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1. Introduction 

We will be concerned here with turbulent two-dimensional open channel 
flow down a plane inclined at a constant angle to the horizontal, as shown 
in Fig. 1. In the hydraulics literature flows of this type are treated using two 
different theories, which apparently have little in common. 

According to the simpler of the theories, classical mathematical hy- 
draulics [1], the fluid depth h(x, t) and the depth-averaged velocity a(x, t) 
solve the equations 

Oh O(ha) 
+ - -  - 0 ,  (1.1) 

0t 0x 

0a ,0h =g, I la 
0t  + ~ 0--x + g  ~x tan ~ - Cz~--~--, (1.2) 

where x is distance measured parallel to the bottom, t is time, e is the angle 
between the channel bed and the horizontal, g '=  g cos e, and CD is the 
bottom drag coefficient. In this theory the flow is governed by (1.1) and 
(1.2) except at discontinuities of the dependent variables, where, letting [f]  
denote the discontinuity in a quantity f at x = s(t), h and a satisfy the jump 
conditions 

ds 
[ha] = [h] ~ ,  [ha 2 + ~g'h2] = [hal as a-5 (1.3) 

If the bottom drag term in (1.2) is omitted, the theory described by the 
differential equations (1.1)-(1.2) and the jump conditions (1.3) reduces to 
the standard long wave model for free surface flows, which can be shown to 
be valid on the basis of a scaling argument [ 1] if the horizontal length scale 
of the flow is large compared to the vertical scale. Both the inclusion of 
bottom drag on the right side of (1.2) and its quadratic dependence on the 
velocity, however, are based on dimensional analysis and observations 
rather than any deeper theory. It appears, then, that the equations of 
mathematical hydraulics are in some sense an approximation, but, because 
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Figure 1 
Flow diagram. 

of the absence of any real derivation of these equations in the literature, the 
nature of the approximation is obscure. 

In the more recent class of theories reviewed in [2], fluid motion in an 
open channel is treated as a turbulent shear flow in which the Reynolds 
averaged velocity comPonents (u, w) and the Reynolds averaged pressure p 
depend on distance z from the bottom as well as on x and t. When 
supplemented by boundary and initial conditions and by constitutive equa- 
tions relating the Reynolds stresses to the mean velocity, the Reynolds 
averaged continuity and momentum equations provide a complete turbu- 
lence model. Examples of numerical calculations using such models and of 
comparisons of computed velocity profiles with observations are given in [2] 
and elswhere in the literature. 

Our aim here is to reconcile these theories by using asymptotic methods 
[3] to show that the equations of mathematical hydraulics can be derived 
from the Reynolds averaged equations for flows which vary sufficiently 
slowly in the longitudinal direction. Because the hydraulics equations and 
the equations describing present turbulence models are based on ad hoc 
assumptions, the derivation serves to increase confidence in both ap- 
proaches and to provide guidelines for the user of the hydraulics approxi- 
mation. 

To determine the parameter range of interest, assume that Eqs. (1.1)-  
(1.2) provide a first approximation to the governing equations, and let V 
denote the characteristic longitudinal velocity scale for a flow with longitu- 
dinal length scale L0 and characteristic depth H0. Because classical hy- 
draulics assumes that the leading term in the solution for the longitudinal 
velocity is independent of z, it follows that the aspect ratio 6 = Ho/Lo is 
small compared to unity, that transients take the form of long gravity waves 
with characteristic frequency Co/Lo, where Co = (g'Ho)1/2, and that the ratio 
of the advective term fl(d~/t3x) in (1.2) to the time derivative d~/Ot is of the 
order of the Froude number F = V/Co. Weak flows, for which F ,~ 1, 
are treated in [4], where it is shown that the free surface elevation for 
weakly nonlinear flow satisfies a damped version of the Korteweg de Vries 
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equation. We will be concerned here with large amplitude motions, and so 
we restrict our attention to flows for which F-> O(1). 

In this case the material derivative Dfl/Dt on the left side of (1.2) is of 
order V2/Lo, while the bottom stress term on the right side of the equation 
is of order CD(V2/Ho), where CD is the drag coefficient introduced earlier. If 
the bottom stress term is large compared to D~/Dt, the flow is described by 
the kinematic wave theory for open channel flow treated in [1]. Since it is 
clear that turbulence effects are unimportant if the bottom stress term is 
small compared to D~/Dt, the most general theory is obtained by assuming 
a balance between these terms. This scaling argument therefore suggests that 
the hydraulics approximation is valid if the Froude number is of order unity 
or larger and if 6 and CD are of comparable magnitude. 

Defining the bottom friction velocity u ,  in the usual way, x = 0.4 as the 
Karman constant, and z0 as the bottom roughness length, and noting that 
in open channel flow the logarithmic velocity profile 

u .  
u = - -  In (1.3) 

/s 

provides a fairly accurate representation for the velocity throughout most of 
the water column, it can be seen that u ,  and the velocity scale V are related 
by u, /V = O(fl), where 

K 
= ( 1 . 4 )  

ln(Ho/zo)" 

Therefore, since (u,/V) 2 = O(CD), the drag coefficient is of the order f12, 
and the conditions for which classical hydraulics can be expected to provide 
an accurate approximation in the treatment of open channel flows are 
summarized by 

F>_O(1), 6,~O(1),  6=0(fl2), (1.5) 

where fl is given by (1.4). Typical magnitudes of this parameter are of order 
10 -~ or smaller, and therefore the last two relations in (1.5) are consistent. 

The flow is treated here for the parameter range given by (1.5) using 
Donaldson's second order turbulence model, as described in [5]. Section 2 
gives the equations of the model in dimensionless form, and Section 3 a 
derivation of a version of (1.1) and (1.2) in which an expression for the drag 
coefficient as a function of the bottom roughness length is determined. In 
Section 4 the jump conditions (1.3) are verified using approximate equations 
governing the bore structure, and it is inferred that classical hydraulics 
provides an acceptable approximation to the flow outside bore regions for 
the parameter range considered in the theory. 
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2. F o r m u l a t i o n  

Temporarily using subscript notation and letting f denote the body 
force per unit mass, the equations of Donaldson's turbulence model describ- 
ing flow of a fluid with constant density Q can be expressed in the form 

~Uk 
- 0, (2 .1 )  

c~xk 

Dui 1 c~p c~rki 
Dt - Q Oxi + ~xk-- + fi, 

Dz U ~ [" _ Oz~'~ q (  q2 ) 
D---~ + rc o = c l -~x k ~ q " -~x k ) -- X z o + -~ 6 is �9 

Dq2 ~ ( Oq2 ~ q3 
D---T = kk + C k q A ] 4A' 

DA c~ " c~A'~ A 
Dt - cl ~ \ c~xk J + c2q - c3 --2q z 7Zkk 

(2.2) 

(2.3) 

(2.4) 

e4 q(qA) O(qA) 
(2.5) 

q 0xk 3xk"  

In these equations u,- is the component of Reynolds averaged velocity in the 
xi direction, p is the Reynolds averaged gauge pressure, z U is the ratio of the 
Reynolds stress tensor to the fluid density, q2/2 is the turbulent kinetic 
energy per unit mass, A is a dissipation length scale, D/Dt is the material 
derivative operator, 6ij is the Kronecker delta, and the turbulent work 
tensor n o is defined by 

duk #u~ 
nik = "~in ~ X  n + "Ckn -'~X n �9 (2.6) 

The constants in the field equations and an additional constant c5 are given 
by 

cl = 0.3, c2 = 0.04375 + (0.15w/2)x 2, 

c3 = 0.35, c4 = 0.375, c5 = 23/4K, (2.7) 

where, as before, x = 0.4 is the Karman constant. 
It is convenient to use dyadic notation in expressing the boundary 

conditions at a material surface. Assume that the unit normal ~ to the 
surface has a positive vertical component, and consider first the case for 
which the traction has nonvanishing perpendicular and tangential compo- 
nents. Let t n and t, denote the perpendicular and tangential parts of the 
traction stress exerted on the surface by the material above it, u the fluid 
velocity, u, the tangential speed of the surface, n the distance from the 
surface along fi, Zo the surface roughness length, [ the unit tensor, and ~ the 
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kinematic Reynolds stress tensor, and define the vector friction velocity s by 
t~ =p Isls. Using these definitions, the boundary conditions become 

u-(rl" u)~---'u' + I@l s ln(lz~)' Dn~O'Dt (2.8) 

Isl( s + 2'/2(Is12[+ ss), p - ~ - p ( t ,  + (2.9) 

and 

q ~ 25/41s I, A--*cslnl, (2.10) 

as n ~ 0 .  Here n/In I is positive or negative depending on whether the flow 
takes place above or below the surface, respectively, and it can be verified 
that Eqs. (2.8)-(2.10) provide an asymptotic solution to the equations of 
the model valid in the limit n --. 0. 

The boundary conditions at a surface with vanishing tangential stress 
will be taken here as 

, , ) 
"g13 ~ "C23 ~ O, p ~ '1733 - -  t n , 

0 
~, r22, ~33, r~2, q,A = 0, 

O n  

Dt O, 

(2.11) 

where the stress components are defined with respect to moving rectangular 
axes (x~, x; ,  x;), with x~ and x; parallel to the surface. The second set of 
conditions in (2.11) is based on the assumption that the surface can be 
treated locally as a symmetry plane if the tangential components of the 
traction stress vanish, and differs slightly from a set of boundary conditions 
for this case suggested on p. 46 of [2]. Use of this alternative set of 
conditions decreases the value of A at the surface below the magnitude it 
takes when (2.11) is imposed, but has a comparatively minor effect on the 
velocity components. 

In the problem of interest here, two-dimensional flow in the (x~, x3) 
plane over a bottom inclined at an angle e to the horizontal, the body force 
per unit mass f has components fi = g'  tan e, f2  = 0, and f3  = g', where 
g ' = g  cos ~. To treat the problem, let x3 = h(xl, t) denote the free surface 
and use (x, z) as coordinates in place of (xl, x3). The governing equations 
for this flow can be expressed in dimensionless form by letting Ho and L0 
denote characteristic values for the fluid depth and longitudinal length and 
by defining a friction velocity scale u~ and the longitudinal scale V through 

u,=(g'Ho t a n  o0 i/2, V /-/z ln(H0~ (2.12) 
K k Z o /  
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The scaled variables are defined by 

x* x z* z t* Vt u* u w* Low 
Lo' Ho' Lo' V' Ho V ' 

p ,  _ p  + pg'z h* h (2.13) 
V2 ' = Hoo' 

* -  c~ q * = q  s* s A*=--A , _  H ore U 
% (u3 2' u,' = uT' Ho' gij (u0ZV, (2.14) 

where s is the component of the friction velocity in the x direction. Then, 
repeating the definitions 

6 H0 /3_ ~ V (2.15) 
= L-7' ln(Ho/zo)' F - (g'Ho)1/2, 

given earlier, and omitting the asterisks, the field equations needed to 
compute the velocity take the dimensionless form 

au 8w 
ax + ~  =0, 

Du ap /32{a~Cxx aCxz ) 
Dt + ~x - 6 \ Ox +-~-z +1 ' 

~-+~z =/32 6-~-x + az ) 

{ A( Dt + rCx~=3 ClA(~x)--  ~ + - ~  , 

{ q} 6--~+rCx~=3 <A(~=)-X~x~ , 

{ ( *)t Dz= q + -4 6 - - ~  + ~= = /3 ClA(czz)- X Czz 

Dq2 { q3} 
6 - - ~  =xxx +rc,z +/3 c,A(q 2) --~-~ , 

DA c3A { c4 } 
6-~-  + ~-5-qZ (xx~, + re.z) =/3 c~A(A) +c2q - - q R  . 

I n  these equations 

D 8 ~ 8 
Dt-at+Uax+W o-~ 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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is the material derivative. A is the operator defined by 

0 

the components  of  the work tensor are given by 

( o. 0. 
rC~x=2 6z~-~x + VX~ Oz / rcx~=a2"cxx~-x+Z,z~--zz, 

= 2  a2,xz~--x +a~z~-Uz z , 

585 

(2.25) 

(2.26) 

R=[fc~(qA) l  2 ~a(qA) f. ---~-x---x J +L oz (2.27) 

The bot tom boundary conditions are 

u ~ s{1 +-Kfl ln(z) } , w - * O ,  " C x x - - - ~ -  23/2s 2 , 

(2.28) 
r,x~ --4 ISIS ,  "Czz ~ --21/2S2, q ~ 25/4 Isl, A ~ c s z ,  

as z--, 0. To express the boundary conditions at the free surface, define x '  
and z '  as coordinates parallel and perpendicular to the free surface, and M 
as 6(~?h/~?x). Then the stress components Vxx and l:;z are 

(2.29) 

r~,x = (zx~ + 2Mrx~ + M2r~)/(  1 + M2), 

Z;z = (rzz - 2Mz~ + M2"c~)/( 1 + M2), 

and the free surface boundary conditions (2.11) become 

M h 
- -  : f l  "C zz  , Vxz l __ M a ( Zxx zx~ ), p -ff'~ + 2 ,  

{~---~ - 6 M  ~-~-s }{Z'~x, Z'~, q, A} =O, 

at z = h(x, t). 

Oh ~h 
w : ~ + .  ~ ,  (2.30) 

(2.31) 

3. Flow outside bore regions 

In accord with the scaling argument given in Section 1, we restrict our 
attention to the case fl < 1, with the parameter o- = fl2/6 regarded as an 0(1)  
quantity. It is convenient in this section to use the coordinate ~ and the 
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dependent variable 2 defined by 

z A 
h ' ~ = h '  (3.1) 

so that the flow domain is mapped into Ixl < m, 0 < ( < 1. 
Omitting 0(/32 ) terms, we find from the vertical momentum equation 

and the second of the boundary conditions (2.30) that p is independent of 
and is given by h/F 2. Then, defining d/dt by 

d 8 8 

d5 = 8t + u ~xx' (3.2) 

the remaining equations of the model can be approximated by 

8u 8h 8w 
h~x - ~xx u + - ~  =0, (3.3t 

au ( . dh \ Su h ~h (~_? ) 
h--dT + w - r ) -~ + FZ Sx - er + h , (3.4) 

~< q~ -T(- j =/3 --2- + ~ -~' (3.5) 

8 (  &z~ q ( q Z )  
/3c~-~ q2 c3~ J =  f12 r z z + ~  , (3.6) 

8 ( z  r q3 cqu 
/3c,~-~ q 2 ~  ---fl~-~-r~cz~, (3.7) 

8 ~2 c4 2_c2q + (3.8) 

The boundary conditions are 

u-rs{1 +-~ln(h~)}, w-+O, ~x,---,,s,s, 
tc (3.9) 

"~zz--~--21/2S2, q--*25/4{S{, ~'--"c5~, 

as ~---* O, and 

w = ~ ,  ~ = 0, { ~ ,  q, ~} = 0, (3.10) 

at ~ = l. Here the equation and boundary conditions for r~ are uncoupled 
from the other equations, and are omitted. 

We now expand the dependent variables in perturbation series of the 
form 

u = u (~ + f lu  ~  + f12u(2) + " - � 9  ( 3 . 1 1 )  
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and substitute into the governing equations. F rom (3.5), (3.7), and (3.8), we 
find that u (~ is independent of (, and from the first of the boundary 
conditions (3.9) that s (~ = u (~ Also, (3.3) implies that 

(~ U (o) 
w(~ = _ (h (o) _ _  (3.12) 

(~x ' 

and (3.4) that the lowest order contribution to rxz is linear in (. The 
boundary conditions on zxz then imply that 

~(o) = (1 -~)lu(~ (~ (3.13) 

Substituting (3.12) into the O(1) version of the first boundary condition 
in (3.10) and (3.13) into the O(1) version of the horizontal momentum 
equation (3.4) yields 

Oh (~ a (h(O)u(O)) 
Ot + ~ x  = 0 ,  (3.14) 

c3u (~ ~?u(O) 1 Oh(~ { 
+ u + - 1 ) ,  (3.15) 

a dimensionless version of the hydraulic equations (1.1) and (1.2). The 
lowest order approximation to the solution has now been determined, and 
the consistency of the approximation scheme is shown by the calculation of  
the O(fl) terms which follows. 

The boundary conditions needed to determine these terms are 

U (o) 
u(l)-~ s(O +-  ln(h(~ wO) ~ O ,  r(z~ ~ -2J/Z(u(O))2, 

K 

q(O) ~ 2s/4[u(O)], 2(~ ~ c5(, V(~z ) ~ 2]u(~ (~, 

as ( ~  0, and 

c3h ~1) Oh(1) ~?h (o) 
W(1) = .31_ u(O) _ _  + U(I) - - ,  ./~ (1; = 0 ,  

#t c~x ~x 

~{ ~:~Oz) ' q(O), 2(0)} = 0, 

(3.16) 

(3.17) 

at ( = 1. The field equations become 

w ( ~  0x 0 x (  , (3.18) 

which is obtained by integrating the O(fl) continuity equation over (, the 
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O(fi) momentum equation 

~U (1) ~u(0)u(1).q_h(1) ~ o-ff~'~(x 1) h (1) 
Ti + ax t 7 3 = h-~ ( - i f -  + -~lu~~176 

the O(fl) 

df  
d~ 

d 
c1-~ 

d 
c1-~ 

d 

with boundary conditions 

f__+ 1 ln(~), azz --+ - 21/2, 
K 

as ~--+ O, and 

! {~zz, O,,~}=o 
d~ 

a t ~ = l .  

S. J. Jacobs Z A M P  

(3.19) 

Equations (3.22)-(3.27) define a boundary value problem which can be 
cast in standard form as a system of first order differential equations. This 
was solved numerically using pseudospectral collocation [6] to obtain the 

(3.27) 

0---,25/4, 2 ~c5~, (3.26) 

and the O(fl) versions of [3.5]-(3.8). 
The latter set of equations can be expressed in canonical form by noting 

that 2 (0) depends only on ~ and by defining functions f(~), azz(~), and 0(~) 
through 

U (0) 
u (l) = s (1) + {ln(h (~ + xf(~)}, 

~: (3.20) 
.c(o) = (u(O))2azz(~), q(O) = lu~O)10(0" 

Then, omitting the superscript on 2 and defining F(~) through 

= - -  C l - -  + (1  - ~) ( 3 . 2 1 )  
azz d~ 

versions of (3.5)-(3.8) take the form 

- -  - - F ,  (3.22) 

0 2~-~ + (1 - ~)F, (3.24) 

( d 2 )  c3/~ . c4 [ @ ~ )  12 ' 02 ~ = -c20  - -ds- (~ - ~)F + --~ (3.25) 
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Figure 2 
Function f(~). 
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graph o f f ( l )  shown in Fig. 2 and the value 

;0 F = f(ff) d f f=  -2 .330475  (3.28) 

for the. integral o f f  As can be seen, the variation o f f  with ~ is approxi-  
mately logari thmic over most  of  the depth  of  the fluid. 

Returning now to (3.18)-(3.19),  we evaluate (3.18) at ~ = 1, integrate 
(3.19) and the first equat ion in (3.20) over ~ f rom 0 to 1, and introduce the 
definition 

f0 ' I(x, t) = u (1) d~. (3.29) 

The result of  this calculation is the set of  equations 

ah (l~ 0 
8t + ~x (h(~)u(~ + h(~ = 0, (3.30) 

0 1 8 (  h ~'', [u(~ ~h('~u (~ } 
c~t+-~x u(~ +--~)=~r- f f~  [. h,O--- S 2s ('' , (3.31) 

u (o) 

s ( ' )=  I . . . . .  {ln(h (~ + ~cF}, (3.32) 

which can be solved numerically to determine h (~), u (I), and s (1~. Similarly, 
higher order  approximat ions  can be obtained for the componen t s  of  the 
Reynolds stress tensor and for q and 2. As far as can be seen, the form 
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assumed for the expansion (3.11) is correct, and the series is asymptotic 
in/3. 

It is convenient for computational purposes to combine the O(1) and 
0(/3) equations as follows. Define h(x,  t) as the dimensionless depth and 
~(x, t) as the dimensionless depth-averaged velocity, and note that these are 
given here by 

t7 = u (~ +/31 + 0(/32), h = h (~ +/3h (~ + O(f12). (3.33) 

Then, also defining 7(x, t) by 

= 1 2 / 3  {ln(h) + KF}, (3.34) 
K 

combining the O(1) and 0(/3) equations, and omitting terms 0(/32), we 
obtain the system 

Oh 0(h~7) = 0, (3.35) 
?7 + a---Z- 

c~t + ~xx + ~--~xx = cr 1 - 7  �9 (3.36) 

When this system is solved, the velocity profile u(x, ~, t) is given by 

u(x, ~, t) = fi(x, t){1 +/3[f(~) - r)},  (3.37) 

again with an 0(/32 ) error. For the present problem, with the parameter 
range restricted as described in (1.5), the extensive calculations employed in 
[2] can be replaced by a simpler computation consisting of two steps, the 
solution of (3.35) and (3.36) to determine h and fi, and the substitution of 
the solutions for ~ and f(~) into (3.37). The error in this procedure is 
formally 0(/32), where, to repeat, typical values for/3 are of order 10 -~ or 
smaller. 

Expressing (3.35)-(3.36) in dimensionless form gives a form of (1.1) 
and (1.2) in which the drag coefficient Co is expressed in terms of the 
dimensional depth ha by 

Co = f12{ 1 ---2fl [ln(~---oao) + ~c F ] } ' K  (3.38, 

Equation (3.38) has the objectionable feature of depending explicitly on the 
characteristic depth scale Ho. However, if the small parameter e is defined 
by 

x (3.39) 
= ln(ha/zo) '  
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then 

8 

fl = 1 - (e/~c) ln(hd/Ho) '  (3.40) 

and it can be verified that (3.38) becomes 

CD = ~2 - -  2e3F (3.41) 

with an O(e4), error, which is asymptotically equivalent to (3.38). Similarly, 
the dimensional velocity profile Ud can be expressed in terms of the dimen- 
sional depth-averaged velocity ffd and the dimensional coordinate Zd through 

which is asymptotically equivalent to (3.37) and which is independent of the 
characteristic depth. 

According to the present theory, the first step in deriving a higher order 
version of the hydraulic equations requires correcting the value of the drag 
coefficient rather than inserting a factor multiplying the term ~(c~/c~x) in 
(1.2), as is sometimes suggested in engineering texts. Furthermore, redoing 
the calculation using other second order turbulence models discussed in [7] 
shows that the only model dependent aspect of the calculation is the 
computation of the function f(~) and the constant F. 

4. Flow inside bore regions 

Because both (3.14) and (3.15) and the higher order approximation to 
the governing equations given by (3.35) and (3.36) are hyperbolic systems, 
they admit flow discontinuities in the form of bores. The flow in the bore 
regions cannot be treated using the hydraulic approximation developed in 
the previous section, and consequently an additional calculation is needed 
to determine the bore structure. 

Experimentation with different possible length scales for a bore region 
suggests that the dimensional longitudinal extent of the region is of the 
order of the fluid depth. This in turn suggests introducing the dimensionless 
variables 

t X 
T 6 '  X 6 '  Z = z ,  W = 6 w ,  (4.1) 

to describe the flow in a bore region centered at x = 0. The governing 
equations then become a version of (2.16)-(2.31) in which (x, z, t, w) are 
replaced by (X, Z, T, W), and 6 by unity. In particular, the horizontal 
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momentum equation becomes 

aU OU WOU Op 2(OZxx C3Zxz } 
O--~+u~-~+ OZ+~-~  fl ~.-0-~-+--~-+1 , (4.2) 

where, as before, fl is a small parameter. 
The right side of (4.2) must enter into the momentum balance in bore 

regions, and this can occur only if the stress components are O(f1-2) in 
magnitude or if the vertical length scale is O(f12). The first possibility is 
incompatible with the boundary conditions (2.28) because it implies an 
O(f1-1) longitudinal velocity component, and the second implies O(fl 2) 
vertical velocity magnitudes throughout a bore region, in disagreement with 
visual observations of bores and hydraulic jumps. The present theory 
therefore suggests a double deck structure for the bore regions consisting of 
a bottom boundary layer of transverse dimensional thickness O(f l2Ho)  and 
an outer region of thickness O ( H o ) ,  all within a region of longitudinal extent 
O ( H o ) .  

To describe the flow in the main body of the fluid, we introduce the 
additional definitions 

U = u, P = p ,  H = h, Tij = fl2"cij, Q = flq, L = A ,  1-I0=fl2rcu, 

(4.3) 

and substitute (4.1) and (4.3) into the dimensionless equations of Section 2. 
The horizontal momentum equation becomes 

eu w eU  Txx  Txz 
t 3 Z + t 3 X  - + + fiE, (4.4) 

and the other field equations and the free surface boundary conditions are 
obtained by replacing zij by To., A by L, the other variables by upper case 
symbols, and the parameters 6 and fl by unity. The only small term in the 
equations describing the outer part of a bore region is the constant f12 on 
the right side of (4.4), which represents the component of the gravity force 
in the longitudinal direction. 

In expressing the equations governing the flow in the boundary layer 
region, we define the boundary layer variables 

t x z 

f12, 

A 
tij = z o, O = q, 2 = 5 5 ,  P 

6 
# = u, co = -zT w, r e = p ,  

p -  

O" ~---S, 

(4.5) 

where (, 0, a, and 2 are not to be confused with their definitions in Section 
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3. With O(J~ 2) terms omitted, the boundary layer equations become 

Oy OoJ 
~-~ + ~ -  = 0, (4.6) 

0# 0# Oy 0n 0t~, (4.7) 

On 
O, 

fl{c~(o2Otxx'~( }-~,O(t~x + ~ ) }  = 2t~z ~ , (4.9) 

~{c, 

(4.8) 

~ (02 ~-~) - ~(G~ + ~ ) }  = O, (4.11) 

~ / 2 dO\ Oy 

cl 02-~ + c20 --~ =--~ txz-~, (4.13) 

with boundary conditions 

p~a{1 +~[ln~--21n(l//~)]}, m~O, txx ~ --23/20. 2, 

(4.14) 
t:,~---~Iel6 , tzz---~--2'/2a2, 0--.25/410"1, ~--*C5ff , 

as ~-,0. 
The equations in both regions are treated by expanding the dependent 

variables in series of the form 

# = #1Ol +/~ ln(1//~)pm +/~#121 + . . .  (4.15) 

It can be seen by inspection that the lowest order contributions to y and rc 
are independent of if, and that matching with the outer solution yields 

#t0{= Uh(X, T), 7tt~ Pb(X, T), (4.16) 

where Ub and Ph are the lowest order outer solutions for U and P evaluated 
at Z = 0. Then, using the O(l) contributions to the first boundary condition 
in (4.14), the continuity equation, and the horizontal momentum equation, 
we find that the lowest order solutions for a, ~o, and txz can be expressed in 
the form 

~Ub t~ = axzB2~ + IUb)Ub, (4.17) tOl = U ~ ,  cot~ = _ ~ a---x' 
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where ax~ is a constant and where B(X,  T)  is the positive solution of 

OUr C?Ub OPb (4.18) 
a~B2  = ~3T + Ub - - ~  + a---X" 

The O[fl ln(1/fl)] contributions to # and n are also independent of (, 
and, using (4.10), the O(fl) contribution to 0#/0( is given by 

~( t t~ Claxz B2 (01~ j, t~ 0 t~ = - -  -- ~ (axzB2( + IUb [Ub �9 (4.19) 

Substituting this equation into (4.9) and (4.11)-(4.13) yields four second 
order ordinary differential equations for the O(1) contributions to txx, t=, O, 
and 2, with boundary conditions 

tt0t ~ _23/2(Ub)2, t[o] ...+ _21/2(Ub)2, 
x x  ~ z z  

0[0] ~ 25/41Ub 1, 210] ~ r ( 4 . 2 0 )  

If matching conditions, the constant axe, and the lowest order outer solution 
are known, this system can be solved using the numerical scheme described 
in Section 3 to provide the lowest order boundary layer solution for all the 
dependent variables. In addition, integrating (4.19) gives a solution for the 
0(/3) contribution to ~ up to an additive function of X and T. 

To obtain the matching conditions, we assume that the solutions for the 
O(fl) contribution to # and for the O(1) contributions to to-, 0, and 2 are of 
the form ~m ln"(~) as ~ ---, ~ ,  where m is determined by noting that ~ = Z / #  2 
and that matching with the outer solution requires the expressions for to, O, 
and 2 to be O(1/f12), O(1/fl), and O(l/r2),  respectively, at the outer edge of 
the boundary layer. Since it can be shown that logarithms are absent from 
the matching conditions at this order of the solution, the matching condi- 
tions take the form 

t!91 ___,auB2~, O[Ol~ B~O/z, 210J~b~, #121~ 2Bc~0/2), (4.21) 
U 

as ~---, ~ ,  where b, c, and the a's are constants. The solution for the 
constants is found to be 

= f, ca + 8c2 },/2 
b (6(clc;-+-3~4- 2c,) ~0.507, axx = 

1 (1-6b2ct)  1/2 
axz = + ~ +0.147, a= = 

- 2x,/~ (2 -362c0  = _ 

( 2  - 3 b 2 c l ) ( 1  - -  6b2c01/2 ,.~ 4 
= + 0.90 , C = +  

- (2~f2)b 

1 - 3b2cl 

2 - 3bZcl 

1 

-0.435,  

2(2 - 3b2c0 
- 0 283 

(4.22) 

where axz and c have the same sign as the right side of (4.18). 
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Working now to lowest order and expressing the matching conditions 
(4.21) in terms of the outer variables, the outer solution satisfies the 
matching conditions 

Ttffl ~ axxB2Z, T~I~ ~ ax~B2Z, T t~ ~ a~zB2Z, 

OU~ (4.23) 
QtOj __+ BZ 1/2, Lt~ ~ bZ, W ~~ ~ - -  Z ~2(' 

as Z ~ 0, where, repeating earlier definitions, 

Ub = Ut~ T, 0), Pb = PI~ T, 0), (4.24) 

and B is the positive solution of (4.18). With superscripts omitted, the 
lowest order solution in the outer region solves these matching conditions, 
the continuity and momentum equations 

OU ~W 
~--~ + ~-~ = 0, (4.25) 

OU OU OU OP C~Txx gTxz (4.26) 
vS + = + 

OW u O W  dW OP OTxz  OTz,_ (4.27) 
+ x + + a z - + z ' 

a system of five parabolic equations for Q, L, and the components of the 
stress tensor, and the free surface boundary conditions. The field equations 
for the turbulence quantities and the free surface boundary conditions are 
obtained from (2.19)-(2.23) and (2.29)-(2.31) by making the substitutions 
given in the phrase following Eq. (4.4). 

If Txx, Tx~, and Tz,_ were known, solution of (4.25)-(4.27) would 
require three boundary conditions, which are given here by the last equation 
in (4.23) and by the kinematic and dynamic boundary conditions at the free 
surface. Solving the system of equations for Q, L, and the T's requires ten 
additional boundary conditions. These are given by the first equation in 
(2.30), the four equations in (2.31), and the five equations obtained by 
eliminating B between (4.18) and (4.23). The lateral boundary conditions on 
the components of the stress tensor and on Q are 

T),~--.0, T ~ 0 ,  T~z--.0, Q~O,  (4.28) 

as IxI ~ ~ ,  and the other variables match in this limit with the solution 
given by the hydraulic approximation of Section 3. 

We will not attempt a numerical solution for the flow in the outer part 
of bore regions in the present study, but it appears that the problem 
describing the lowest order approximation is well set in the sense that the 
correct number of boundary conditions is available. Assuming that a 
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solution for the bore structure does exist, jump conditions relating the flow 
on two sides of a discontinuity predicted by the hydraulic equations are 
obtained by integrating (4.25) and (4.26) over an area bounded below by 
Z = 0, above by Z = H(X, T), and on the left and right by 

X = X _ =  - A + C T ,  X = X +  = A + C T ,  (4.29) 

where A and C are constants. 
Letting A tend to oo, noting that the solution for U at the outer edges 

of a bore region is independent of Z to lowest order in /~, and omitting 
details of the derivation, we find that for a bore moving at constant speed 
C the outer solution satisfies the jump conditions 

[HU] = C[H], HU 2 + ~ H = C[HU], (4.30) 

where, as before, [ f ]  denotes the discontinuity in a function f as determined 
by the hydraulics equations. Equation (4.30) is a dimensionless version of 
the classical jump conditions given by (1.3). By contrast, the theory given in 
[8], which attempts to resolve the bore structure by using a viscous type 
body force v(O2U/&,g 2) in (4.26) in place of OTxx/OX, yields a momentum 
jump condition in disagreement with the second equation in (1.3). In our 
view this occurs because the stress tensor employed in [8] is asymmetric, and 
is therefore incorrect. 

5. Discussion 

The present calculation is based on the assumptions that open channel 
flows can be treated using standard second order turbulence models, and 
that the equations of mathematical hydraulics can be obtained by a rational 
approximation process valid for a parameter range discussed in the text. 
The theory takes two forms, depending on whether a point in the fluid lies 
within or exterior to a bore region. The surface elevation and depth- 
averaged longitudinal velocity component outside bore regions are found to 
satisfy the classical hydraulics equations to lowest order in a perturbation 
expansion, and a version of these equations involving a variable bottom 
drag coefficient is derived by carrying the theory to higher order. The 
variation of the longitudinal velocity component with distance from the 
channel bottom and the lowest order solution for the Reynolds stress tensor 
and other turbulence quantities are also computed. 

The flow within bore regions is found to have a double deck structure 
consisting of an outer region with characteristic longitudinal and transverse 
length scales of the order of the fluid depth, and a bottom boundary layer 
with a longitudinal scale of the order of the fluid depth and a transverse 
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scale of the order of the depth times the drag coefficient. Equations and 
matching conditions for the flow in the two regions are derived, and it is 
shown that the laws of mass and momentum balance for the bore regions 
provide the classical jump conditions of mathematical hydraulics used to 
connect solutions valid on either side of a flow discontinuity. 

As indicated in references [2], [5], and [7], enough experience has been 
gained in turbulence modelling to infer that thin layer flows of the type 
occuring outside bore regions are well described by standard second order 
turbulence models. Consequently, assuming that the analysis is correct, the 
theory given in Section 3 should provide accurate approximate equations 
for describing the flow outside bore regions. The theory of Section 4 on the 
bore structure is more tentative because it is not known how well the flow 
is described by second order turbulence models and because we have not 
provided a numerical solution for the equations governing the bore struc- 
ture or a mathematical proof that a solution exists and is unique. Whether 
the problem has a physically meaningful solution is an open question which 
deserves further study because of the interest in bores in near-shore 
oceanography and other branches of applied fluid mechanics. 
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Summary 

The relation between classical hydraulics and modern turbulence modelling is discussed for the case 
of two-dimensional open channel flow down an inclined plane. A second order turbulence model 
describing the flow is treated asymptotically for the parameter range F>-O(1), 6 ,~ 1, fl ,~ 1, and 
6 = O(f12), where F is the Froude number, 6 is the aspect ratio, and fl is the square root of a 
characteristic drag coefficient. The Chezy law formulation of mathematical hydraulics is derived as the 
lowest order approximation to the solution for the flow outside bore regions, and the transverse 
variation of the longitudinal velocity component is determined at the next stage of the analysis. It is 
shown that flow discontinuities calculated using the equations of mathematical hydraulics are resolved 
in bore regions of transverse length scale O(Ho), where H 0 is the characteristic fluid depth. The bore 
structure is found to consist of a highly turbulent outer region with transverse length scale 0(1to) in 
which the turbulence intensity is O(1), and a bottom boundary layer of transverse length scale O(fl2Ho), 
in which the turbulent stresses decrease rapidly to satisfy the bottom boundary conditions. The jump 
conditions of mathematical hydraulics at flow discontinuities are verified, and it is inferred that classical 
hydraulics provides an acceptable approximation to the flow outside bore regions for the parameter 
range considered in the theory. 
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