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Cracked orthotropic strip with clamped boundaries 
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1. Introduction 

One of the basic aims of the linear elastic fracture mechanics (LEFM) in recent years 
is the determination of stress intensity factors in complicated situations regarding geo- 
metric features and/or mechanical behavior [1]. This reflects the general claim for fracture 
mechanics solutions to represent engineering reality instead of idealized situations. Of 
course, mathematical complexities set some bounds up to this policy and then one has 
to resort to numerical methods. However, there are still many problems in the realm of 
LEFM which admit an analytical treatment. One of these is the problem solved here. 

This concerns a long strip made by orthotropic material containing a long crack. The 
case of clamped strip boundaries will be discussed here. The alternative way of loading, 
i.e. the shear free strip boundaries, has been considered in a recent paper of ours [2]. The 
present work follows the analysis therein closely. 

Knauss [3] and Rice [4] have solved the respective isotropic problem, whereas 
Nilsson [5] and Popelar et al. [6] considered dynamic crack motion in an elastic and 
viscoelastic strip. Relative to the present work are the ones in [7 11] where, however, 
different geometric features were encountered. 

The solution here was accomplished by Fourier transforms and the Wiener-Hopf 
technique. The procedure will be described briefly. 

2. Governing equations 

Consider a linear elastic orthotropic body in the form depicted in Fig. 1. Then, with 
respect to the principal material-axes, the elastic constitutive expression relating the 
in-plane stresses and displacements is [12] 

[110 ~ Gx Cll  C12 8x  

cry = 2 c=  ey (1) 

xy 0 C66 ):xy 

where the components of the stiffness matrix are given in terms of the engineering 
material constants as follows 

Cll  = El~(1 - -  Vl lf12), c12 = v 2 E 1 / ( I  - -  vt v2), C22 = E 2 / ( 1  - -  vlv2), C66 = G .  

*) Permanent address: 33-35 G. Papandreou St., 16231 Athens, Greece. 
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Figure 1 
A long orthotropic strip with clamped 
boundaries containing a crack opened by 
vertical displacements. 

~ orthotropy 

Y] ux=O" Uy=U 0 

Oy= 0 0 

ux=O, Uy=-U 0 

In the above relations, the subscripts I and 2 refer to the principal directions of 
material symmetry which coincide here with the x and y reference axes. Only four elastic 
constants are independent, the fifth given by 

1'2 E1 = P1 E2. 

Following Ref. [2], we introduce the qS- and ~u-displacement potential by the relations 

ux= (q~+~'), ur=~yy(aq~+b~t),  u~=O (2) 

where 

Cll/~l -- C66 (C12 -~- C66) fll b r -- C66 (C12 -~- C66) fl2 
= - - ( 3 )  

C12 -[- C66 C22 -- C66fll ' C12 -t- C66 C22 -- C66fl2 

and ill, f12 the roots of the characteristic equation 

enC66fl 2 + (e~2 + 2c12c66-  euC22)fl + e22c66 = 0. (4) 

It can be shown further that the displacement potentials satisfy the following Laplace 
type differential equations 

52~ ~ 0, 52~, ~ 2 ~ =  0 (5) 
OX ~ q- fll ay~ = ~ -b f12 ay2 

and the stresses are given in terms of ~b and ~u as 

(l Jv (~)C66 02(~ (1 q- b)c66 ~2 ~ 
- -  + (6.1) 

G - f l i  OY 2 f12 ~y2 
82 

02q~ - (1 + b) 
cry = -- (l -b (Z) C66 ~ C66 ~X 2 

I( , ~2q) ~2 ~/] 

(6.2) 

(6.3) 

3. A n a l y s i s  

The semi-infinite crack is opened by constant vertical displacements Uo applied to 
the strip boundaries, whereas these boundaries are clamped in the x-direction. According 
to Popelar and Atkinson [6] this type of loading is more convenient for fracture studies 
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than the shear-free boundaries. To apply the Wiener-Hopf technique the following aux- 
iliary problem is considered 

u~,(x, h) = 0 for - oo < x < co (7.1) 

uy (x, h) = 0 for - co < x < oo (7.2) 

r~y(x, 0) = 0 for - oo < x < co (7.3) 

ay (x, O) = % for - oo < x < 0 (7.4) 

uy(x, 0) = 0 for 0 < x < co (7.5) 

Then, by a trivial superposition we may arrive again at the original problem. The 
proper value of a o in the above boundary  conditions and for plane-stress may be derived 
by Eq. (1) as 

U o 
O" 0 ~- - -  (C12 !22 -[- C22 ) ~-. (8) 

Obviously, such a superposition does not affect the value of the stress intensity factor 
obtained by solving problem (7). 

Now we introduce two as yet unknown functions the determination of which com- 
pletes the solution of problem (7): 

ay(x, O) = re(x)  for 0 < x < co (9./) 

Uy (x, O) = n (x) for - co < x < 0. (9.2) 

Applying the Fourier transform Eqs. (5) become [13] 

52 
_ co2q~, (co, y) + P l ~  q~* (co, y) = 0 (10.1) 

~2 
- co2 ~'* (co, Y) + ~ y Z  ~'*(co, y) = 0 (10.2) 

which have general solutions of the form (Tj = flf  z/a (j = 1, 2)) 

q~* (co, Y) = A(co)e '~~ + B(co)e -'~'~y (11.1) 

qJ*(co, Y) = C(co) e '2~~ + D(co)e -'2~ (11.2) 

The transforms of the functions of interest are defined as 

m* (co) = (2~) -t/2 S re(x) e ~~ dx  (12.1) 
0 

0 
n*_ (co) = (2~z) -1/1 ~ n(x)  e i'~ d x .  (12.2) 

-oo 

Then, application of the Fourier transform to the boundary conditions in conjunc- 
tion with the transformed Eqs. (6) results in an algebraic system of five equations with 
the six unknown functions A(co), B(co), C(co), D(co), m+ (co) and n_ (co). Some tedious 
algebra eliminates A (co) . . . . .  D (co) and reduces the system to the following Wiener-Hopf 
equation 

C66 0"0 (13 )  
rn~_ (co) - 7172(c~ - b) K(co) n*_ (co) i(2~r)1/2c ~ 
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where the Kernel K (r = co F (co) [G (co)I- i is given by 

F (co) = (I + e) {2 ?h 72 (1 + ~) b - (1 + b) 72 [(b 72 + c~ ya) cosh (7~ h co - ~2 h co) 

- ( b 7 2  - ct)q)cosh(Ti hco + 72 hco)]} + (1 + b) {2yi72(1 + b)e 

- (1 + c0 71 [(b 72 + ~ 70 cosh (Ta h e) - )'2 h co) + (b 72 - c~ 70 

�9 cosh (7i h co + 72 h co)]}, 

G(co) = (b72 - ~h)s inh(T1 hco + 72 hco) 

- (b 72 + ct 70 sinh (7~ h co - 72 h co). (14) 

The Kernel takes the following asymptotic forms for small and large co's 

lim K(co) -- Yl 72 "  (a  - -  b) 2 

K(co) 
lira - (1 + c 0 (1 + b) (72 - h ) .  (16) 

m-~oo CO 

Following now the classical Wiener-Hopf method [14] and the procedure in Refs. 
[2, 5, 15] we may find 

aoK+(co)[ 1 1 ] 
m*+(co)- ~2-~i '~ [_K+ (co) K+(0) 

and further 

ao ao lim m* (co) - + lira - -  
~o-~ co i(2~)1/2 CO i(27t)i/zcoi/2K+ (0) o~ 

or [13] 

K+ (co) 
(,01/2 

(17) 

(18) 

lim m(x)- ao F(72 - -  71) (0172 - - b 7 2 ) ( 1  + cOO + b)h] j/2 - i /2  ( 1 9 )  
~Zl/2 L l x o+ x 

The above expression is the asymptotic form of the cleavage ay (x, 0) - stress near the 
crack tip. Since the stress intensity factor is given by 

K: = lim [(2~x) i/2. ay(x, 0)] (20) 
x-~0 + 

we may easily find that in our case 

K:=[  2(72-Ti)(~xTz-bT2)(17~ )2q ~ ~ ~?7 +e)(1-]-b)ll/2(c12v2-l.-Cz2)U O h  1/2 (21) 

4.  R e s u l t s  a n d  d i s c u s s i o n  

Obtaining the isotropic result of Rice [4] as a limiting case of our analysis seems to 
be cumbersome. This is due to the fact that both numerator  and denominator in Eq. (21) 
tend to zero for c~ = b, 7i = 72, viz. for an isotropic material. Of course, application of 
L'Hospital  rule may lead to an analytic result after some tedious algebra. However, in 
order to check our final result (21), we chose to work numerically. We consider the stress 
intensity factor for a nearly isotropic material with the following mechanical constants: 
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E J E  z = 1.3/1.0, vl /v  2 = 0.325/0.250 = 1.3, (;'66 = E2/2(I  + v2) = 0.4 (all values have 
been normal ized in respect to E2-modulus). In order  to get the isotropic SIF,  the values 
E = E z = 1.0 and v = v2 = 0.250 were used. 

In addit ion,  we compare  the results of (21) with those obtained by our  formula for 
the shear-free type of bounda ry  condit ions in the same strip [2]. I t  is noticed that  the 
lat ter  case is reduced immediate ly  to the isotropic  one (see [5] for an analogy in elastody- 
namics). 

The following stress intensity factor values were found in the three cases: 

K)S~ 1.032 u o h - l / a ,  K~rtlal = 1.145 u o h-1/2 (clamped boundaries)  

and 

K~ rtla2 = 1.105 u o h -  a/2 (shear-free boundaries) .  

The above results clearly show the validi ty of Eq. (21). 
On the other hand, it is interesting to explore the effect of the degree of o r tho t ropy  

on the stress intensity factor. In part icular ,  in what  follows we consider the effect of high 
or thotropy.  This was accomplished by considering large differences in the or thot ropic  
constants  in the directions parallel  and perpendicular  to the crack line. The mater ial  
behavior  of p lywood was utilized. 

In the first case the strong direction coincides with the crack axis: E~ = 24.600, 
E 2 = 1.000, v I = 0.298, v 2 = 0.012 and G = 0.750. Equat ion  (21) then gives K~ ~ = 1.346 
u o h ~/z. In the second case the weak direction coincides with the crack axis: E~ = 1.000, 
E 2 = 24.600, vl = 0.012, v2 = 0.298 and G =  0.750. In that  case Eq.(21) gives 
K(I b) = 30.549 u o h -  t/2. This great  difference in SIF  values for case (~) and (b) is mainly due 
to the term cz2 in the numera tor  of Eq. (21), 
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Abstract 

The stress intensity factor at the tip of a semi-infinite crack in an orthotropic infinite strip was 
determined. Clamped strip boundaries were considered. 
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