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1. Introduction 

It may be shown through the Poisson summation formula that every periodic 
function may be represented as an "imbricate" series [7]: 

u(x) =Uo + ~ S(x + 2mr) (1) 
n =  - c ~  

where Uo is a constant and S(x) is the so-called "pattern" function, which must decay 
sufficiently fast as Ix[ ~ oo so that the series converges. 

If  S(x) is a solitary wave which is narrow in comparison to the spatial period so that 
adjacent copies of the soliton overlap only slightly, then one would expect that the 
imbricate-soliton series would be a good approximation to an exact, spatially periodic 
solution of the same nonlinear wave equation. What is remarkable is that Toda and 
others [1-5] showed that this superposition is exact even in the limit of infinitesimal 
amplitude when u(x) is a sine wave! 1 

As noted in the abstract, however, all known extensions of Toda's work are limited 
to periodic solutions which are elliptic functions or limiting cases of elliptic functions. It 
is not, however, necessary that the nonlinear wave equation should be "integrable" in 
the sense that it may be solved by the inverse scattering method. The so-called 
"Regularized Long Wave" or "Benjamin-Bona-Mahony" equation is not integrable [ 10], 
but its cnoidal waves are elliptic functions and Boyd [2] has shown that these are the 
imbrication of the sech z solitons. 

In this note, we attempt to find a non-elliptic example by studying the quartic K dV 
equation [6], which for waves travelling at a phase speed e may be written in a 
coordinate system moving with the wave as 

Uxxx + 4u3ux - cux = 0 ["Quartic K dV" Eq.] (2) 

This differs from the ordinary Korteweg-deVries equation only in the nonlinearity. It is 
a particularly instructive example because by multiplying (2) by u~ and integrating and 
then multiplying the result by Ux and integrating, one may show that the solutions of (2) 
are hyperelliptic functions, that is, are the inverses of hyperelliptic integrals [8]. Since 
such functions are very special, one might suppose that "hypercnoidal" waves would be 
the likeliest candidate for a non-eUiptic extension of the soliton-superposition theorems. 

1 The first proof was published in 1975 [1], more than eighty years (!) after Korteweg and deVries 
discovered and named the cnoidal wave. 
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Numerical comparison of  solitons and hypercnoidal waves shows, alas, that the 
quartic K dV periodic solutions are not the "imbrication" of  the solitary wave. However, 
the imbricate-soliton series is a good approximation to the hypercnoidal wave. To 
understand the error in this approximation, a little background is needed. 

The hypercnoidal waves of  spatial period 2n are a two-parameter family; we choose 
{c, a0} as the parameters where e is the phase speed and a0 is the coefficient of  the 
constant in the Fourier series for u(x). There is also a one-parameter family of  isolated 
solitary waves that vanish at x = + ov plus a two-parameter family of  generalized 
solitons that asymptote to a constant u~. All solutions are symmetric about the origin 
and translationally invariant. Because of  a dilational symmetry, one can rescale all 
periodic solutions to a period of  2n without loss of  generality. Proofs of  these assertions 
are given in Boyd [12]. The dilational symmetry theorem states that if u(x; c) is a 
solution, then so is 

v(x; ~2c) = ;t~/~u(2x; c) (3) 

for any positive constant 2. 

2. Numerical studies 

To test the soliton-superposition principle, we made the following sequence of  
calculations: 

(i) Calculate the soliton S(x) via the methods of  Boyd [9]. 
(ii) Imbricate S(x) as in (1) to generate a periodic flmction. 

(iii) Substitute this imbricate-soliton series into (2) and vary the phase speed so as 
to minimize the integral of  the differential equation residual: 

j_ R(c) =- dx[uxxx + 4uaux - CUx] 2 (4) 
r t  

(iv) For  that value of  e which minimized the residual, solve (2) for the hypercnoidal 
wave using the Fourier methods of  Boyd [7]. The imbricate series is the first 
guess for Newton iteration. 

(v) Calculate the pointwise error of  the soliton-imbricate series. 
Full details are given in Boyd [7, 9, 12], but the reason that step (iii) is necessary is 

that although the imbricate-soliton series gives the exact shape of  a cnoidal wave for the 
Korteweg-deVries equation, the phase speed of  the periodic solution is different from that 
of  the superposed solitons. Thus, even in the Kortweg-deVries case, it is necessary to 
minimize the residual to determine the phase speed~ 

When tested against the Korteweg-deVries equation, we obtained an error of  about 
1 x 10 -7, consistent with the error of  the numerical methods. For  the hypercnoidal 
waves, however, there was invariably a much larger difference between the sum of the 
solitons and the periodic solution which most closely approximates it. 

Nonetheless, the difference is small as shown in Fig. 1. For  the parameters in 
the illustration, the amplitude is sufficiently small that the wave is well-approximated 
by a single cosine (plus constant). Even so, the imbricate-soliton series is a good 
approximation. 

Further evidence for the same conclusion over a wide parameter range is offered in 
Table 1. Because the quartic K d V  equation is primarily of  theoretical interest, Table 1 
is limited to us  = -  1. This choice allows one to see that the soliton superposition 
approximation is useful for generalized solitons as well as for the isolated solitary waves 
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Fig. 1. A comparison of the exact hypercnoidal solution for a phase speed of c = -2.819 (solid) with 
the truncation of the hypercnoidal Fourier series to just two terms (constant plus cos(x)) (dotted) and 
with the imbricate series formed from solitons such that C~o~ = -2.75 and u~ = - 1 .  The close agreement 
between the three curves implies that in this parameter regime, the periodic solution can be equally well 
though of as a linear cosine wave, only slightly modified by nonlinear effects, or as a sum of independent, 
evenly spaced and identical solitary waves, overlapping and interacting very weakly. 

t h a t  v a n i s h  as Ix[ ~ oo. E x p e r i m e n t s  s h o w e d  t h a t  the  a m p l i t u d e  a n d  w i d t h  o f  the  waves  
var ies  r ap id ly  wi th  c b u t  is a l m o s t  i n d e p e n d e n t  o f  u ~ .  Thus ,  this  o n e - d i m e n s i o n a l  slice 
is qu i te  r ep re sen t a t i ve  o f  the  full t w o - d i m e n s i o n a l  p a r a m e t e r  space.  

T h e  p a r a m e t e r s  in  the  t ab le  are def ined as fol lowed:  

Cso~ = speed o f  S(x) [as a n  i so la ted  so l i ta ry  wave] (5) 

5c - c o r r e c t i o n  to csol wh ich  min imizes  R(c) (6) 

IlerrorHo~ - m a x  [u(x) - Uimb(X)] (7) 

= UsoL(0) -- Uoo [ p e a k - t o - t r o u g h  so l i ton  ampl i tude ]  (8) 

# = 2u~o~(zr)/~ [ " re l a t ive  so l i ton  ove r l ap" ]  (9) 

v ---al [a.I [ " f i r s t  h a r m o n i c  d o m i n a n c e  p a r a m e t e r " ]  (10) 
n 2 

Table 1 
The superposition of solitons with u~o = -  1 for various soliton phase speeds ranging from large 
amplitude, narrow solitons @sol = 3) to short, broad solitons whose imbricate series is well-described by 
small-amplitude perturbation theory (Cso, = -2.75). No solutions exist for c~ot < - 3 .  The parameter v is 
large when u(x) is well-approximated by a constant plus a single cosine; # is proportional to the (relative) 
overlap between neighboring solitons, and ~ is the peak-to-trough amplitude of the imbricated solitary 
waves. 

cso, 6c v , Ilerrorllo  

3.0 4.0E -- 4 0.66 0.0014 3.57 0.00079 
2.0 4.3E - 4 0.81 0.0030 3.35 0.00030 
1.0 9 . 1 E -  5 1.09 0.0074 3.07 0.00016 
0.0 -- 2.8E - 3 1.89 0.024 2.66 0.00088 

- 1.0 - 6.7E -- 2 12.75 0.13 1.72 0.0159 
--2.0 -3 .6E  - 2 8.71 0.15 0.72 0.0089 
- 2.75 - 6.9E - 2 10.73 0.27 0.38 0.020 
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A few comments are in order. The reason for defining the "overlap" and "harmonic 
dominance" parameters # and v is that when the amplitude ~ is large, the soliton overlap 
is small (/z ,~ 1) and each soliton is, to a first approximation, an independent solution of 
the quartic K d V  which does not interact with any of its copies. It follows that 
soliton-superposition is trivially a good approximation in the sense that we expect an 
error no worse than 0(/re), i.e., no worse than amplitude of two neighboring solitons at 
the point of maximum overlap, for arbitrary nonlinear wave equations. 

What is remarkable about Table 1 is that it shows that the error is much smaller 
than expected for a very wide range of amplitudes. When Cso~ = 3, the magnitude of S(x) 
and S(x + 2~) at x = rr, their point of maximum overlap, is 1/200, but the maximum 
difference between the imbricate-soliton series and the exact hypercniodal wave is only 
1/1265. 

As c decreases, the amplitude e ~ 0. The "harmonic dominance" parameter shows 
that, although the progression is not monotonic, the Fourier series of the hypercnoidal 
wave is more dominated by the lowest harmonic. In other words, the small amplitude 
hypercnoidal wave differs by less than 10% (for the last three entries in the table) from 
a cosine wave. Even in this regime, however, the maximum error in the imbricate-soliton 
approximation is still small in comparison to the overlap between neighboring solitons. 

3. Summary & Open Problems 

The principal conclusions are that (i) the approximation 

hypercnoidal wave ~ imbricate-soliton series (11) 

is more accurate than one had any right to expect and (ii) the soliton-superposition 
theorems cannot be extended to the quartic Korteweg-deVries equation because (1 l) is 
only an approximation. Several open problems remain. The first is to understand why 
soliton-superposition is exact for so many wave equations and such a remarkably good 
approximation for the quartic K dV equation. The theorem-provers might say with Dr. 
Sam Johnson: "I  have given you, Sir, a reason; I am not required to give you an 
explanation". Science, however, is about explanations, and at the moment, we have only 
proofs. 

The Korteweg-deVries and Kadomtsev-Petviashvili equations have multiply-peri- 
odic solutions known as "N-polycnoidal" waves (among other names [11]). The K d V  
polycnoidal waves generalize the N-soliton solution (for N > 1) in the same way that the 
ordinary cnoidal wave generalizes the soliton; they are known to be hyperelliptic 
functions. It is natural to ask: are the polycnoidal waves the exact imbrication of the 
N-solitons? The failure of exact soliton-superposition for the hypereltiptic solutions of 
the quartic K dV suggests that the imbricate series will fail for the K dV polycnoidal 
waves, t o o - - b u t  as of now, this is an untested conjecture. 

The third open problem is to find an example of a non-elliptic cnoidal wave which 
is the exact superposition of solitons or a proof that none exists. 

Lastly, the large amplitude, solitary wave regime and the small amplitude, linear 
cosine wave dynamics have considerable overlap, and periodic solutions of intermediate 
amplitude may be regarded as either solitons or sine waves with little error (Fig. 1 ) - - fo r  
the quartic KdV, for the non-integrable equation of [7], and for all those equations for 
which soliton-superposition is exact. The fourth open problem is to apply imbricate 
series of solitary waves to other problems as an analytical tool for exploring this 
intriguing soliton/sine wave duality. 



944 J .P.  Boyd ZAMP 

References 

[1] M. Toda, Physics Rep, 18, I, (1975). 
[2] J. P. Boyd, SIAM J. Appl. Math. 44, 952 (1984). 
[3] A. A. Zaitsev, Sov. Phys. Dokl. 28, 720 (1983). 
[4] A. Korpel and P. P. Banerjee, Phys. Lett. 82.4, 113 (1981). 
[5] G. B. Whitham, IMA J. Appl. Math. 32, 353 (1984). 
[6] B. Fornberg and G. B. Whitham, Phil. Trans. Roy. Soc. London 289, 32 (1978). 
[7] J. P. Boyd, Physica 21D, 227 (1986). 
[8] H. E. Rauch and H. M. Farkas, Theta Functions with Applications to Riemann Surfaces. Williams 

& Wilkins, Baltimore 1974. 
[9] J. P. Boyd, J. Comp. Phys. 69, 112 (1986). 

[10] J. L. Bona, W. G. Pritchard and L. R. Scott, Phys. Fluids 23, 438 (1980). 
[ll] J. P. Boyd, J. Math. Phys. 25, 3390 (1984). 
[12] J. P. Boyd, Periodic Solutions Generated by Solitons for the Quartically Nonlinear Korteweg-deVries 

Equation. Technical Rept. 88-4, Laboratory for Scientific Computation, College of Engineering, 
University of Michigan, 20 pp. 

Abstract 

Toda [I], Boyd [2], Zaitsev [3], Korpel & Banerjee [4], and Whitham [5] have proved that many 
species of solitons may be cloned and superposed with even spacing to generate exact nonlinear, spatially 
periodic solutions ("cnoidal waves"). The equations solved by such "imbricate" series of solitary waves 
include the Korteweg-deVries, Cubic Schroedinger, Benjamin-Ono, and resonant triad equations. 
However, all existing theorems apply only when the solitons are rational or meromorphic functions and 
the cnoidal waves are elliptic functions. In this ngte, we ask: does the exact soliton-superposition apply 
to non-elliptic solitons and cnoidal waves? 

Although a complete answer to this (very broad!) question eludes us, it is possible to offer a 
revealing counterexample. The quartic Korteweg-deVries equation has solutions which are hyperelliptic, 
and thus very special. Nevertheless, its periodic solutions are not the exact superposition of the infinite 
number of copies of a soliton. This is highly suggestive that non-elliptic extensions of the Toda theorem 
are rare or non-existent. It is intriguing, however, that the soliton-superposition generates a very good 
approximation to the hypercnoidal wave even when the solitons strongly overlap. 
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