in the 

sublayer. 

Up  to this point  the formulation is identical to that  for a trailing edge in a uni- 

form external stream, without the condit ion which represents the interaction effect. 

We must  next obtain an additional condition relating the perturbat ion in pressure and 

some function derived f rom one or more o f  the other variables. The first terms in the 

sublayer solutions for  velocity and temperature, evaluated for e-~Y--+oo, must  

match with the undisturbed profiles as Y - +  O, and so u ~ Yfd'(O) and 0 - 1 ~ Yg~(O). 
We will assume that the second terms are o f  order e ~. Using the continuity equat ion 

and assuming also that the first term in p is independent o f  e - "  Y in the thin sublayer, 

we have v = O(e a-2~ Y) a n d p =  O(e 2~) as e -~ Y - +  oe. In the main part  o f  the boundary  

layer, for proper matching, the perturbations in u and 0 and the solutions for v and p 

must  then be of  order e", e~, e a - 26, and e 2~ respectively. I f  the terms p~ and uvx in t h e  

y -momentum equation are to be of  the same order for Y = 0(1) and xx = O(e3~), it 
follows that  ~ = 2/7. 

With this result we now have all the information needed for determining the forms 

to be assumed for the asymptotic expansions describing the sublayer and the main 
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part of the boundary layer. The trailing-edge region is defined by xl = O(e 6/7) and so 
extends a vertical distance slightly larger, in order of magnitude, than the boundary- 
layer thickness. In the sublayer, Y = O(e2/7). These results permit certain self-con- 
sistent approximations to be made in the equations for the largest terms in the ex- 
pansions, and it will be shown later that the orders of magnitude assumed here are 
also consistent with Yang's [6] downstream solution obtained for ~ --> 0, xl -+ 0. The 
approximate problem formulation will indicate that there is a significant local trailing- 
edge contribution to the second-order heat transfer from the plate. Clearly, however, 
fractional powers of e will not really be very small numbers for realistic values of Gr, 
and an improved approximation may be necessary if good numerical accuracy is 
required. 

The flow in the main part of the boundary layer is described by equations ob- 
tained as e ~ 0 with coordinates s e and Y held fixed, where 

= e-6/Vxl = ~-617(x _ �88 y = ~-ly (4.1) 

The following expansions are assumed: 

u ~ f o ( Y )  + ~2/7u1(~, Y) + . . .  (4.2) 

v ~ E3/TVl(~:, Y) + . . .  (4.3) 

p ~ ~'~TPa(~, Y) + - . -  (4.4) 

0 ~ go(Y) + e2/vO~(~, Y) + "'" (4.5) 

The differential equations to be satisfied are 

Uar + Vat = 0 (4.6) 

f~(Y)UIr +fd'(Y)V~ = 0 (4.7) 

fg( Y) Vze = -Par  (4.8) 

fo'(r)o~ + g~(Y)v~ = 0 (4.9) 

Eliminating U~ from Eqns. (4.6) and (4.7), and integrating, we obtain 

Va(~, Y) = - f g (  Y)G'(~:) (4.10) 

where G({:) is a function to be determined, and it is expected that G'(~:)-+ 0 as 
~: -+ - ~ .  Eqn. (4.8) then gives, after integration, 

Y) = -G"(~) f f  f ~ (  r)  d r  Pl(~:, (4.I1)  

where we have set P~(~, ~ )  = 0. Substituting Eqn. (4.10) in Eqns. (4.7) and (4.9) 
and integrating, we also have 

UI(~, ]1)=fd'(Y)G(~) (4.12) 

01(~: , Y) = g~(Y)G(~) (4.13) 

We require Uz, @z -+ 0 as ~:-+ - co ,  and so the integration constant in G(~:) is chosen 
such that G(~)--> 0 as (--> -oo .  Temperature changes have been assumed small in 
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Eqns. (4.1) through (4.13). If  (T~, - T ~ ) / T ~  is not  small, the density should appear as 
an additional variable. The equation of  state gives p/p| = T ~ / T  + O(e~JT), and so it is 
found that  

_s = 1 { e2/7 } 
poo 1 + go(Y)/ ' ,  1 t + g0(Y)~X 01(~:, Y) + . . .  (4.14) 

where we have set A =- (T~, - T ~ ) / T ~ ,  so that  T/T~  ~ 1 + A0. I f  the derivation is 
repeated for  variable density, the results given by Eqns. (4.10) through (4.13) remain 
correct provided that Y and V1 are interpreted as t ransformed variables obtained 
using the first approximations to Eqns. (2.13) and (2.14). 

The equations describing the flow in the sublayer are obtained by taking a limit 
as e -+ 0 with coordinates ~ and ~ held fixed: 

= e-6/Txl  = e-6/7(x - �88 ~ = e - 2 / T Y  = e-9/Vy (4.15) 

The following expansions are assumed: 

u(x ,  y )  ~ e2/Vul(~, ~) + . . .  (4.16) 

v(x,  y )  ~ es/vv~(~, ~) + . . .  (4.17) 

p(x ,  y )  ~ e4/Vpl(~) + . . .  (4.18) 

O(x ,y )  ~ 1 + e2/70~({ :, ~) + . . .  (4.19) 

The corresponding differential equations are 

ul~ + vl~ = 0 (4.20) 

ulul~ + v~ul~ = -p '~ + u l~  (4.21) 

1 
u101~ + v101~ = ~-~ 01~ (4.22) 

The boundary  conditions at Y = 0 are 

u~(~:, o) = v~(~, o) = 0~(~, o) = o, ~ < o 
u~;(s e, 0) = vl(~:, 0) = 0~;(~, 0) = 0, s e > 0 (4.23) 

For  ~ -+  - o %  matching with the initial profiles for Y-+  0 gives 

u~(~:, ~) ~ fo"(0)~, 01(~:, ~) ,~ g;(0)~ (4.24) 

Matching the velocity, temperature and pressure for  ~ -+ oo and Y-+  0 gives 

u~(~:, ~) ~ fd'(0){~ + G(~)}, 0~((, ~) ~ g;(0){~ + G(~)} (4.25) 

P~(~) = PI(~,  O) = - G"(~) f o  f g 2 ( Y )  d r  (4.26) 

If  the temperature difference A = (Tw - T~) /T|  is not  small, the replacements pro- 
posed in Eqns. (2.13) through (2.15) give e~---~ e~/C and, since Y << 1, y--+ p ~ y / p ,  

and v -+ p~v/p~.  
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Equations (4.20) through (4.26) might be considered as describing a type of 
boundary-layer interaction problem. The pressure gradient e-2/7 p~(~) is not specified 

in advance, but is related to the streamline curvature - e- 3/7G"(~:) by Eqn. (4.26), and 
is interpreted in the following way. Near Y = 0 the fluid accelerates because the re- 

straining force on the plate is removed at ~ = 0. The corresponding displacement 
effect requires a small inward mass flow toward Y = 0, and the fluid acceleration 
corresponding to the strong streamline curvature implies a pressure gradient along the 
direction normal to the plate. Since the pressure outside the boundary layer is very 
nearly constant, it follows that there must also be a pressure gradient along Y = 0, 

which contributes to the net force acting on the fluid in the sublayer. As ~ increases, 
the functions - G " ( ~ )  and Pz(~) initially decrease from zero and become negative, 
but later increase through zero to positive values, before eventually returning to zero. 
The relationship between Pl and G" is a local one, in contrast with the integral rela- 
tion for a plate in a uniform external stream. As in the latter case, however, it can be 
argued that p'(~) = O(~:-1/3) as ( -+ 0 [17], and that this singular behaviour may have 

to be taken into account in a numerical solution. For ~ -+ - ~ ,  the forms of solution 
can be found by the procedure used by Stewartson and Williams [18] in studying 
separation of a supersonic laminar boundary layer. 

The assumed forms of solution given by Eqns. (4.1) through (4.5) and (4.15) 

through (4.19) can be shown to be consistent with the wake solution given by Yang [6]. 
In his outer solution for xl --+ 0 with Y fixed, it is found that v = O(ex; 2/3) and so 

the y-momentum equation py ~ - u v x  gives p = O(E2x7 5/3) as Y-+0 .  The first 
term in Yang's solution for small Y is just Goldstein's similarity solution for the 
merging of two uniform shear flows, so that u 2 = 0(x2/3). This solution is derived 

for values of  xl which are small but not so small that the pressure gradient is important. 
For  Y-+ 0, p is no longer small compared with u 2 if xz = O(e6JT). Thus Yang's 
solution describes the flow for e 6j7 << ]xll << 1. I f  we were to set xz = O(~ 6j7) in this 

solution, it would follow for Y = O(e 2/7) that u = O(e2/7), v = O(eSJT), p = O(e */7) 
and 0 - 1 = O(e~JT), as already given in Eqns. (4.16) through (4.19). In other words, 
the formulation proposed above could also have been deduced by observing that the 
wake solution is no longer valid if x~ = O(e 6/v) and then noting the orders of magni- 
tude required for matching as x - +  0 and e -6/Vxz--+ ~ .  One can also anticipate that 

the forms of the functions in Eqns. (4.16) through (4.19) as ( - +  ~ should be uz = 
O(~Z/3), vz = O(~- 1/3), p~ = O(~:- 5/3), and 01 = O(~/3). 

As noted in Section 3, the leading term in the Nusselt number Nu for e -= 
Gr-~/4-+ 0 is O(e-~), the correction for finite plate length is O(l) and negative, and 
the leading-edge correction is O(1) and positive. Since the fluid accelerates just ahead 

of the trailing edge, conduction of heat away from the plate is enhanced here, and the 
trailing-edge region therefore is expected to give another positive contribution to Nu. 
Since Ou(x, 0) differs from its undisturbed value by a factor of  order e-  z over a distance 
of order e 6/v, this correction is O(e-z/v). Thus for e << 1 the trailing-edge term is 

slightly larger in order of  magnitude than the 'second-order' contributions over the 



Vol. 27, 1976 The Vertical Plate in Laminar Free Convection 645 

remainder of the plate, and clearly must be considered in any attempt at estimating 
the largest correction terms in Nu. 

A numerical solution to Eqns. (4.20) through (4.26) would be sufficient to give a 
good qualitative description of the trailing-edge flow and an estimate of the local 
contribution to the heat transfer. For  improved accuracy it would be necessary first 
of all to retain, for Y = O(1), the pressure gradient px and the buoyancy force in the 
undisturbed form 0 ~ go(Y). These changes would also influence the sublayer 
through the matching conditions. The viscous shear stress ur r  for Y = O(1) would 
enter in a second correction, but the longitudinal stress e2uxx appears to be consider- 
ably smaller. For a complete analysis, it might also be necessary to consider the slightly 
smaller region where xl = O(e). If 0~ should require still another correction of order 
e-1, in a region having length O(e), the second term in the trailing-edge correction to 
Nu would be O(1). The full Navier-Stokes equations would, however, be required 
only in a still smaller region where xl, y = O(~ a/2) ; u, v = O(e 1/2) ; px, py = O(e- 1/2); 
0 - 1 = O(d/2); and the local contribution to the heat transfer is O(d/2), smaller 
than the terms considered here. 

The same type of edge effect also' occurs for a circular disc rotating about its axis 
of symmetry in fluid otherwise at rest. For small values of the Ekman number E -- 
v/(f~R2), where v = kinematic viscosity, f~ = angular velocity of the disc, and R = 
disc radius, there is a circumferential flow in thin boundary layers along the upper 
and lower surfaces, and the resulting centripetal acceleration also requires a radial 
flow. The radial component of the momentum equation has the same form as the 
momentum equation (2.10), with additional terms in the convective derivative be- 
cause the flow is axisymmetric and with the buoyancy force replaced by a centrifugal 
force. Smith [19] has considered this problem, but has concluded that the changes in 
pressure would be important only within a radial distance of order EIr from the edge. 
In his formulation the pressure changes are of order E~/6p~ in the main part of the 
boundary layer, but are smaller both in a sublayer having thickness of order E2/aR 
and in the flow outside the boundary layer. But p~ ~ uvx, in our notation, where vx/u 
is approximately the streamline curvature. Thus Smith's formulation would imply 
that the integral of the largest term in uvx across the boundary layer would be zero 
for all values of x~ such that xl = O(E~/2), a result which seems unlikely. If instead 
the arguments used here were again applied, the local flow structure would be found 
to have exactly the same form as in the present case, and modification of the boundary- 
layer equations to account for pressure gradients would be necessary in the somewhat 
larger region where x~ = O(EaI7R). 

5. The flow near a discontinuity in plate temperature 

In the preceding section, the trailing-edge flow was described in terms of the pres- 
sure perturbationJnduced by a displacement effect, which' is present because of a dis- 
continuous change in boundary condition. This description differs from the asymptotic 
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description of boundary-layer interaction with an external flow, because for the 
free-convection case the external-flow velocity is zero in the limit as e - +  0. A free- 

convection 'interaction' of  the same general type occurs near a jump discontinuity in 
the prescribed plate temperature. The flow near the temperature jump has a number of  
features in common with the trailing-edge flow. Since, however, the boundary condi- 
tions for the velocity are now continuous, it is found that the sublayer equations are 
linear, and an analytical solution for the local pressure distribution can be obtained. 
The derivation is outlined below and in the Appendix. The existence of an explicit 

flow description near a temperature jump appears to support the assumptions made 
concerning the asymptotic form of the solution in Section 4 as well as in this section. 

We will locate the origin x = 0 at the temperature jump, with Tw = T~ ~) up- 
stream, for x < 0, and Tw = T~ a~ downstream, for x > 0. For convenience we now 

define L as equal to four times the distance from the leading edge to the jump. We also 
define 

) t = T ~ U ) - T o o  
T~ ~ - r ~  (5.1) 

where 0 < A < 1 if T(w a) > T~ ~ and 1 < A < oo if T~ a~ < T~w u). The nondimensional 
parameters and variables will all be defined in terms of T}~ a~. In particular, e is now 

defined as )d/4 times the e defined for x < 0; that is, now 

= \paL]  g ( T ~  ;-Z- T~)L] (5.2) 

The velocity and temperature profiles just upstream of the jump are given by u ,,~ 

A~/2fd(A ~/4 Y)  and 0 ~ Ago(h ~/4 Y). 
A solution analogous to Goldstein's [14] has been given by Kelleher [8] for the 

flow at small positive values of x, in terms of inner and outer coordinate expansions. 

The solution shows v--> oe as x - +  0 and so there is a small region about x = 0 
where the formulation is no longer valid. As for the trailing-edge flow, we anticipate 
that in this region dissipative effects are important primarily in a thin sublayer, and 
orders of  magnitude are determined from the following considerations: ux and v v 
are of the same order; viscous, pre'ssure, and inertia forces are of the same order; 
upstream of the jump the velocity and temperature match asymptotically with the 

undisturbed profiles; and the pressure variation enters because the transverse pressure 
gradient is important for Y = O(1). These conditions are sufficient to give x = O(e ~/7) 
and Y = O(e2/7), as before. Since, however, one boundary condition remains u(x, O) = 

0, the solution for the largest term in u is simply u ~ ),a/4fd'(0) K The change in buoy- 
ancy force contributes to the second term in u, and it follows from the x-momentum 
equation that the perturbations in u and p are of order p/7 and e 6/7, respectively. 

The dependence on A and on the upstream velocity profile can be expressed through 

constants c, and/3 defined by 

1 j :  fo,2(A1/~ y)  d(A~,4 y)  (5.3) a = ,~3/4fd'(0), /3 = fd'(0) 
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The formulat ion given by Eqns. (4.15) through (4.26) can now be modified as follows: 

f = e-6/Ta217~-3/Vx, ~ = ~-2/Ta31~fi-lJv Y = e-917aa/7[3-117y (5.4) 

a ~2 p/v(1 u ~ ~2J%,4/7/31/X - ~4~7~-6/7/32/~ + - ~)~-6 /~ /3~u~(~,  0 + ' "  (5.5) 

v ~ e(1 - a)c~-~v~(f, ~) + . . .  (5.6) 

p ~ e6/7'(1 - )0a-2/Tfla/Tpl(~) + . . .  (5.7) 

0 ~ a + (1 - ~)04(~:, 0 + . . .  ( 5 . 8 )  

where 

ul~ + v~ = 0 (5.9) 

gu~ + v~ - u~: = - p ~  + 0~ (5.10) 

1 
~0~ = ~ t?~ (5.11) 

g = 0 ,  f < 0 :  u~ = v ~  = 0 ,  0~ = 0  
(5.12) 

= 0, ~: > 0: ul = vl = 0, 01 = 1 

so--+ - o o :  ul ~ 0, 01 ,-- 0 (5.13) 

g - + m :  ul ,-~ G(~), 0, ~ 0 (5.14) 

p ~ ( 0  = - G " ( #  (5.15)  

As in Eqn. (4.10), G ' ( s  ~) can be interpreted in terms of  the streamline slope, since 
v/u ,-. -e~/:(1 - a)e-zlJv/3-~/VG'(~:)for Y = O(1). 

The solution for 0, remains the same as Kelleher 's  [8] downst ream solution for  
the change in temperature.  For  ~: > 0, 

31/a f oo 
0~ = F(I/3-----~ (m-/@ ~a e -~a~ dt (5.16) 

For  ~: < 0, however,  0z = 0 and so for x = O(e 6/7) the j u m p  in wall tempera ture  has 
no ups t ream influence. We should expect that  the temperature  ahead of  the j u m p  is 
influenced only at a small distance such that  Ox~ is no longer negligible in compar i son  
with 0y~; as in Section 4, 0 ~  must  be retained when x = O(ea/~), y = O(ea/~). 

Although the change in boundary  condit ion influences 0~ only for  f > 0, the 
perturbat ions in velocity and pressure are affected both  for f > 0 and for ~ < 0. A 
solution for ua (f,  ~) in terms ofp~(~) can be found f rom Eqns. (5.9) and (5.10), s u b j e c t  

to the boundary  conditions given in Eqns. (5.12) and (5.13). This sublayer solution 
must  have the fo rm given by Eqn. (5.14) as ~ -+  m,  and so provides a relation between 
G (~) and p~(~), which can be combined with Eqn. (5.15) to give an equat ion involving 
only p~(~). An outline of  this derivation is given in the Appendix,  and the solution 
for p~(s e) is obtained. For  ~: < 0 ,, 

3B 
- - -  e ~ (5.17) 

Pz(~) = 7 k A  
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and for ~: > 0 

6 Be_~sins~/14 sin ( 5zr 5zr) p~(~) = ~ ~ ~ cos ~ - l~ 

~/3 B k 7 / S  (~ t I/3 e-~t dt 
+ ~ 7t ,Io t 14/3 - kT/3t 7/3 + k 14/3 (5.18) 

where A = 3-2/3F(�89 k 7/a : 3~/3/P(�89 and B is a positive constant which de- 

pends on Pr and can be obtained in the manner described in the Appendix. The pres- 
sure perturbation Pl(~:) is continuous at ~ = 0, but the derivative has a jump given 
b y p ] ( + 0 )  - p [ ( - 0 )  -- B/A, as can be shown using either Eqn. (5.18) or Eqn. (A.5). 

-1/2 -1 i --418 2 As ~: --+ ~ ,  Pl ~ 3 (27r) BF(x)~ /F(~) and so p O(e2x- 4/3). From Kelleher's 
(1971) solutions for x -+ 0, using his function q~2, one can show that the integral of  the 
streamline curvature across the boundary layer is also O(e2x - 4/a), in agreement with 

the result for Pl as ~: -+ oo. Since B > 0, it is seen that Pz (~) is negative for ~: < 0, 
but later becomes positive before returning to zero as ( -+ oo. 

6. Conclusions 

For the vertical flat plate in free convection, the existence of a similarity solution 
permits easy calculation of the first approximation to the heat transfer at large Grashof 
number. However, in spite of  the very simple geometry, it is extremely difficult to 
obtain an adequate correction which extends the range of usefulness of  this result to 

lower values of  the Grashof  number. It has been attempted here to describe the asymp- 
totic structure of the regions where the boundary-layer equations are no longer valid, 
and thereby to identify effects which must be accounted for in a second-order calcula- 
tion and which heretofore have not been recognized. In particular, (1) the leading- 
edge contribution is obtained explicitly; (2) the trailing-edge effect is shown to be 
predominantly the effect of  a kind of boundary-layer interaction, involving pressure 
forces but not the longitudinal viscous stresses; and (3) the same kind of interaction is 
shown to occur near a jump in the plate temperature, by means of an explicit solution 
for the local pressure distribution. 

One of the authors (A.L.) was on leave at The University of Michigan while this 
study was carried out. This work was supported in part  by the U.S. Army Research 
Office under Contract D A H C  04 68 C 0033. 

Appendix 

The momentum equation (5.10) is linear, and the solution for Ul can be written 
as the sum of solutions u~ ~ and u~ p) corresponding to the change in buoyancy force 
and to the (unknown) pressure force respectively. Differentiation of Eqn. (5.10) gives 

u l ~  - [ul~ = - 01~ (A.1) 
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, A 0 )  - -  1 For ~ > 0 a similarity solution can be found for -1~"(~ which satisfies .1r = 
at ~ = 0 and ,,(~ 0 as ~--~ ~ :  

,,(o) - -  ~ t -z  e -t3/9 dt s e (1-Pr)s3/9 ds 
"1~ r(~) Jo 

+ C ~  + C2~ t - 2  e - t8 /9  dt (A.2) 
/~l/s 

where C1 and C2 are chosen so that the boundary conditions are satisfied. For ~: < 
0, 01 = 0 and so u~ ~ = 0. Next u(~ ~) is found, in terms of the still unknown pa(~:), 
by a superposition integral as used by Messiter and Hu [20] satisfying ul = 0 and 
u ~ r  

u ( p ) _  3~/3F( 2 ) 1  f~ dt ; ~ (~ p'l(s)~2/a e-~l/9~t3/(~-S~ ds (1.3) 

Combining Eqns. (A.2) and (A.3) for ~ -+ 0% we find 

3 P(�89 f '  p;(s) ul ~ B~2/aH(~) 32/3F(2) _| (~: Z ~l/a ds (A.4) 

where H(~:) is the step function defined by H(~:) = 0 for ~: < 0 and H(~) = 1 for 
~: > 0. The constant B = B (Pr) is obtained by integration of Eqn. (A.2), with u(~ ~ = 
0 at ~ = 0; B > 0 since a temperature increase (i.e., T~ a~ > T(~ ~, and so ~ < 1) acceler- 
ates the flow. As ~:-+ o% the terms in the present formulation should be consistent 
with Kelleher's [8] downstream solution, obtained for x -+ 0. In particular, the solu- 
tion found for u~ ~ from Eqn. (A.4) equals ~:~/a times a function of ~/~:~/a and is pro- 
portional to Kelleher's function f;(~);  the constant B is proportional to f~(oo). 

The right-hand side of Eqn. (A.4) is an expression for the function G(~:) introduced 
in Eqn. (5.14). Equating G'(~:) obtained from Eqn. (A.4) with G'(~:) obtained from 
Eqn. (5.15), we find a relation for pl(~:): 

f, d f p;(,) _ | p ~ ( s )  d s  = A ~ _ oo (~ ~ ~)~/~ ds - B r 1 6 2  (A.5) 

where A = 3-~/~F(�89 Thus the temperature changes described by 0~(~:, ~) can be 
considered to cause a velocity change given by u(~~162 ~). The resulting streamline 
slope as ~ -~ oo is proportional to ~:-~/~. This leads to a displacement effect for Y = 
O(1), which in turn requires pressure changes and further velocity changes as described 
by Eqns. (A.3) and (A.5). 

Fourier transformation of Eqn. (A.5) gives 

P~(o~)/(io~) = e-='/~P(2)o~- 2/a{-~o~AP~(o~) - B} (A.6) 

where 

(A.7) 
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and  oJ is c o m p l e x ;  we will  take  - 3 7 r / 2  < arg  ~o ___ ~r/2. T h e n  

1 Bf wa/3eie~ 
Pl(E) = -2---~ A ~ oj77~ S kW3 eS~,/o (A.8) 

where  k 7/3 = [AF(~)] -a  = 32/3/F(�89 F o r  -37 r /2  < a rg  o) _< ~/2, the s ingular i t ies  

o f  the  in t eg rand  are  s imple  poles  at  w/k  = e 5~;14, e - ' " 2 ,  e "~9~m4. F o r  s r < 0, the 

in tegra l  can  be eva lua t ed  in terms o f  the  res idue at w/k  -- e -~/2. F o r  s r > 0, Eqn .  (A.8) 

can  be rep laced  by twice  the in tegra l  a l o n g  the i m a g i n a r y  axis a rg  oJ = ~/2  plus the 

con t r i bu t i on  f r o m  the  two  poles  in the  uppe r  h a l f  p lane.  The  results  are  g iven by 

Eqns .  (5.17) and  (5.18). 
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Summary 

For laminar free-convection flow past a heated vertical plate of finite length, the local asymptotic 
flow structure is studied in regions where the boundary-layer equations do not provide a correct 
approximation at large Grashof numbers. The leading-edge region is shown to contribute a second- 
order term to the integrated heat transfer. An integral form of the energy equation permits calculation 
of this correction in terms of the second-order boundary-layer solution away from the edge, without 
knowledge of the flow details near the edge, which can be obtained only by solution of the full Navier- 
Stokes equations. Near the trailing edge and near a jump in the prescribed plate temperature the 
longitudinal pressure gradient is found to be important in a thin sublayer adjacent to the plate, and 
the transverse pressure gradient is important in the remainder of the boundary layer, each for a dis- 
tance along the plate which is slightly larger in order of magnitude than the boundary-layer thickness. 
At the trailing edge the sublayer problem is nonlinear and cannot be solved analytically, but it can 
be shown that the local correction to the total heat transfer is of slightly larger order of magnitude than 
the leading-edge correction. It is pointed out that the trailing-edge flow is identical in form to the flow 
near the edge of a rotating disc in a stationary fluid. The temperature-jump problem is linear and a 
solution is given which shows how the singularity in streamline slope predicted by the boundary-layer 
solution is removed. 
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Zusammenfassung 

Bei laminarer natiJrlicher Str~mung l~ngs einer senkrecht stehenden endlichen geheizten Platte 
bei sehr grossen Grashof'schen Zahlen gibt es kleine Bereiche, bei denen die Grenzschichtgleichungen 
keine echte asymptotische Darstellung liefern. Im Vorderkantenbereich findet man ein Zusatzglied 
zweiter Ordnung ftir die gesamte W/irmefibertragung. Die Berechnung dieser Korrektur erfolgt durch 
eine Integralform der Energiegleichung, wobei nur die L6sung der Grenzschichtgleichung zweiter 
Ordnung fern yon der Kante ben[itzt wird, wfihrend die Kenntnis der Str6mung in der N/ihe der 
Kante nur durch eine L6sung der exakten Navier-Stokes'schen Gleichungen gefunden werden k6nnte. 
In der N~he der Hinterkante und in der N~he einer Diskontinuit/it der gegebenen Plattentemperatur 
wird das L~ngsdruckgefNle in einer dtinnen Unterschicht wichtig; das Querdruckgeffille wird in 
dem restlichen Teil der Grenzschicht berticksichtigt, fi~r eine L~nge, deren Gr/Sssenordnung etwas 
gr6sser ist, als die der Grenzschichtdicke. Bei der Hinterkante ist das Unterschichtsproblem nicht 
linear, und es gibt keine analytische L~sung, aber man kann zeigen, dass die Gr~ssenordnung der 
Korrektur der gesamten Wfirme[ibertragung etwas gr6sser ist als die Korrektur bei der Vorderkante. 
Die Str6mung bei der Hinterkante ist dieselbe wie die Str6mung bei der Kante einer rotierenden 
Scheibe in einer sonst ruhenden Fltissigkeit. Das Temperatur-Diskontinuit/itsproblem ist linear, und 
eine L6sung ist hier gefunden worden, wodurch die yon der Grenzschichttheorie gegebene Singu- 
larit~t (unendliche Quergeschwindigkeit) entfernt wird. 
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