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Edge-Cut Bounds on Network Coding Rates

Gerhard Kramer!® and Serap A. Savari’

Active networks are network architectures with processors that are capable of executing
code carried by the packets passing through them. A critical network management
concern is the optimization of such networks and tight bounds on their performance
serve as useful design benchmarks. A new bound on communication rates is developed
that applies to network coding, which is a promising active network application that has
processors transmit packets that are general functions, for example a bit-wise XOR, of
selected received packets. The bound generalizes an edge-cut bound on routing rates
by progressively removing edges from the network graph and checking whether certain
strengthened d-separation conditions are satisfied. The bound improves on the cut-set
bound and its efficacy is demonstrated by showing that routing is rate-optimal for some
commonly cited examples in the networking literature.
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1. INTRODUCTION

Inrecent years there has been considerable interest in technologies known as active
networks [1] that permit network nodes to execute computations specific to the
packets passing through them. The programmability of infrastructure is the key
innovation in this approach to network architecture; the added flexibility provides
a means to implement novel transmission techniques to improve performance. A
small subset of the literature on active networks can be found in [1-6].

The optimization of active networks is a critical network management
concern. Network optimization has traditionally studied communication networks
in the same framework as other types of networks such as those arising in
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transportation and manufacturing problems (see, e.g., [7, p. 1]). A few years
ago, a groundbreaking paper [8] pointed out that this paradigm imposes artificial
restrictions on the workings of processors in communication networks. For
example, consider the problem shown in Fig. 1. There are two source-destination
pairs (s1, ;) and (s3, f;), and each of the directed edges has unit capacity.
Each source seeks to send a unit-rate information stream to its destination.
This is impossible in the traditional routing regime where intermediate relays
can only forward the information received. However, with network coding [8]
a processor that receives information can transmit a different function of this
information on each of its outgoing edges. Fig. 1 illustrates that an appropriate
choice of functions makes the desired rates feasible (the “x + y” in Fig. 1 is the
XOR of the bits x and y). In fact, both destination terminals can decode both
messages.

Network coding has become an intensely studied interdisciplinary subfield
of information theory since the publication of [8]. Recent work has exploited
ideas and techniques from many areas including randomized algorithms, algebraic
coding theory, matrix theory, and graph theory. An updated web page [9] lists many
publications in the area.

There are several approaches to implementing network codes. One approach
designs fixed coding functions for each processor based on a centralized knowledge
of the network topology. A second approach (see, e.g., [10-12]) is motivated
by issues arising in distributed or dynamic scenarios where centralized control
is impractical. This approach has each vertex transmit on its outgoing edges a
randomly chosen linear combination of the information from its incoming edges.
For decoding, one requires packets to have headers that inform the destinations
of which linear combinations were chosen to form the packets. Each header is
modified dynamically as the packets flow through, and are combined by, the

Fig. 1. A two-commodity problem on a directed graph.
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network vertices. For example, to keep the header size limited, relaying vertices
might wish to decode packets and then re-encode them based on local information.
The headers can thus be considered as executable code carried by the packets.
Random network coding is therefore a promising active network application since
itdemonstrates the potential payoff in sending executable code rather than just data.

The headers in the above-mentioned example change the function of network
vertices at a fast timescale. An example of an application that reconfigures the
network at a slower time scale is when a centralized management system multicasts
commands that tune the network, or perhaps even the network codes themselves.
In the former case, one would network code the executable code itself. In the latter
case, an active packet might contain executable code that installs network codes
along certain paths or subgraphs based upon conditions that this active packet
meets along its route. One can consider this to be an autonomously installed or
temporary network-coded overlay network.

Another consideration in network communication is that the information
sent from one processor to another might be lost, e.g., due to congestion, or
is corrupted by errors. Active networks offer each processor the opportunity to
change its coding functions depending on the error statistics. Since there is a
tradeoff between network coding rate and reliability, actively managing network
coding rates according to this tradeoff should prove useful.

Yet another application is a new approach to network management for pro-
tection from and recovery of link failures (see, e.g., [13, 14]). Here the network is
modeled as a finite-state machine where the operation of a processor is affected
by management signals that indicate the current link failures and/or directions for
recovery behavior. Among the contributions of [13] are bounds on management
requirements for several network connection problems.

A further benefit of network coding has been to improve the allocation of
physical and medium-access layer resources in wireless ad hoc networks [15,
16]. For example, suppose one is given a collection of end-to-end communication
demands and an objective of minimizing power consumption. It was demonstrated
that network codes increase the energy efficiency over traditional routing for a
particular cross-layer optimization over the physical layer, network layer, and link
layer.

1.1 Bounds on Network Coding Rates

The aim of this paper is to develop theoretical bounds on the communication
rates that can be attained using network coding. We thereby also determine bounds
on the performance of active networks. The value of the theory is, e.g., to help
determine how well tuned an active or coded network really is.

Our problem can be considered to be a generalization of the classical problem
of bounding the maximal flow from one vertex to another in a graph subject to
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capacity limitations on arcs or edges. Fifty years ago, L. R. Ford, D. R. Fulkerson,
and other individuals discovered the celebrated “max-flow min-cut” theorem that
states that the maximal flow is the minimum capacity among all edge cuts sepa-
rating the source and destination vertices [17-20]. A related bound additionally
partitions the vertex set into two disjoint sets, and in [21] we developed this latter
type of bound for network coding. However, as pointed out in [7, pp. 16-17],
sometimes tighter bounds can be found by considering “disconnecting edge sets.”
In this paper, we present an information-theoretic counterpart to this latter type of
bound. We do this by borrowing from the artificial intelligence literature [22] the
concept of d-separation in Bayesian networks.

Bayesian networks are graphs whose vertices represent random variables, and
d-separation is a graphical procedure that establishes the conditional statistical in-
dependence of certain sets of these random variables. We will here consider special
types of Bayesian networks known as functional dependence graphs (FDGs) and
we use a strengthened version of an extension of d-separation called fd-separation
that appeared in [23, ch. 2].

2. PRELIMINARIES

Consider an undirected, edge-capacitated graph A" = (V, ¢) with vertex and
edge sets

vV=I{1,2,...,V} 2.1

& ={(ur,v), (U2, v2), ..., (Ug, ve)} (2.2)

respectively, where u,, v, € Vfore = 1,2, ..., E, and where C, is the capacity of
edge e. Consider further a subset 7 = {t1, 1o, .. ., t7} of V called terminals, some

of which are sources and some of which are sinks. An edge cut is a set hcal g4
of edges that disconnects sources from sinks. (Edge cuts in directed graphs are
sometimes called directed cuts or disconnecting edge sets.) Rather intuitively, the
sum of the routing rates of the source-destination pairs that are disconnected by
&4 1s upper bounded by the sum of the capacities of the edges in &,.

We would like to apply edge-cut bounds to network coding. Such bounds
clearly apply to undirected graphs and one can prove this by using the techniques
of [21]. Unfortunately, a standard example shows that edge-cut bounds do not nec-
essarily apply to directed graphs. Consider the network with unit-capacity edges
shown in Fig. 1. There are two source-destination pairs (s1, #;) and (s3, ,), and we
write their respective rates as R; and R,. The set ¢; = {(3, 4)} is an edge cut for
both sources so the edge-cut bound states that Ry + R, < 1 with routing. How-
ever, network coding achieves (R, R;) = (1, 1) by forming the XOR of the bits x
and y on the respective edges (1, 3) and (2, 3), and sending the result down edges
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3,4), (4,5), and (4, 6). This example shows that one cannot always rely on edge-
cut bounds when using network codes. The main purpose of this paper is to develop
an alternative to edge-cut bounds that does apply to network coding. We further
use the bound to derive new capacity theorems for network information flow.

2.1 Information Theory

For our analysis, we assume that the reader is familiar with concepts of
information theory (see [24, ch. 2]). We write H(X), H(XY), and H(X|Y) for
the respective entropy of the random variable X, the joint entropy of the random
variables X and Y, and the entropy of X conditioned on Y. We further write /(X;
Y) and I(X; Y|Z) for the respective mutual information between X and Y, and the
mutual information between X and Y when conditioned on the random variable Z.

We write Pxy|z(x, y|z) for the probability that X =x and ¥ =y when
the event Z = z occurs, assuming that Pz(z) > 0. As usual, for discrete random
variables we say that X and Y are statistically independent when conditioned
on Z if

Pxy|z(x, y|2) = Pxz(x]z) - Pyz(Y|z) (2.3)

for all x, y, and z with Pz(z) > 0. Alternatively, we say that X — Z — Y forms a
Markov chain. We remark that X — Z — Y forms a Markov chain if and only if

I(X;Y|Z) =0. (2.4)

3. NETWORK MODEL

We adopt the model of [21, 25] whose components and rules we list for
completeness below (see also [26, section III. A—B]). Most of what follows applies
to real networks, perhaps with the exception of the clocking described in the first
bullet. We remark that this assumption can often be relaxed; its main purpose
is to ensure that the network vertices behave in a causal fashion. The clocking
assumption is further useful to keep track of the bits and symbols being transmitted
around the network.

e The network is clocked, i.e., a universal clock ticks N times.

e Vertex u transmits a symbol X", (u, v) € ¢, after clock tick n — 1 and
before clock tick n forn =1,2,..., N.

e Vertex vreceives symbols Y, (u, v) € &, at clock tick n. Note that there is
a small delay between transmission and reception that ensures the network
operates in a causal fashion. The output X is in general a noisy function
of the channel input X, i.e., for all (u, v) € ¢ and all n we have

Y = fu(Xi) Z) G.1)

uv
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for some function f,,(-), where Z) is a noise random variable that is
statistically independent of all other noise and message random variables.
For simplicity we will often model the edge channels as being noise-free,
i.e., we will mostly consider channels with Y = X for all u and v.
However, our results do extend to noisy channels. We demonstrate this by
an example below.

There are K independent messages Wy, k = 1,2, ..., K, in the network.
One might think of the W; as being “commodities.”” For the multicom-
modity flow problem [27, p. 1221], message W; is associated with a vertex
pair (sg, ), Sx 7# &, and one wishes to transmit N R; units of data from
Sk to t; simultaneously for all k. The meaning is that sy, is the source vertex
and #; is the sink or destination vertex. In communications, R; refers to
the rate of message k.

A more general problem is the multimessage multicasting problem, where
several destinations decode each message W;. We write Dy, for the number
of destinations decoding W;. More precisely, message W; is associated
with the vertices (si, (1), t(2), ..., t(Dy)) and one wishes to transmit
Ry units of data from s; to #(i), s # 1(i), simultaneously for all k =
1,2,...,Kandi =1,2,..., D;.

Let W, be the set of messages originating at vertex . The input X is a
function of W, and vertex u’s past channel outputs

yirl=yP Y@, ..y (3.2)

Note that Y is a vector that includes the nth channel outputs from all
edges incident to u. Note also that X(") is any function of W, and Y~ ',
so that we are permitting joint channel coding, routing, and/or network
coding. We distinguish between routing and network coding in that routing
permits message symbols and arriving packets (groups of input or output
symbols) to be stored, reordered, and collected into other packets. Network
coding, however, additionally allows packets to be combined to create new
packets.

Suppose W is destined for vertex tk (z) After transmlss10n is completed,
vertex (i) puts out its estimate Wk of Wy. Note that Wk is a function
of vertex #(i)’s messages W, ; ) and its channel outputs th(z)'

A rate-tuple (Ry, Ry, ..., Rg) is said to be achievable if there exist en-
coders and decoders such that

Pr (U (W) Wk}) < (3.3)
k,i

for any positive e. The capacity region C is the closure of the set of
achievable rate-tuples.
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Fig. 2. A two-commodity problem on a directed graph.

4. FUNCTIONAL DEPENDENCE GRAPHS, d-SEPARATION,
AND CONDITIONAL INDEPENDENCE

We will use the calculus of d-separation and fd-separation in FDGs. FDGs
are graphs where the vertices represent random variables and the edges represent
the functional dependencies between the random variables [23, 26]. For instance,
suppose we have Nry random variables that are defined by Sgy independent (or
source) random variables by Nry functions. An FDG ¢ is a directed graph having
Nrv + Sry vertices representing the random variables and in which edges are
drawn from one vertex to another if the random variable of the former vertex is an
argument of the function defining the random variable of the latter vertex.

For example, suppose we have the two-commodity problem in a noise-free
triangular network depicted in Fig. 2. A corresponding FDG is shown in Fig. 3. In
this graph, X, is a function of the message W, and X2 (in fact, X Y;) is a function
of W and the past X g’fl only). The message estimate W, of W, at vertex 1 is also
a function of W, and XJ\. The channel inputs X5} are a function of W, and X%,
and the estimate W is a function of Xé\g The Sgy =2 vertices representing the
independent W, and W, are distinguished by drawing them with a hollow circle.
Note that Fig. 3 is the line graph of Fig. 2 with the addition of vertices representing
the messages and their estimates, and edges representing the functional relations
of these new vertices to the existing ones.

Wy © _ e W1
X3y X

Fig. 3. FDG for the two-commodity problem in Fig. 2.



Kramer and Savari

By d-separation we mean the following reformulation of a definition in
[22, p. 117] that is described in [23, 26].

Definition 1. Let X, Y and Z be disjoint subsets of the vertices of a FDG G.
Z is said to d-separate X’ from ) if there is no path between a vertex in X and a
vertex in ) after the following manipulations of the graph have been performed.

1. Consider the subgraph Gyyz of G consisting of the vertices in X', Y and Z,
as well as the edges and vertices encountered when moving backward
one or more edges starting from any of the vertices in X or ) or Z.

2. In Gyyz delete all edges coming out of the vertices in Z. Call the resulting
graph Gyyz.

3. Remove the arrows on the remaining edges of Gyyz to obtain an
undirected graph.

A fundamental result of [22, section 3.3] is that d-separation establishes
conditional independence in FDGs having no directed cycles. That is, if Z
d-separates X’ from ) in G and we collect the random variables of the vertices in
X, Y and Z in the respective vectors X, Y and Z, then X-Z-Y forms a Markov
chain.

A simple extension of d-separation is known as fd-separation which uses the
fact that the FDG represents functional relations, and not only Markov relations
as in Bayesian networks (see [23, ch. 2]). For fd-separation, after the second
step above one successively removes all edges coming out of vertices without
incoming edges, excepting the source (or message) vertices. One can, in fact, also
successively remove all edges on cycles without incoming edges, and we shall
refer to this strengthened version of the definition in [23, p. 15] as fd-separation.
We remark that fd-separation applies to FDGs with cycles, as long as all subgraphs
of the FDGs are also FDGs (this result follows directly from [23, ch. 2] and will
be proved in a future paper).

5. PdE BOUND FOR NETWORK CODING

The bound we develop begins with a set of edges &4 like the edge-cut bound.
However, in addition to computing the sum of the capacities of these edges, we
must perform a series of verification steps. Consider a set S, of source indices and
an ordering of these indices via a one-to-one mapping 7 (-) from {1, 2,...,|S; |} to
S4 , where |Sy | is the cardinality of S;. The reason for introducing this ordering
will become clear when we consider some examples below.

We use the notation X,, = {X,, : (u, v) € g4} and similarly for Y., and
Z,,. The following steps describe our bound for noise-free networks. Let X é‘;
be the channel inputs of the edges ¢4, Ws, be the messages with indices in
Ss, Sa € {1,2,...,K},and Sdc be the complement of S; in{1,2, ..., K}.
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1) (Initialization) Consider the FDG G corresponding to the network graph
N, ie., the line graph of N with the addition of vertices and edges
representing the messages and their estimates (see, e.g., Figs. 2 and 3).

e Remove all vertices and edges in G except those encountered when moving
backward one or more edges starting from any of the vertices representing:
(1) XY, (2) any choice of non-empty subset of {W,E') i=1,2,..., D)
for all k € S; and (3) all messages Wy, k = 1,2,..., K.

e Further remove the edges coming out of the vertices representing X é\j and
Wisc, and successively remove edges coming out of vertices and on cycles
that have no incoming edges, excepting source vertices. Call the resulting
graph G,,. Setk = 1.

2) (Iterations) If W, is not disconnected (in an undirected sense) from
one of its estimates Wf,’()k), i =1,2,... Dy, then stop (one has no bound).
If W is disconnected (in an undirected sense) from all of its estimates
then:

e Remove the edges coming out of the vertex representing Wy ).

e Successively remove edges coming out of vertices and on cycles that have
no incoming edges, excepting source vertices. Call the resulting graph
Ge, WE.

3) (Termination and Bound) Increment k. If k < K go to the previous step.
If k=K + 1, then we have

YR <) C. (5.1)

keSy eceq

We call this bound a progressive d-separating edge-set bound, or PdE bound for
short (one might also refer to it as a PdE algorithm). The word “progressive”
describes the step-by-step removal of edges from G. The term “d-separation”
describes the use of fd-separation in steps 1 and 2 above. We remark that the PAE
bound includes as special cases those bounds based on edge cuts that partition VV
into two disjoint sets ([21 ],[24, section 14.10] ).

Example 1. Consider the network of Fig. 1. We choose ¢; = {(3,4)} and
Sq = {1, 2}, and the resulting graph G,, is shown in Fig. 4. We choose 7(.) to
be the identity mapping, i.e., we choose the ordering Wy, W,. For k= 1, we must
check if W, is disconnected from Wl in an undirected sense. However, there is
an undirected path from W, to W, so we must stop without a bound. A similar
conclusion to the procedure occurs if we choose the ordering W,, W. Thus, as
required, we cannot claim that Ry + R, < 1.

Example 2. Consider the network of Fig. 2 for which G is the graph in
Fig. 3. Suppose that C, =1 for all e. We choose ¢; = {(2, 3)}, S; = {1, 2}, and
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Fig. 4. Modified FDG for the two-commodity problem in Fig. 1.

the resulting graph G, is shown in Fig. 5. We next choose 7(.) to be the identity
mapping. For £ = 1, we must check if W; is disconnected from W; which is
indeed the case. The next graph G, , has only one edge and W, is disconnected

from W,. We thus have the desired bound R; 4+ R, (this type of edge-cut bound
first appeared in [21]).

6. NOISY CHANNELS

The above procedure extends to noisy channels by including the Y =

fun(X$), Z{7)) in the FDGs. One further replaces X[ by (Y, Z'} in the first
¢ ¢ d

step in Section 5,where 85 is the complement of ¢, in ¢. The value C, in (5.1)

is now the capacity of the channel of edge e. For example, consider the FDG in

Fig. 6 that is a noisy version of the FDG in Fig. 3. The noise random variables Z"

are represented as open circles inside the triangle formed by the cycle

N N N N N N N
Xh—=>Y, = X5 —> Y — X5 = Y3 — Xh.

‘/i/ ’2 l’Vl

e oI}
X5 X3

Wy

Fig. 5. Modified FDG for the two-commodity problem in Fig. 2.
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W, W

N N N
X 23 YTZS X 31

Fig. 6. FDG for the problem in Fig. 2 when the channels are noisy.

The procedure described in Section 5 (with X replaced by (Y., Z 81\2 1) will give
¢ d
graphs like those in Fig. 5.

7. UNDIRECTED GRAPHS

The above procedure extends to undirected graphs with a few extra steps. The
main addition is that one replaces every undirected edge e = (u, v) with capacity C,
by a pair of oppositely directed edges labeled by the entropies C,,, := H(XY)/N
and C,, = H(Xz’)\fl)/N. One then requires that C,,, + C,, < C.. We remark that
it is often more convenient to draw only the bidirected version of the undirected
graph without formally converting it into a line graph.

Example 3. Consider the network of Fig. 7 that appeared in a paper by Hu
[28]. This network served as an example to show that the vertex-partitioning cut-
set bound can be loose for three commodities. We construct the bidirected graph
shown in Fig. 8, where the edge from vertex u to vertex v represents X (we have
labeled only some of the edges to avoid cluttering the figure with notation). One
can construct the FDG line graph directly from this graph.

Suppose that the undirected edges have capacity two. Hu showed that the
vertex-partitioning cut-set bound permits the rate triple (R, R;, R3) =4, 2, 1)

53

89 t

Fig. 7. Hu’s three-commodity problem.
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Fig. 8. Bidirected graph for the three-commodity problem in Fig. 7.

but routing requires R3 =0 when (R}, R;) = (4, 2). We wish to determine if the
same is true with network coding. We choose ¢; = {(3, 6), (5, 6)} and S; = {1}
from which we obtain R; < C3 + Cs¢ < 4, with equality only if Cgz = Cgs =0.
Similarly, with ¢, = {(1,2), (1,4)} and S; = {1} we require C»; = Cy4 =0 for
Ry =4. Combining these results, we can restrict attention to the graph in Fig. 9.

For Fig. 9, we choose ¢; = {(2, 3), (4, 3), (2, 5), 4, 5)}, Sq4 = {1, 2, 3},
and [ (1), m(2), #(3)] = [3, 1, 2]. The resulting graph G,, is shown in Fig. 10.
We find that

R+ Ry + R3 < Cp3 + Cy3 + Cos + Cys. (7.1)
Next, in Fig. 9 we choose ¢; = {(3, 2), (3, 4), (5, 2), (5, 4)}, S; = {2, 3},
and [ (1), 7(2)] = [2, 3]. We find that

Ry + R3 < Cxp+ C3g4 + Csp + Csy. (7.2)

Fig. 9. Modified graph for the three-commodity problem in Fig. 7.
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Fig. 10. Modified graph for the three-commodity problem in Fig. 7.

Combining (7.1) and (7.2), for Ry =4 we have
Ry +2(Ry+ R3) <8. (7.3)

Thus, if R; =4 and R, =2 we require R3 =0 with or without network
coding.

Example 4. Consider the network of Fig. 11 that appeared in a paper by
Okamura and Seymour [29]. This network served as an example to show that the
vertex-partitioning cut-set bound is not necessarily tight for routing on a planar
graph where one cannot draw the graph so that all sources and sinks are on the
boundary of the infinite region (note that s3 and #, are not on the boundary of the
infinite region in Fig. 11).

Suppose that the undirected edges have unit capacity. Okamura and
Seymour showed that the vertex-partitioning cut-set bound permits the rate-tuple
(Ry, Ry, R3, Ry) = (1, 1, 1, 1) but routing cannot achieve this set of rates [29 ].
In fact, the best symmetric rate with routing is Ry =3/4 for k=1, 2, 3, 4.

We bound the achievable network coding rates. We choose &5 =
{2, 1,3, 1),4, 1),2,5),3,5),4, 5}, Sq={1, 2, 3, 4}, and 7 (.) to be the

Sa, t4

81 (3]

4

Fig. 11. Okamura and Seymour’s four-commodity problem.
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W, e

Fig. 12. Modified graph for the four-commodity problem in Fig. 11.

identity mapping. We find that
Ri+Ry+ R34+ Ry < Co1 + C31 4+ Cy1 + Cos + C3s5 + Cus. (7.4

We next choose &5 ={(2, 1), (3, 1),(5, 3),(5, 49}, Sy ={2, 3}, and
[7(1), m(2)] = [3, 2]. The resulting graph G, is shown in Fig. 12. We find that

Ry + R3; < Co1 + C31 + Cs3 + Cs4. (7.5)
By symmetry, we similarly obtain

Ry4+ Ry < Cy + Cy1 + Csp + Cs3 (7.6)

R34+ Ry <C314+C41 +Csp+ Csa (7.7)
Combining (7.5)—(7.7), we have
Ry + R3 + Ry < Co1 + C31 + C41 + Csp + Cs3 + Csy. (7.8)

We next choose g; = {(1, 2), (1, 3), 4, 5),(5, 3)}, S; ={1,2,4}, and [7(1),
m(2), m1(3)] = [2, 1, 4]. We find that

Ri+Ry+ Ry <Cip+ Ci3+ Cys5+ Cs3. (7.9)
By symmetry, we similarly have

Ri+ R+ R3 <Ci3+Cis+Cos+Csy (7.10)

Ri+R3+ Ry <Cip+Cis+Cs5+Csy (7.11)
Combining (7.9)—(7.11), we have
3R1 +2(Ry+ R34+ Ry) <2(C1+ Ci3+ Cig) + 3. (7.12)
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Finally, we add the bounds (7.4), (7.8), and (7.12), and obtain
R+ Ry + R3+ Ry < 3. (7.13)

Thus, the best equal-rate point is at most three fourth with or without network
coding. This result was pointed out to us by the authors of [30, 31] at a meeting on
Network Coding in January 2005 [32]. We remark that the PdE bound developed
here provides a different and widely applicable method of arriving at this result. For
instance, the PAdE bound additionally gives the sum-rate bound (7.13). Moreover,
this bound can be combined with cut-set bounds to give the entire capacity region
of the network in Fig. 11.

8. CONCLUDING REMARKS

Upper bounds on network coding rates are currently being developed by
other groups [30, 31]. Some of the distinguishing features of our work are (see
[33]): the PdE bound applies to general multimessage multicast, we have a formal
procedure for generating rate bounds by using FDGs and d-separation (which
makes a connection to the artificial intelligence literature), the progressive nature
of our fd-separation bound strengthens an approach based on cutting edges only
at the first step, and FDGs let us treat noisy networks as well as noise-free ones.

APPENDIX VALIDITY OF THE PDE BOUND

We prove the validity of the PdE bound described in Sections 5 and 6 for noisy
as well as noise-free networks. This section assumes familiarity with advanced
concepts in information theory. Recall that we consider the following objects.

g4: a set of edges

S, : a set of source indices

7(.): a one-to-one mapping from {1, 2,...,[S4l}to S, .

a nonempty subset of {W,E’) i=1,2,..., D} forallk € S,.

For the last item, recall that Wy is associated with the vertices
(sk, 1e(1), (2), ..., tx(Dy)), so we are considering some subset f/k of the vertices
t(i),i=1,2,..., Dy. We write the corresponding subset of estimates as Wk(ﬁk).

We continue by noting that, for reliable communication, Fano’s inequality
[24, p. 39] requires that

Y R < Y LI(Wi WD)
keS, keSy
IS4l (A1)

k=1
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We define W;;_l = [Wn(l), Wn(z), ey Wrr(k—l)] and bound

I(Wato: Waeioy(Vaor))

(a) .

< I(Wags Wariy (Vrao) Y ZQ]? Wee Wit)

®) o (A2)
= I(Wn(k); W (Vn(k))Yg]ﬂZéVg WSf erc_])

© N k-1

= I (Wago: Y |Z£5 Wse Wi )

where (a) follows because I(A; B) < I(A; BC), (b) follows because the messages
and noise are statistically independent, and (c) follows by the chain rule for mutual
information and because success in step 2) in Section 5 implies that

I (Waw; Wty (ﬁﬂ(k))|Y51:,Z;V§ WseWi™!) =0 (A.3)

via fd-separation. Inserting (A.2) into (A.1) and applying the chain rule for mutual
information, we find that

1
Y R < 1 (Wsss YZ W ). (A4)
kESd

We continue by upper bounding the mutual information expression in (A.4) by
1(Ws,; Y;;’|ZSA§ Wse)
N
. —17N
@ 3 1(Wes YW 2 W)

N
< XA (Ws, X0 Y1 Z W)

Eq * &4
N N
O 3 [HrPIv 2 We) = H(r X))

N
© & [HIN 12y W) - T (e

eEeey

} (A.5)

@ <> X [HED - HEOX®)]

n=1eecgy

N
<> > maxI(X";Y™)

eceg n=1 xg”)

(g)ZNce

ecey

where (a) follows by the chain rule for mutual information, (b) and (c) follow by
(3.1), (d) follows because conditioning cannot increase entropy, and (e) follows
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because it is known that (see [24 ], Ch. 8)

In

C. = max I(X™;Y™). (A.6)

X

serting (A.5) into (A.4) gives (5.1).
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