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Curve veering and mode localization in a buckling problem 
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1. Introduction 

In structural dynamics, the vibrational characteristics of periodic structures have 
been shown to be highly sensitive to small (and often unavoidable) periodicity-destroy- 
ing structural irregularities. Specifically, under conditions of weak internal coupling for 
the structure of interest, the drastic phenomena of mode localization and eigenvalue loci 
veering have been evidenced (see the paper by Pierre [ 1] and the references cited therein). 
Typical examples of structures featuring such an extreme sensitivity to irregularities 
include blade assemblies, multi-span structures, and truss-like space structures. 

The purpose of this Note is to investigate whether similar phenomena occur in 
buckling problems as well. The underlying motivation for the study is that both free 
vibration and buckling problems are governed by eigenvalue problems; thus one can 
speculate that their eigensolutions are affected by irregularities in a similar way. This 
would result, under certain conditions, in the high sensitivity of the buckling loads and 
corresponding buckling patterns to irregularities, or imperfections, and more specifically 
in the localization of the buckling modes to a small geometric region of the structure. 

The occurrence of buckling pattern localization and load loci veering is examined in 
the present Note using a simple example of a nearly periodic structure, namely a 
two-span column with a torsional spring acting at the intermediate support. This spring 
is used to vary the amount of coupling between the two spans, which has been shown to 
govern the sensitivity to imperfections in vibration problems [ 1]. Here it is clear that the 
interspan coupling decreases as the spring stiffness increases. Furthermore, the location 
of the intermediate support determines whether the column is ordered or disordered: if 
the two spans have exactly the same length, the column is ordered, or tuned; otherwise, 
it is disordered, or mistuned. Pierre [1] has shown that, in the weak coupling (weak 
disorder) case, strong localization of the vibration modes and veering of the natural 
frequency loci occur for this structure. In this Note the two lowest buckling loads are 
plotted as a function of the support location and the buckling patterns are studied for 
different values of the interspan coupling. An asymptotic analysis of the difference 
between these loads is also conducted for the central support case. 

2. Analysis 

Consider the beam shown in Fig. 1, with length l and constant bending stiff- 
ness El. The torsional spring has stiffness c. In terms of the nondimensional quantities 
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Figure 1 
Geometry of two-span column. 
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the characteristic equation for the buckling loads is given by 

(22~ + ~)2/~ sin(2~) cos(2/~) - (22 + y) sin(2=) sin(2/~) 

+ (22/~ + 7)2~ cos(2~) sin(2/~) - ;}~/~, cos(2cO cos(2/~) = 0 (2) 

and the buckling modes have the form 

w(x) I K ~ [ s i n ( 2 x ) - X s i n ( 2 ~ ) l  O _ < x < ~  
= ~ (3) 

[K2[~ - fl(1 - cos(2~) + cot(2/~) sin(2~)] 0 < ~ </3 

where 

{ K~ = K[7 sin(2/Y) - 72fl cos(2fl) +/Y2 2 sin(2/~)] 
K 2 K2 2 sin(2a) sin(2fl) (4) 

Equation (2) is solved numerically, and the lowest two (nondimensional) buckling loads 
are denoted 2~ and 22. 

For  the special case ~ = 0 (no torsional spring, that is, strong interspan coupling), 
2~ and 22 are plotted as a function of M in Fig. 2. When the intermediate support  is at 
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Figure 2 
Loci of lowest two buckling loads near Al = 0 for 7 = 0. 
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the center of  the column (i.e., AI = 0), 2] -- 2~ (with a sinusoidal, antisymmetric buckling 
mode) and 22 = 8.9868 (corresponding to each half  of  the column buckling as if it were 
fixed at the center). The buckling modes for AI = 0, 0.01, and -0 .01  are sketched in Fig. 
2. The two loci of  the eigenvalues do not approach each other in this case, and there is 
no localization of the modes about  one of the spans. The buckling loads and modes for 
the slightly disordered column are indeed small perturbations of  those for the ordered 
system (AI = 0). Thus in this strong interspan coupling case the sensitivity of  the 
buckling modes to irregularities is small. 

The case y = 600 (i.e., small coupling between spans) is illustrated in Fig. 3. At 
AI = 0, 2~ -- 8.9868 again, while 2] = 8.9277; thus, the lowest two buckling loads of  the 
ordered column are very close. On a larger scale, the two eigenvalue curves would appear  
to intersect, when actually they veer away from each other abruptly at the ordered state 
(AI = 0) with very large local curva ture - -a  phenomenon referred to as eigenvalue loci 
veering. The corresponding mode shapes for small AI exhibit strong localization, in which 
the amplitude on one side of  the intermediate support  is much larger than that on the 
other side. In this weak interspan coupling case ( that  is, when the loads of  the ordered 
column are close), the introduction of  small disorder, or asymmetry,  AT, drastically alters 
the buckling modes as well as the loci of  the critical loads. These phenomena are similar 
to those observed in free vibration problems [ 1]. 

The gap 22 - -21 ,  at AT = 0, is the key to the occurrence of  mode localization and 
curve veering: it becomes smaller as the torsional stiffness, 7, increases and thus can be 
regarded as a measure of  the interspan coupling. This is shown by the curve labelled 
"exact"  in Fig. 4, where the abscissa is 1/7. One can also perform an asymptotic analysis 
for large 7- In Eq. (2), let 

1 
~ = f l = 0 . 5 ,  ~ = - ,  2=p+a~+be2+O(e 3) (5) 

where /~ = 8.9868. Setting coefficients o f  like powers of  e equal to zero, one obtains 
a = -4/~ and b --- 32 # for 2 = 2]. The first-order result (22 - 2~ = - a e )  and second-or- 
der result are depicted in Fig. 4. In the range shown, the second-order approximation is 
very close to the exact solution. 
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Figure 3 
Loci of lowest two buckling loads near Al = 0 for ~ = 600. 

, i . , �9 t 

0.01 0 . 0 3  0 . 0 5  0 . 0 7  

0 .0  

2? 



Vol. 40, 1989 Curve veering and mode localization 761 

Figure 4 
Gap 22 -21  at AI = 0 as function of 1/7. 
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Summary 

It is shown on a simple example that small disorder, or mistuning, may alter drastically the 
eigensolution of buckling problems in nearly periodic structures with weak internal coupling. Specifically, 
the phenomena of eigenvalue loci veering and mode shape localization, which are known to occur for 
free vibration problems, are evidenced in the case of structural buckling as well. 
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