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ABSTRACT

An experimental and theoretical investigation of proton-deuteron elastic
scattering at high momentum transfers is presented. The differential cross
sections for backward elastic scattering at incident proton kinetic energies
of 1.0, 1.3, and 1.5 GeV have been measured for four-momentum transfer
squared (-t) from 2.6 to 5.0 (GeV/c)e, which corresponds to cosine of center-
of-mass proton scattering angles (cos ©%) from -0.5 to -0.9. A backward peak
is observed, and the slope and magnitude of the peak have been determined.

At 2.0 GeV for forward elastic differential cross section has been measured
for -t from 0.4L to 1.5k4 (Gev/c)2 of cos 6* frem 0.875 to 0.565. A shoulder-
like departure from the forward diffraction peak was observed.

The one-nucleon exchange peripheral model has been successful in inter-
preting the backward peak. Calculations based on modern three-body quantum
mechanical formalisms for the three-nucleon system supporting a two-body
bound state also suggest the one-nucleon exchange process as the dominant
mechanism. The measured forward differential cross section has been explained
by the importance of double-scattering of the incident proton at higher mo-
mentum transfers. * A negative value for the ratio of the real part to the
imaginary part of the neutron-proton elastic scattering amplitude at 2.0 GeV
is shown to yield maximum agreement with the experimental data.

ix



I. INTRODUCTION

The interaction between two nucleons has long been the fundamental prob-
lem in particle physics. The deuteron is the only bound state of the two-
nucleon system, and the elastic scattering of protons by deuterons provides an
opportunity to examine any theory which proposes to describe the static and
dynamical properties of the two-nucleon system. The static properties of the
deuteron have been known for many years. The spin of the deuteron was deter-
mined by Murphy and Johnston! to equal one #i unit. The magnetic moment of
the deuteron was first measured by Stern and Estermann,2 who deflected deu-
terium molecules in an inhomogeneous magnetic field. A more accurate meas-
urement using the nuclear magnetic resonance absorption method was made by
Widmett,5 who reported the ratio of the deuteron magnetic moment to the pro-
ton magnetic moment thus yielding pg = 0.857411 + 0.000019 nuclear magnetons
(nuclear magneton = eﬁ/Emc where m is the proton mass and e is the proton
charge). The deuteron electric quadrupole moment was postulated and meas-
ured by Kellogg, Rabi, and Ramsey who noticed a discrepancy between their
measured deuterium radiofrequency magnetic resonance spectrum and theory.

The experimentally measured fine structure was much larger than the magnitude
predicted by third-order perturbation calculations. Using an improved design
of the molecular beam apparatus, Kolsky et al.5 found the quadrupole moment,
Q = 0.2738 £2 (f = 10715 em). In order to g;blain the presence of the elec-
tric quadrupole moment Schwinger® proposed a tensor contribution to the nu-
clear force, which gave the deuteron a -“S; + 5Dl ground state.

In the low energy scattering problem extensive use is made of the effec-
tive range theory. This method assumed that the scattering cross section
could be expressed in terms of only the S-wave phase shift, and such quantities
as the triplet scattering length ag = 5.41 f, the singlet scattering length
ag = -2%,78 f, and the effective range rg = 1.69 f were determined. However
in high energy scattering, the assumptions of the effective range theory are
no longer valid. Theories must then be tested by computing the differential
cross sections and comparing them with the experimental data. In the 100 MeV
to 700 MeV incident proton kinetic energy range, several determinations of
the differential cross sections have been made, (~13  The common characteris-
tic of these measurements was a strong forward peak and a smaller backward
peak. No other structure was seen at these energies. Above T00 %eV, proton-
deuteron elastic scattering data are very scarce. Bayukov et Ei} have
measured a single point of the differential cross section near 180° at three
energies, 0.715 GeV, 1,00 GeV, and 3.66 GeV. Kirillova et al.t? have deter-
mined the differential cross section for angles less than 20° at five energies
from 2,0 GeV to 10.0 GeV. 1In the present experiment the elastic differential
cross sections for incident proton kinetic energies of 1.0, 1.3, and 1.5 GeV
have been measured for values of four-momentum transfer squared (-t) from 2.6
to 5.0 (GeV/c)E, corresponding to cosine of center-of-mass scattering angles



(cos o%) from -0.5 to =0.9. The 2,0 GeV differential cross section was meas-
ured in this experiment for -t from O.4h to 1.5k (GeV/c)E, corresponding to

cos 6% from 0.875 to 0.656. In Chapter II the backward differential cross sec-
tion is interpreted as a one-nucleon exchange process, and the results are com-
pared with the available experimental data at high energies. Chapter III con-
siders the three-nucleon system within the framework of modern quantum mechani-
cal three-body formalisms. The shoulderlike departure of the 2.0 GeV forward
scattering data from the exponential trend of the diffraction peak is analyzed
in Chapter IV via multiple scattering processes. In Chapters V through VIII
the experimental techniques and results are explained, and a discussion of the
conclusions is presented in Chapter IX.



II. ONE-NUCLEON EXCHANGE MODEL

The one-nucleon exchange model was observed by Blankenbecler et gl.l6 to
peak in the backward direction, However they confined their calculation of
elastic neutron-deuteron scattering to forward angles at low energies where
phase shift data are available, Perl et §£.17 noted that the one nucleon model
could be utilized to analyze pion-nucleon elastic scattering and the reactions
= + p +P+dand p+d+at, The one nucleon exchange diagram for p + p =
d + n* has been analyzed by Heinz et al. 18 and later by Mathews et al, 20 ook
et al, 2l pave calculated the dlagram for pion-nucleon scattering but were not
able to obtain good agreement with experimental data. Bernstein22 and Nearing25
have used the one nucleon exchange diagram in attempts to explain intermediate
boson production via the reaction p + p > d + W*¥ ,

The one neutron exchange Feynman diagram for proton-deuteron elastic
scattering is given in Fig., 1b with the R-matrix element. The initial pro-
ton and deuteron have four momenta Py and dl respectively, whereas the scat-
tered proton and deuteron have four-momenta 2 and d,. The exchanged neutron
has four-momentum n. The metric is defined such that

2 =p2 = -p2 2 =42 =_M2

for the particles on the mass shell, The I and T» in the R-matrix, with
T= 7hF 7y4s are the proton-neutron-deuteron vertex functions. The relativ-
istically invariant matrix, M, is defined by

b2 2l
R=(2n) Ng N, 8 (dp +pp-dj -1p) M (2113/2]

where N_ and N are the normalization factors for the proton and deuteron.
The dlfgerentlal cross section is then

do _ __) g%)_pflzm?

where p; and pr are the magmitudes of the initial and final three-momenta in
the center-fo-mass (c.m.) system, U is the total c.m. energy and

1

T
—— I u(p)” .
iﬁ +m + ie 1 e

T—
M = u(py) I,
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Fig. 1. (a) Notation for center-of-mass system. (b) One-nucleon exchange

Feymnman diagram. The R-matrix for this diagram is:

R = ('_')zf‘dun (211)1“L éu(dg-n-pl)(En)21t

hc




The summation is taken over all proton and deuteron spin states.

A. PROTON-NEUTRON-DEUTERON VERTEX FUNCTION

The form of the proton-neutron-deuteron vertex function must be known to
evagluate the matrix elements. The non-relativistic vertéx function has been
discussed by Blankenbecler et al. 16 and Goldberger et al. 2k a phenmenological
description of the relativistic vertex function has been given by Gourdin et

l 2> The functions of Gourdin et al. were limited by the use of only low
energy photodisintegration data to fix the pos1t18ns of the three poles used
to approximate the left-hand cut in the complex k¥ plane. As a consequence,
their relativistic :vertex functions are.valid for magnitudes of the three-momen-
tum, K, of the neutron or proton inside the deuteron less than 0,370 GeV/c°
This study of the one-nucleon-exchange diagram is concerned with large momen-
tum components of the deuteron from k = 0.465 GeV/c to k = 1,025 GeV/c, The
expression for K~ is shown to be

‘ . dA\ 2
ng:% [M§-2M£+(n2+lvﬁ):| +pl°d2+€—l———Mdg>

2. 2 '
by evaluating d2 = (n + Pl) in the rest frame of the deuteron. The vertex
function of Blankenbecler, Goldberger, and Halpernl will be considered in the
following discussion.

The vertex function of ..Bankenbecler et al. was obtained through the use
of dispersion techniques. Although the theory was developed for all angles,
they published only the real part of the forward neutron-deuteron elastic scat-
tering amplitude at 9.6 MeV. In addition to the necessary assumptions of uni-
tarity, time symmetry, casualty, linearity and high-energy convergence for:the
derivation of dispersion relations, the following additional assumptions were
made for determination of the vertex function:

(1) The deuteron is treated as a boson.
(2) The discrete neutron pole is the dominant term.

(3) Evaluation of the vertex function and propagator function is required
only at the singularity where the intermediate neutron becomes real.

(4) When the S-matrix is expressed as a retarded commutator of the pro-
ton fields, the equal-time commutator contribution vanishes identi-
cally because the deuteron cannot absorb a single pion and remain
bound.

(5) The number of subtractions should be no greater than the number re-
quired in nucleon-nucleon scattering.



(6) The discrete contributions to the absorptive part of the amplitude
yield the renormalized Born approximation with the residues evalu-
ated at the pole.

When the deuteron D-State is neglected, the vertex function may be expressed
by

p = bllogo
m

with

g =1 Ma-if (y . £)C
O
o2 M

d

where SO is the deuteron triplet spin function, y are the Dirac matrices, N
is normalization parameter, £ is the deuteron polarization parameter, and C =
iyuyg is the charge conjugation matrix with the properties 2 = 1 and Cpr =
T The D-state may be included by assuming that the D-state has the same
momentum dependence near the neutron pole., The deuteron triplet sping func-
tion is then expregsed by

with

12

S. = [%.(U(l) . T) (0(2) . {ﬂ /r2 - c(l) . 0(2)

where S1p is the usual tensor operator well known from dipole-dipole inter-
actions apnd introduced into proton-neutron interactions by Rarita and
Schwinger- while p is the normalization ratio for the D-state admixture.
The deuteron D-state has very little influence on the final cross sections,
consequently SO has been taken as the triplet spon function and the D-state
wave function has been represented by p times the S-state wave function.
This has been evidenced by defining the normalization parameter as

Q

2 (1 + o°) (1 - or,)

N =

where o =-fmb, b is the deuteron binding energy, and re is the effective
range - of the deuteron.



B. VERTEX FORM FACTORS

The expression for the vertex function by Blankenbecler et al. is valid
only in the limit where the intermediate neutron becomes real. The vertex
functions may be significantly changed as the off-the-mass-shell effects and
the high momentum components are taken into account. in applying the one-
nucleon-exchange diagram, others 18,22,23 have found it necessary to intro-
duce the Fourier transform of the deuteron wave function as a form factor,
The form factor was used to adjust the shape and the magnitude of the cross
sections to experimental data., The advantages and disadvantages of various
vertex form factors will be discussed. If the vertex function can be written
as I' = HS, where S, contains all of the spin dependent terms, Chew and Gold-
berger27 have shown that

1

H=<y(p) | v(»)| e -

where r is the relative coordinate of the neutron and proton, V¥ (r) is the
deuteron wave function, and V(;) is the central force nuclear interaction po-
tential. The potential V(r) may be written as an operator V (r) =lﬁ - b via
the Schr¥dinger equation for the deuteron to show that

2 2
H= ) ) e ik s
m -

The expression for the vertex function is then

2 2 :
r=_w<¢(£)|e-iﬁ‘i8£>s

m o]
or
r = EEE SOF(K)
m
with

_P R

W(r) | e -ifer >
LyN

F(k)

The vertex function of Blankenbecler, Goldberger and Halpern is valid onlyin.
the limit k° = -0f where the neutron and the prgton Eorming the deuteron are
on the mass shell, The value of F(k) is 1 at & = -a .

Two deuteron. wave functions have been discussed. by Hulthéh et 35028
The first phenomenological wave function is

v(r) =8 (e e Py



Using this wave function, one obtains

2
N
F(R) - 2 2
B + K
This form of F(k) was derived via dispersion techniques by Blankenbecler and
Cook°29 A second Hultheh wave function introduces an infinitely repulsive
core of radius T, to %ive the wave function the form

v (r) =0, r <r,
V() = N -or [? e B (r- rc{] , rT>7r
- T ~ ¢

The vertex form factor then becomes

a + K @ sin Kro + K cos Krg

K O£2+l'¢.2

(o + B) sin krg + K cos Krcj}
(a +B)e + k2

The constants & and N have been fixed by the binding energy and the asymptotic
behavior of the wave function while the value of B, 5.18 @, is chosen to sat-
isfy the normalization

hﬁu/\ dr 2 (1L + 0®) ¥ (r) =1 .

o

In Fig. 2, F(k) is shown for several values of the core radius, As the core
radius increases, the minimum of F(k) is shifted toward smaller values of k.

The Schrodinger e%uation for the two-nucleon potential was solved numer-
ically by Gartenhaus 5 using Yukawa theory with a cut-off energy for virtual
mesons. The Gartenhaus wave function improves upon the Hulthéh wave function
for small values of r. M’oravcsik51 has fitted the Gartenhaus numergtal wave
functions by several analytic forms, the best of which is

V(x) =3 (e - en0) (1. emeT) (1 - 78)

yielding
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F(k) = (a2 + K2 11
(o +K2)  (a® +2)

1 1

(@+c)2+k2  (a+g)?+x2

—

+ + 1
(@+c+g)2+r°  (c+a)P+x?

(d + g)2 + ke (c +4 + g)2 + K°

where ¢ = 6.853 @, d = 8.190 @, and g = 10.776 @. In Fig 3, F(k) is shown

versus K for the three above wave functions. The form factor of the Morav-

csik fit to the Gartenhaus wave function is observed to display the effects

of a repulsive core similar to the phenomenological hard core in the Hulthen
wave function.

C. DIFFERENTTIAL CROSS SECTIONS

The sum of the matrix element squared given in Section A may now be ex-
plicitly obtained by substituting the proton-neutron-deuteron vertex function
for T and summing over the proton and deuteron spins. The details of the spin
summation are given in Appendix A, and are shown to yield

iy 'M2l= 2 (emMy- py-d )2 L L
a~ P1
6 108 2 (mf)2  (n2 + n2)2

() B

2
K =En2w§ - nf dyedy - n° 4, - migne (d) + dp) + 20y nedp - MG n-n_J

where

The differential cross section then assumes the form

2.l e
o 3x°N |:2mMj p]dE:I Pr o [F (K% I
a0 evPng n? + m Py

10
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K
Fig. 3. Form factors for employing various wave functions. ( ) Hulthen
with hard core; (— — —) Hulthén without core; (—-—.—) Moravcsik analytic fit.
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with# =c =1, U is the total center-of-mass energy. If the notation of Fig.
la is used, the center of mass elastic differential cross section becomes

2

LR 2 h
as 3 N ['zmMa + U Uy + K cos o [?(Kﬂ

i

an euem“Mg L_QUpUd - M + 24 cos %
2 2 4 2
onfME + mi + TR - ZmMUUg + M HEUS - hMULUg
2.2 2 ,
+ 2UpUd + X (QUbUd - mMy - 2M§)
2 5 1\42
+ k cos 6% (2k= + 2UpUg - 3M; - 2mMy )

where k is the center-of-mass three-momentum, U, is the center-of-mass energy
of the proton, and Ug is the center-of-mass energy of the deuteron.

The differential cross section is displayed in Fig. 4 for different form
factors, F (k). The solid curve assumes F (k) = 1, which essentially does not
utilize a vertex form factor The unmodified vertex function of Blankenbecler
et al. predicts a slope of the backeard peak in satisfactory agreement with the
experimental data. The dasHled curve shows the differential cross section with
the regular Hulthéh wave function determining the form factor. The slope of
the backward peak becomes much steeper, and the magnitude of the peak is re
duced by several orders of magnitude. The effect of using the best Moravcsik
analytic fit to the Gartenhaus wave function is evident in the double-dash
double-dot (--..) curve The passage of the curve through zero at €o8 €% =
- 0.957 1s due to the form factor. In Fig. 3, the form factor obtained from
the Moravesik analytic fit is shown to pass through zero in a smooth and well-
behaved manner. The point at which it passes through zéro happens to be in-
convenient for application to differential cross sections below 1.5 GeV in-
cident proton kinetic energy. The results from using the Hulthén hard core
wave function are distinguished by the dash-dot (----) curve. The different-
ial cross section is observed to turn over near cos 0% = - 1.0. The point at
which the slope passes through zero is determined by the radius of the hard
core as seen from Fig. 2. 'To obtain maximum agreement between the available
experimental data and this expression for the form factor, a radius of at least
0.71 f was necessary. The differential cross sections predicted by the one-
nucleon exchange diagram are shown in Figs. 5-10 along with the experimental
data. The theoretical curves at all energies have been normalized to the
point cos €% = - 0.875 at 1.0 GeV incident proton kinetic energy.

For each energy, the unmodified vertex function of Blankenbecler et al.
yielded the best fit to the data. The form factor utilizing the Hulthén -
phenomenological hard core wave function did not fulfill his dntended goal of

12
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accurately representing the high-momentum components of the deuteron at the
energies studied here. The regular Hulthéh wave function and the Moraveisk
fit to the Gartenhaus wave function suggested form factors which show poor
agreement with the data. The Moravesik form factor may, however, show bet-
ter agreement with the data than the Hulthén hard core form factor at higher
energies because before the catastrophic influence of passing through zero
the shape of the predicted differential cross section was in good agreement
with the experimental slope.

20



ITI. THE THREE-NUCLEON SYSTEM

The quantum mechanical three-body scattering problem has recently become
tractable through new formalisms. The old methods used various perturbative
operations which introduced many phenomenological three-body parameters to
fit experimental data and tended to overlook the requirement that the bound
states and the scattering states be dictated by the same dynamical relation-
ships. Unlike the two-body problem, a choice of coordinate frames cannot re-
duce the apparent number of particles in the three-body problem. The six in-
dependent momenta in the center-of-mass system and angular momentum considera-
tions complicate the kinematical relationships. The multichannel process for
quantum mechanical systems was put on a rigorous mathematical foundation by
Jaut:.’rl.fslL He derived explicit integral representations of the wave operators.
However, the appearance of delta functions in the kernel of the Lippman-
Schwinger edquation 55 made classical iteration methods impractical. Also the
homogeneous Lippman-Schwinger equation possessed solutions when bound states
existed between. pairs of particles which made the problem of satisfying bound-
ary conditions quite difficult. 1In three-body processes it is possible for
two particles to interact while the third particle does not interact. This
leads to disconnected graphs which yield integral equations with singular
kernels. These equations cannot be solved by the Fredholm method, perturba-
tive methods or any other known form of computation.

The three-body problem was cast into a form solvable through present
analytical means by Faddeev.”® A set of three-body equations was given in
which the kernel had no continuous spectrum and for which the hemogeneous
equation possessed a solution only for bound states of the entire system.

The kernels are generalizations of the T matrix and may be determined by
working only with pair amplitudes. The coupled integral equations describe

all possible processes of the three-particle system without the introduction
of free three-body parameters, and the three-body amplitudes obey unitarity

on and off the energy shell. The total angular momentum has been separated

in the Faddeev equations by Omnes?T in a manner which preserves the symmetry
of the problem with respect to the three particles. The many degrees of
freedom in the Faddeev equations make them difficult to solve numerically.

This may be resolved by approximating the two-body potential as a sum of separ-
able potentials. Mitrad8 has shown that exact three-body equations are obtained
involving only a few coordinates in the intermediate states if the two-body
operator is compact. If the parameter of the separable potentials is adjusted
suitably, the two-body bound state may be considered in the calculation.

The separable potential method is identical in the limit of zero wave function
renormalization for the two-body bound state with the quasi-particle method

of Amado’? and Weinberg.”o This calculation will follow the field theoretic
method of Amado because of the physical clarity of his presentation.
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The idea of substituting elementary particles for composite systems was
rigorously studied by Jauchd4 and by Vaughn, Aaron, and Amado.ul Jauch pointed
out that the distinction. bgtween elementary particles and composite fragments
is a superficial one from the view of scattering theory. The picture of the
composite particle as an elementary particle only breaks down when the internal
structire reveals itself in breakup processes. Vaughn, Aaron, and Amado showed
that the nonadiabatic behavior of the composite system is overcome by intro-
ducing it originally as an elementary particle. Then soluable linear integral
equations are derived, whose solutions exactly represent scattering, breakup
or stripping reactions. Amado>9 later displayed how these equations could be
put into the form of the Lippman-Schwinger equations. Since linear integral
equations are derived, off-the-energy shell amplitudes are involved if three-
body unitarity is to be satisfied. Remaining on the energy shell requires
the solution of nonlinear integral equations, In the following the incident
proton will be on the energy shell, and naturally the outgoing proton will be
off the energy shell to define the integral equations. Aside from elastic
scattering, deuteron breakup into a proton and a neutron will be the only re-
action permitted in the following paragraphs. In the energy region considered
by this work, deuteron breakup is overwhelmingly the maJjor contribution to the
total cross section. Using the notation of Aaron, Amado, and Yam 2 the spin-
triplet pair interacts to form a "d" and the spin-singlet pair interacts to
form a "@". The spin-triplet and spin-singlet scattering amplitudes are as-
sumed to have no coupling between them, and they are given nonrelativistically

by

<k, d |t () |¥%,a>=y_<k d|BE] k,a>

dd
3 . |
+ 15 J€p xy <% 4 | B(E) | B, a> 2, (7558) <B,a] o(B)] K0 >
(2n)
¢ =[5ty <ha | BB B0 >R (5 B) <3, ol t(B) | T >
(2r)”

<Eo | t(B) |k,a> = Yo <%0 | B(E) | k',d>

+—E_ [dpy <Ko | B(E) |3,d> B, (pE) <D, 0 | H(B)| k4>
. 3 00) P
(2n)
— - [ tgq <0 | B(E)| B,a> Py (p%E) <pa | t(8) |E,a>
(2n)
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where“A = 2m = 1, B(E) is the Born approximation for the exchange of a nucleon
between pairs, P(pE;E) is the full propagator in the intermediate state, and
the x's are the spin and isospin factors. The graphical representation of
these equations is given in Fig. 11. The explicit form of the Born terms in
the integral equations are

N o Vg [(R> ¥ E'/z)g] A BK + K/z)e:l

>
<k,d| B(E) | k',a>=rT - ,
’ ’ d E-k2-k'2-. (kK + K')2 + i

> > 2 v ['ﬁ+'ﬁ'22:|V [K-*_}EQE_J
<k,CP IB(E)I k')cP>_Pcp ) (,. r/?, (D—> (—) 2/)

Ei-k2 - k'@ o (k+ k') + ie
<ko |B(E) | k',d>=<k,d |B(E)]| Ko>

o, o ¢ 122] v k127
¢

E -k - k2 - (kK +k)2+ ie

where Tq and [y are the coupling constants to the "d" and "¢" quasiparticles,
Vg and V¢ are the vertex form factors. The propagators for the intermediate
states have the form

2 2 2 -1

r V. (n®) V., (n%)

Py (p°;E) = (0 +1b) & fd5n d d
(2n)3 (2n° + b)2 (0 - 2n + ie)

. 2 T, (07 vy (9]

P, (0E) = - |1+-9 _Jadn @ o

¢ i
(o) (0 - 2n + ie)

where 0 = F - 24P2 and b is the binding energy of the deuteron. The intro-

duction of separable potentials is evidenced by the appearance of only one
vector variabile, p, labeling the intermediate states. The form of the vertex
form factors must be chosen so that the kernel is square integrable in order
to use the Fredholm method of solving these equations. Amado has proven that
this condition is satisfied in momentum space by

V(ke) = c/nl R >0

for large K which corresponds to investigating the potential at small distances
in configuration space. Using the momentum representation of the Hulthé% wave
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Fig. 11. Dilagrams for proton-deuteron scattering. The nucleon is a
single line; the double lines are @ for singlet and d for triplet;
the small ecircles are nucleon-nucleon vertices; the rectangles and
large circles are three-nucleon amplitudes.
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function yields

v(k) = L1 and v (k)= L
d 0 5
K2 + By kS + 55

which approximates the left-hand cut in the complex three momentum plane by
a pole at K2 = - BE. Only two-body nucleon-nucleon parameters enter the
calculations, and in terms of the triplet scattering length ;s the singlet
scattering length ag and the singlet effective range r, they are given by

i_‘= Oty Bd (2 Bd +wqg)
2

ag 2 (og + By)

l"i =32 x Q3 Bd (Old + Bd)B

I
2 16 n 5¢ ag

© ey By - 2

16 rg. L
B = 2__ 1+(L - Sy 3
¢ org 9 ag

where aﬁ = b/2. The integral equations may be solved by the Fredholm inver-
sion method* for low energies, but at the energies considered here Yam!*4

has shown that the Neumann series for the equations converges. The first
term of the expansion is the Born approximation. The unnormalized different-
ial cross section predicted - by the Born term is plotted in Fig. 12 both with
the Hulthéh form factor and with the form factor set equal to one, (i.e.,V
(k2) = 1). The spin average of the differential cross section when only the
Born term is included takes the form

do 2

dQ

| tga (| B(E) | ) | £ w2y (s | B(E) | kL) |

W o

od

The differential cross sections normalized to the point cos 6% = - .875 at

1.0 GeV incident proton kinetic energy are shown in Figs. 13-16  For the
first term of the iteration the differential cross section has a slope which
is much too steep when the form factor is included. The use of other deuteron
wave functions in determining the form factors (see Chapter II) does not im-
prove matters significantly. Further iterations of the equations including
the form factor only increases the slope of the backward peak as the amplitude
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raises in the forward direction to satisfy unitarity. Consequently when the
vertex form factors are included, the experimental data is not adequately pre-
dicted because the high momentum components of the deuteron are suppressed too
greatly. When the form factor equals one, the kernel of the integral equations
is not square integrable as mentioned above, and the Fredholm method is not
applicable. - The Neumann expansion in this calculation depends upon the approx-
imation of the potential by a finite sum of separable potentials, and the factors
of the separable potentials are proportional to the bound state form factors.45
In the three-body system the Neumann expansion differs from the Born expansion
because in general the kernel is not a linear function of the two-body coupling
constant. When the Hulthén form factors are used, the Neumann series converges
for sufficiently high energies for any partial wave. However, when the form
factors are set equal to one, the convergence of the Neumann series is not
readily proven because the kernel is not known to be compact. The Born series
diverges independently of the incident energy of the proton whenever a two-
body bound state enters the three-body system.”- The zeroth iteration, which
is the Born approximation, is in closest agreement with the experimental data.
The calculations then reduce to the one-nucleon exchange diagram with a non-
relativistic propagator In the discussion of Chapter IX, the results of this
chapter and Chapter II will be compared.
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IV. OFF THE FORWARD DIFFRACTION PEAK

Elastic differential cross sections for scattering of elementary particles
at high energies generally have a large peak in the forward direction which has
been denoted the diffraction peak. '‘The diffraction peak has been“étﬁdiéd”fér15
proton-deuteron elastic scattering in the few GeV region by Kirillova et al.

but the analysis was not carried beyond this peak due to the lack of data.

The present experiment observed & shoulderlike departure from the strict ex-
ponential trend of the differential cross section for four-momentum transfer
greater than O.5,(GeV/c)2 at 2.0 GeV incident proton kinetic energy.u8 Pre-
viously, secondary peaks or shoulderlike structures have been noticed in pion-
proton elastic scattering, kaon-proton elastic scattering, pion-proton charge
exchange séattering, kaon-proton charge exchange scattering, and positive pion-
rho elastic scattering.”9‘55 However the secondary peak does not appear in
proton-protdn and proton-neutron elastic scattering.56 No satisfactory theo=
retical model for the Secondary diffraction peak has been advanced.

The most common method of studying the secondary peak has been via the
optical model. As pointéd out by Simmons,57 the position, height, and to some
degree the width of tht secondary diffraction peak in pion-nucleon scattering
may be fitted with the optical model. However, the differential cross section
goes to zero as many times as the value of the maximum angular momentum con=
sidered. For proton-deuteron elastic scattering at 2.0 GeV incident proton
kinetic energy, the model would predict a differential cross section which
goes to zero fourteen times since Lmaiz kR ~ 14. If a diffuse edge is added
to the deuteron by assuming small contributions to the differential cross sec-
tion by values of angular momentum greater than ILy,y, the postion and magni-
tude of the secondary peak are adversely altered although the number of zeroes
may be reduced. Due to the composite nature of the deuteron, other avenues
of approach are available which are ostensibly closed when the internal struc-
ture of the target particle is unknown. The following methods make uUse of the
known composite structure of the deuteron in an attempt to interpret the be-
havior of the proton-deuteron elastic differential cross section off the for-
ward diffraction peak.

A. IMPULSE APPROXIMATION

The standard impulse approximation, which neglected multiple scattering
effects, gave a reasonable description of proton-deuteron elastic scattering
at small angles in the few MeV region. 58,59 The basic assumptions were that
the incident proton never interacted strongly with the two components of the
deuteron at the same time, and the binding force of the deuteron was neglig- .
ible during the interagtion time. If the incident proton is number 1 and the
target proton and neutron are numbers 2 and 3 respectively, let Vo and Vz re-
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present the two-body interaction of the incident proton with the proton and
neutron. Let U be the interaction between the constituents of the deuteron,

E be the total energy of the system, and K be the total kinetic energy operator
of the system. The total Hamiltonian for the system is then

s
1]

K+U+ V2 + V5

Hy + V

where H) = K + U is the unperturbed Hamiltonian. The scattering matrix, T,
may be written, as specified by Chew and Goldberger,60 in the form

T=V+ VG
A . 1
with G = lim TR i
0 - ie

Then neglecting multiple scattering, T may be written as

L=
1}

+ + ...
St2 St5
where th =V, + 7V L V
2 2 EE-K-V2+ie 2
t, =V, +V 1 \')
3 3 3E -K - V5 +ie 3

and S is the "sticking factor" defined by Chewd3 to be
> >
igeT

where q is the three-momentum transfer and ¥ (r) is the deuteron wave function.
In the two-body problem, the relationship between g and the center-of-mass
angle 6% is q = kL, sin (60%/2) where ki, is the momentum of the incident pro-
ton when the target proton or neutron is at rest. For the three-body problem
the three-momentum transfer remains the same, but the relationship to the
three-body center-of-mass scattering angle eg is then q = (4/3) kpsin 6§/2.
Consequently the scattering angle of the proton-deuteron system is related to
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the two nucleon scattering by

o¥

o%
sin 2 = n -3
2 2

u
\NI =

which yields the center-of-mass solid angle transformation

Ay 16

'dQB 9

The elastic proton-deuteron differential cross section has been expressed by
Chew65 in terms of momentum transfer as

feZlg v P s/

= +
£ f np bp

T M np pp|

where fpp and fpp areqthe spin non-flip amplitudes and fpyp, fpp are the spin
flip amplitudes. The relative phase of the proton-proton and neutron-proton
amplitudes and the difference in magnitudes of the spin flip and spin non-
flip amplitudes are not known at the energies of concern in this work. Ne-
glecting the D-state of the deuteron and only considering the spin dependence
required by the Pauli exclusion principle yielded the differential cross sec-
tion in the form

do 16 | do 3 dopy
pd _ 7 | BP P cos 4| 5% (6%)
df 9 | a0 "y d92 d92 s

in the center-of-mass system where A is the difference between the neutron-
proton and proton-proton phase shifts. The S (6%) or the corresponding S(q/2)
was determined by using the regular Hulthén wave” function and the best Morav-
céik fit to the Gartenhaus wave function (see Chapter II, Section B). Using
the Hulthéh wave function yielded the relationship

_ 8ﬁN -1 9 -1 4 . -1 4
/2 ——— | tan i + tan ) 2tan CERD

whereas the Moravcsik fit to the Gartenhaus wave function yielded
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; 2
S(q/2) = ul Ii‘;al’l-l i + tan-1 4. + tan'l ol

q Loy Lg Lo + Le
4 tap-l 4+ tan'l q +tan~l g
ha + bg L (a+c+g) be + La
+ tan“l*h——ﬁL-— + tanl —— 2 -2 tan-1 —4
La + Lg b (c+d+g) 20 + 2d
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+ L tan~1 q + L tan-1 d -8 tan-1 q
2 (a+c+4d) 2 (ax+d+g) 2(a+c+d+g)
-2tanh 9 otanl 4 4+ ) tan-l q
2 (c + 24) 2 (2d + g 2 (c +24 + g)
-2 tan~t a4 -2 tan~l q +4'tan-1 a4
2 (2a + 2¢ + g 2 (o + 2¢c + 4) 2 (ax+2c+d+g)
-2 tan~L q - -1 q L tgan-l a
s (e +c+2g N g rarey T Iy AT
-2 tan~1 q -2 tan-l q -2 tan~l_4 =~
2 (ax+2c +d+ 2g) 2 (2c + 24 + g) 2(c + 24 + 2g)

Due to the lack of suitable neutron-proton phase shift data in this region,

the phase shift difference has been set equal to zero which implies that the
neutron-proton and proton-proton differential cross sections are equal. The
predicted proton-deuteron elastic differential cross section at 2.0 GeV in-
cident proton kinetic energy is shown in Fig. 17 using the experimental pro-
ton-proton elastic scattering data of Bargeb4 and the S(q/2) from the Hulthehn
wave function. The use of the Moravesik fit to the Gartenhaus wave function
gives essentially the same results. The impusle approximation is in good agree-
ment with the small angle data of Kirillova et al.,15 but the strict exponential
trend of the curve does not reproduce the shoulderlike departure of our data
from the diffraction peak. Since there is no evidence of a secondary maximum
in either proton-proton or neutron-proton elastic scattering, there is no

reason to expect the impulse approximation to predict one in proton-deuteron
scattering. However if multiple scattering is allowed, the theoretical curve
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may tend to follow the experimental data more closely.

B. MULTIPLE SCATTERING PROCESSES

The effect of binding and multiple scattering processes may be studied
as corrections to the impulse approximation as has been shown by Everett.65
For small momentum transfers, Chew and Wick62 have estimated that single scat-
tering dominates when the condition

1
B (Hp <

R® lLx

is satisfied where R is the average internucleon distance, X is the wavelength
of the incident proton dividedwby 2n, and 0 is the total cross section. At

2.0 GeV the left side of the inequality equals 0.049, and as seen in'Section:A the
single scattering processes indeed dominate on the diffraction peak. However,
for larger momentum transfers around -1.0 (GeV/c)2 the inclusion of multiple
scattering may have a more noticeable effect than expected from the above in-
equality. An analysis of multiple scattering in the collision of particles
with deuterons using a generalized form of diffraction theory has been advanced
by Franco and Glauber.66 This work follows the method of Franco and Glauber
because of the simple physical interpretation of the scattering effects as they
appear in the terms of differential cross sections.

Near the forward direction, the scattering amplitude at high energies may
be written as

f(i',i) =m%5 fexpi (k - %) . @ [} - exp <fix (3i> da
j‘[ .

where U is the impact-parameter perpendicular to the direction of the beam and
X (ﬁ) is the phase shift. For a target particle consisting of a total of A
nucleons with positions ry,...,rp, the wave of the incident particle will under-
go a total phase shift x, . (¥,%1,...,¥y). If the incident particle interacted
only via two-body interactions with the target nucleons, the total phase shift
would be the sum of the individual phase shifts. If % is the projection of

the postion coordinates on a plane perpendicular to the incident beam the total
phase shift may be expressed by

-
Xtot (U, %l’ cee ,rA) ==> X3 (4 - §j).
£



For the deuteron, let ;n and T be the coordinates of the neutron and proton
prespectively. Then the relative internal coordinate is ¥ = ?p - ¥,. The
total phase shift is

> 1+ -> 1+
= - + +
Xtot = Xn (u 55) XP (u ES)

with 8 now the projection of r. Let the function

Tiot (U, B) =1 - exp [}xtot (3, E)j]

be introduced for abbreviation purposes. Since the comparison of the proton-
deuteron scattering amplitude with the proton-proton and neutron-proton scat-
tering amplitudes would require two center-of-mass systems, the following cal-
culations refer to the laboratory system for convenience in notation. The
scattering amplitude is then the matrix element between the initial state Ii >
to the final state |f>, which is

> > s
Fpy (k',k):-é-k. J exp E_ (x - k') . 'ﬁ} <f | Mot (B, 3) | 1> 40 .
7
the contributions from single scattering and double scattering are considered
here, and the appropriate diagram of the calculated processes is shown in Fig.
18. Tertiary and higher order scattering processes involve at least one or
more backward scatterings and have a negligible effect on forward proton-

deuteron elastic scattering. If we let the momentum transfer be represented
by“ha =h (i - i) and let the energy transfer to the target particle be neglig-

ible for forward scattering, the elastic scattering amplitude assumes the form
ik .
Fig (@) =2 [exp (18- %) &l [ vf (B) rop (5, 3) v, (B) oF .

The scattering contributions of the individual nucleons may be separated by

defining
- 1 -_— - 1
' =1 - exp ‘LX (u)' and Pp =1 - exp ‘JX ()

to obtain the identity
> 1> -> 1 > 1 > 1

Then substituting this expression in the above equation and shifting the origin
in the U plane yields

> >
S

i ig. 2 o\ > -> ->
Fis (@) = 35/ exp (352) ¥ (Da¥fexp (138) 1y ()
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Fig. 18. Diagrams for single and double scattering. The impulse approxi-
mation only considers the first two graphs on the right hand side. The in-

fluence of all four graphs on the differential cross section is considered
in the calculations of Section B.
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ik -iaeg o > > > > > >
e J exp( > ) Vi () dr [ exp (iq.u) Iy (u) du

; 2 g
Ly () G S exp (DTG - B)yr, (G- R) &

Using the expression for the sticking factor defined in Section A and noting
that I'(u) is the Fourier transform of f(q), that is

. > > >
I (u) == [ exp (-q-u) £ (a) d9
2nik

the elastic scattering amplitude takes the form

Ry (@) =8 £, @ +s(-2D & (D
P [8(A) £, (34 Q) £y (230 &

The elastic differential cross section is the square of Fyiy (q) and may be .
written as

%g- -2 (3 ) [lflo (@] g, (D] % +2re £ (d) £z (E)J

L CR [lff; @ +ex @] 7 s@) £, GE+T)

1+ >
fp (5 a-a) dq‘}

1
s
_(2nk)®

l fs(ﬁ') fn (%a + 3') f‘p (%Aq’*_ ’(EI) d’iv I 2

The contributions from single and double scattering appear explicitly in the
above equation. The first term corresponds to the scattering by a free proton
and by a free neutron and the interference of the two wave amplitudes respec-
tively. The second term corresponds to the interference between the double-
scattering amplitude and the neutron single-scattering amplitude plus the in-
terference between the double-scattering amplitude and the proton single-scat-
tering amplitude. The third term corresponds to solely double-scattering.
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For application of the differential cross section formula, expressions
must be found for the scattering amplitudes fy (4) and fu(4). The amplitudes
have been assumed to be of the Gaussian form in the momentum transfer and are
represented by

£, (D) = (1 + ) (xop/n) exp (-Apa®/2)
£, (D) = (1 + o) (ko /i) exp (-4 0°/2)

where 0_ is total proton-proton cross section, 0y is total proton-neutron cross
section, is the ratio of the real tdothe imaginary part of the proton-pro-
ton scattering amplitude, o, is the ratio of the real to the imaginary part

of the proton-neutron scattering amplitude, A_ is the slope of the proton-pro-
ton elastic differential cross section, and Ap is the slope! of the proton-neu-
tron elastic differential cross section. Substituting thesd expressions for
the amplitudes into the differential cross section yields

2
a0 _ 42 (1 K |2 2y 2  -A g° 2y o -Ag
i (5 ) ——)‘{(l+an) ot e ~n +(1.+ap) 0% e Ap

1 2
- 5(A) + A )Q}
+2(1 + ohai) 0 0pe 2 Ay P

2
koo _ 2 o1, 2 1. 2
- .0 ¢ (An * Ap)q /8 [ (L + aﬁ)cne sl (1 + ai)cpe' Zhpd J

T O T

222
k 0.0

1 ,
PR (1 + Gﬁ + ag + Q% + a%) e " E(An + Ap)qE

l .
1fs(a') e~ %(Ap- An) 9-q9' ¢ T E(An + Ap)q'2 da'lg

Although the Op and o, may not be equal as reported by Kirillova et al.,15
the slopes of the differential corss sections have about the same values as
recently measured by Kreisler et al.56 Letting A, = Ap = A simplifies the
equation to
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do _ 42,1 k \2  -Aq? 2
w S (5 a) (Z; e ~Ad (1+ Oﬁ)ci +(1+ Q)Gp t2(l+a ap)oncg]
2
k“o,0 2 12
_ n'p 3Aq° /L (1 + o%)c + (1 + ai)c [s(qa')e -Aq dq'
(bx)d
kgogag ( o o 02) %Aqe Ag'? 2
P —2L 12+t o+ ) S (q')e =™ " 4q
GigE TR e ) e |18 (et v

It is interesting to note the magnitude of the error in the o determined
by Kirillova et al., who found o = 0.2 + 0.4 and ap = -0.12 + 0.07. The
values of Q, and Ob determine the relative phase between the single and double
scattering amplitudes, and the effect of varying o, to the minimum experimental
value is shown in Fig. 19. A theoretical evaluation of the real part of the
proton-proton forward scattering amplitude has been published by S'o'ding.82 By
using dispersion relations with the integration in the unphysical region re-
placed by the p meson and w meson poles, Stding obtained ap = -0.27 for 2.0
GeV incident proton kinetic energy. The real part of the proton-neutron for-
ward scattering amplitude has been determined by Carter and Bugg, who fitted
the low energy contribution from the unphysical region with only the p pole.':)'5
Carter and Bugg found ¢y = -0.50 at 2.0 GeV. The dip in the differential
cross section is much less pronounced when the oy and Qp assume the more nega-
tive values of the theoretical predictions as evidenced in Fig. 19. Using
the S(q/E) determined by the Moravecsik analytic fit to the Gartenhaus wave
function and the predicted values of o, and ap, the theoretical differential
cross section is displayed in Fig. 20. The theoretical curve is in good agree-
ment with the experimental data in slope and magnitude except at the dip
caused by the interference terms. There are no free parameters in the formula-
tion since all quantities are set by nucleon-nucleon data. The valley at lt[ =
0.38 (GeV/c)” has no apparent justification, but perhaps it can be eliminated
by selecting amplitudes which represent the scattering at higher momentum trans-
fers better than the Gaussian amplitude.
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V. EXPERIMENTAL PROCEDURES

The differential cross sections were measured for backward proton-deu-
teron elastic scattering at 1.0, 1.3, and 1.5.GeV incident proton kinetic en-
ergies and for forward scattering at 2.0 GeV. Protons at the desired energies
were obtained from the external beam 2A of the Cosmotron at Brookhaven Na-
tional Laboratory. The beam was analyzed by a system of three bending magnets
and three quadrupoles and focused on a three-inch-long liquid deuterium target.
The primary difficulty in determining the differential cross sections at high
momentum transfers is that the magnitude of the high momentum transfer por- |
tions of the differential cross section is several thousand times smaller
than the forward peak. The background from the deuteron breakup processes,
which yield many protons available to trigger the counters for each deuteron
of elastic scattering processes, is quite large at the energies considered in
this experiment. The problem of the immense background was overcome by detect-
ing both of the scattered particles instead of only one as is the case of most
proton-deuteron elastic scattering experiments and in addition by performing
momentum separation and time-of-flight analysis on one of the scattered parti-
cles. By this procedure the chance events were effectively reduced to less
than 10% of the desired events.

A. BEAM

The beam was pulsed at 30 pulses per minute yielding 8 x 107 to 1 x 109
protons per pulse for convenient rates of accidentals. The kinetic energy
of the protons was determined by two methods. The first method was to meas-
ure the frequency, f, and orbital path length, L, of the internal beam, If
the proton rest mass equals M, the kinetic energy is known to be

T M| —E .
[(1 - 1£)? }

The second method consisted in measuring the Cosmotron magnetic field, B,
and the radius of the circulating beam, R, which determine the kinetic energy
through the relationship

where ¢ = 1.

T o= (M + 28%R2)L/2 Ly
where e is the proton charge.
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Bennett has found the Cosmotron to have an inherent energy spread of 2
MeVn67 The two deuteron telescopes also provided a check on the beam energy
(see Section D). These methods determined the beam energy to within 1%.

B. BEAM OPTICS

The components of the beam optical system are shown in Fig. 21. The
currents in the components H200 to H205 were determined by a beam-design com-
puter program to first order. The fine tuning of the magnets were empirically
made by exposing Polaroid film simultaneously at the target position and a
beam line counter position. The final current values with their energy de-
pendence is given in Table I. The bending magnet H200 served two purposes.
The angle at which the beam leaves the Cosmotron ring depends upon the beam
energy. H200 allowed one to compensate for the energy dependence of the exit
angle by regulating its magnetic field. A collimator was placed in the gap
of H200 to provide additional control of the beam spot size. As seen in
Table II, the pole faces restricted the spot size vertically to 1—1/2 in.

The collimator allowed one to simultaneously satisfy conditions of small spot
size and small angular divergence for the beam.

Three quadrupoles focused the beam at the target. Q201 and Q203 focused
the beam horizontally while Q202 provided vertical focusing. The currents in
these quadrupoles were adjusted to restrict the beam to a maximum angular di-
vergence of 3-1/2 mrad and a maximum spot size of 1-1/2 in. at the target.

The bending magnets H20L and H205 guided the beam along the axis defined
by the center of the target and the center of the C counter. Bending magnet
H206 (Fig. 22) provided momentum analysis of the scattered deuterons at inci-
dent proton kinetic energies of 1.0, 1.3, and 1.5 GeV and of the scattered
proton at 2.0 GeV. This magnet will be discussed with greater detail in Sec-
tion D.

C. LIQUID DEUTERIUM TARGET

The proton beam passed through at .010 in. mylar window to reach the
vacuum chamber enclosing the target. The target was connected by a gravity
fill line to an overhead reservoir, which maintained liquid deuterium at a
temperature of 20.7° + 0.2°K. Liquid deuterium at this temperature has a
density of .1697 + .0002 g/cc. A 010 in. mylar cylinder with mylar domes
on the end constituted the target. The cylinder was 3.00 in. in diameter and
with the domes had an overall length of 3.00 in. in the median plane. For
thermal insulation, the target cylinder was wrapped with 20 layers of .00025
in, NRC Super Insulation (aluminzed mylar) in addition to evacuating the sur-
rounding chamber. The reservoir was wrapped with 120 layers of the NRC in-
sulation. The scattered particles passed through a .0l4t in. U-shaped window
in emerging from the vacuum chamber.

L6
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TABLE I

MAGNET CURRENTS (AMPS)

Magnet T

p
1.0 GeV 1.3 GeV 1.5 GeV 2.0 GeV
H200 70 55 50 28
Q201 116 137 146 200
Q202 290 335 365 W
Q203 2o 275 300 375
H204 168 235 i 364
H205 745 8L46 989 1272
TABLE II

MAGNETIC CHARACTERISTICS

Magnet Size Max. Current Max. Mag. Flux
(amps) Density (k Gauss)
ﬁ2oo 1.5"x6"x12" 250 11.4
Q201 8"x16" 1000 11.5
Q202 8"x32" 1000 11.5
Q203 18"x32" 1000 11.5
HoO4 18"x36" 800 22.7
H205 12"x60" 1820 17.6
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D. DETERMINATION OF SCATTERING ANGLES

The kinematical relationships for proton-deuteron elastic scattering were
determined by an IBM 7090 computing program to less than °Ol% uncertainty.
The center of the target and the center of the pivot for detection telescopes
was determined; then a zero degree beam line was constructed. A theodolite
was centered on top of the pivot post to determine the polar angles of both
scattered particles. A second theodolite was used to record the height of the
center of the target at convenient locations on the shielding walls. These
reference points were then utilized to position the centers of the scintilla-
tion counters at beam height.

The first counter of the P telescope (Fig. 22) determined the solid an-
gle of acceptance. In backward scattering of the incident proton, the shorter
arm determined the polar angle of the scattered proton. The angle between
this telescope and the beam line was varied by rotating the I-beam, which was
connected to the pivot under the theodolite and rolled on a leveled steel
platform. The longer arm determined the polar angle of the scattered deuteron
in foward scattering of the incident proton collisions. This arm was varied
by rolling the I-beam along a circular rail located 19 ft from the target.

The Pl and P2 were aligned along the center of the I-beam using the theodo-
lite mounted over the pivot post. The center of the Pl was set with the the-
odolite to the polar-angle specified by the kinematic tables mentioned above.

The deuteron (proton) in backward (forward) scattering of the incident
proton was detected by two overlapping telescopes consisting of three counters
each. These counters constituted the D telescopes and were referred to as
D1A, D2A, D3?A, and D1B, D2B, D3B. The D1 and D2 counters were supported by a
motorized carriage, which also supported a bending magnet H206 between them.
H206 deflected the particles passing through D1 by +10° to provide momentum
separation of the desired elastically scattered particles from quasi-elastic
events and reaction products. The 18 in. x 36 in. H206 attained a maximum
current of 1000 amps, which was equivalent to a magnetic flux density of
15.3 k gauss with a 10-1/2 in., gap. This was sufficient to separate the de-
sired particle up to 2.4 GeV/c momentum. The relationship between the cur-
rent in H206 and the cosine of the center-of-mass scattering angle of the in-
cident proton (cos €*) is given in Fig. 23. In addition to H206, the DA and
DB channels further increased the momentum resolution by requiring symmetry
between the chamnels. The 4O-foot flight path between the D1 and D3 counters
provided a time-of-flight criteron which the scattered particle was required
to satisfy. The angle of the D1 counters was conveniently adjusted by moving
the motorized carriage until the center of the overlapping portion was aligned
with the vertical cross hair of the theodolite. The overlap of the D tele-
scopes was determined from multiple Coulomb scattering in the target, and,
and any previous counters. The angle, momentum selection, and time-of-flight
restriction of the D channel together with the angle of the P channel provided
a kinematical check upon the incident beam energy. The angle limitations of
the differential cross sections measured in the backward direction were dic-
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tated by the positions of the shielding walls in the experimental area. In
the laboratory system, the D1 counter was limited to a maximum angle of 28°
from the beam line and the Pl counter was limited to a maximum angle of 122°
from the beam line. The forward differential cross section measurements were
limited by the requirement that both scattered particles reach the final
counters within the 8 ns time resolution (see Section E) and with less than
10% accidental event counting statistics. At very forward angles the energy
loss of the recoil deuteron during traversal of the scintillation counters
was too great to satisfy the above criteria.

E. DETECTION OF EVENTS

The elastically scattered protons and deuterons were detected by scin-
tillation counters using fast electronic circuitry. The positions of the
counters are displayed in Fig. 22. The scintillation material of the counters
had a polystyrene base and was commercially available. Except for the M moni-
tor counters, the light from the scintillator was transported to RCA 6810
photomultiplier tubes by Plexiglas light pipes. The scintillator of the M
monitor counters was connected directly to the photomultiplier tubes with
R-31% epoxy to decrease the small inefficiency introduced by light pipes.

The size of the scintillator for each counter in shown in Table III. Each
of the counters was checked by a beta source before and after the experiment
to ascertain whether the counters remained uniformly sensitive over the area
of the scintillator.- Several times during the experiment, the counters were
thoroughly examined for leaks. The counter supply voltage versus counting
rate showed a plateau, and each counter was operated on its plateau, while
determining the time delay between incidence of a particle and its output
pulse using a light pulser. The D3 counters had a photomultiplier tube on
each end of the scintillator to reduce the signal to noise ratio and to de-
crease the characteristic timing variation caused by particles incident at
different portions of the scintillator.

The signature of an event was a coincidence between P1P2 and D1A, D2A,
D3A, or between P1P2 and D1B, D2B, D3B or both within 8 ns. Delay cables
were inserted bewteen the counters and the coincidence circuits to compen-
sate for the unequal flight times required for the desired particles to
reach each counter. The proper lengths of delay cable were determined by
considering the time necessary to reach each counter after passing through
the successive intervening media. These values were checked by filling the
target with liquid hydrogen and measuring a known point in the proton-proton
differential cross section.

Standard commercial modules were used for the electronic logic cir-
cuitry. A block diagram of the logic circuitry is given in Fig. 24. The
details of each block unit are described by Sugarman et al. The duration
of a beam pulse (called the beam spill) was typically 200 ms long with very
little structure. A gating circuit prevented the recording of events when-
ever an anomalously large flux density occurred via a trigger pulse from the
C counter, Pulses from each channel were split to provide scaler records of
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Counter

Pl

P2

D1A
D1B
D2A
D2B
D3A

D3B

M1
M2

M3

TABLE III

COUNTER DIMENSIONS

Width x Height x Thickness

3.511 " 5n x 1/8"

2.5"
2.,0"

5”
Ll‘”

5.511
5.5H

X

X

X

X

31!

l”

7”

2”

8"
8”

13” e 19“

13” X 19”

17” X 30”

17” X 30”

X

X

X

X

8" diameter

l” X l” X

1" x 1" x

l” Y l” X

1.5" x 1.5"
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1/8”
1/8”

1/2”

1/2"

1/2"
1/2"
3/8"
3/8"
1/2"
1/2"
x 1/2"
1/4"
1/4"
/4"
x 3/8"
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the P channel, the D channels and their combinations. Accidentals were con-
tinuously monitored by delaying a portion of the pulse from the D channels
by 50 ns with respect to the desired time for a real event. The clipping
lines were selected to give a time resolution of 8 ns for an elastic event.
This was slightly larger than the time spread expected due to straggling of
the particles before reaching the final counters. The chance coincidence
were held to less than 10% of the actual events by regulating the beam in-
tensity. Two scalers were used to record the events to provide evidence

of any malfunction within the scalers.

The measurement of a single point in the differential cross section pro-
ceeded in the following mamner. The P telescope and the H206 magnet carriage
supporting the D1 and D2 counters were positioned using the theodolite. The
D3 counters were positioned at the desired place on the parallel I-beams. Dur-
ing this time, the target was being filled with liquid deuterium. The delay
cables were selected and comnected for this kinematical setting. The target
was then bombarded until the desired number of events were recorded and printed
out from the scalers. The reading of the M monitor scaler depended upon the
contents of the target. The reading of the S scaler had a negligible depend-
ence on the target contents because less than 2% of the beam interacted with
the target and the S telescope monitored the beam particles scattered by the
C counter in the beam line. The target was emptied, and the target was again
bombarded until the S scaler indicated that an equal number of protons had
passed through the target. The procedure was then repeated for the next point.
Several times during the measurement of the differential cross section at a
given energy, polyethylene foils were irradiated for normalization purposes.
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VI. NORMALIZATION OF CROSS SECTIONS

The M and S telescope were employed to normalize the differential cross
sections. The half life of C1l, 20.5 minutes, makes the reaction Cl2 (p,pn)
¢l convenient to study with this apparatus. A beam of 1-5 x 109 particles
per pulse irradiated a 4 mil polyethylene foil mounted on the downstream end
of the target. The decay rate of the c1l atom was then measured in a Nal - -
well-counter by detecting the gamma rays produced by pair annihilation of the
emitted positron. The rate of producing c1l atom in the foil may be expressed

by

N, ) _ 99Np
4t M

where 0 = cross section for ¢l formgtion, ¢ = flux of protons/sec. through
foil, N = Avogadro's number, p = density of foil in g/ch, M = molecular
weight of polyethylene (CHp)yp, Njj = number of C1l atoms.

These Cll atoms are lost in two principal ways during irradiation of the
foil. Some of the molecules containing 01l are scattered out of the foil.
This process is termed "hot atom" loss, and has been measured by Cumming et
§£.69 The fraction of Cll atoms scattered from the foil, a, reduces the rate
of producing Cll atoms in the foil to

dNj1 apNp
=z = (-8 5

According to Cumming et Q;.,75 a 4 mil foil has a value of a = .142.

During irradiation some of the Cll atoms are lost by decaying. The
radioactive decay law gives this as

where K is the decay constant. Hence the rate of o1l accumulation in the foil
is

dNq 1

opN
= = (L -e) T -am
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with the boundary condition that Nyj; = O at t = 0; the equation is easily
solved to yield,

M1 = (1 - a) E% (1 - 7Kt (1)

The foils were irradiated for l-minute, 2-minute, and 3-minute periods. Let
the irradiation period be called ty. After termination of irradiation, the
number of Cl atoms in the foil is

N1 =Ny (1) e Kt - t1)
where t > t;.
The number of C1l decays, D, were counted with the NaIl well-counter in

one minute intervals. Denoting the initial time of an interval by t; and the
termination by tgy, the number of decays may be expressed by

be Kt,
D= -f KN(t)E dt = Ny1(t7) e E(
t,
1

e-Kti_e-th

) (2)

where E is the efficiency of the well counter., The total flux, F, is the
quantity desired. The Nyj(t1) is given in Equation (1) by setting t = tj.
Thus substituting into Equation (2) with ¢ = F/t, one obtains

_E(1 - a)oNp , K*

-Kt - . -
l(l - e K l)(e Ktl -e th)
KMty

D

or

-Kt1
KMtlD e

E(1L - a)oNp(1 - e‘Ktl)(e‘Kti-e_th)

F =

The total cross section of the reaction Clg(p,pn)cll, 0, has been measured at

several energies. In Table IV the values of 0 are tabulated from 1 to 28 GeV
incident protons. The values in our energy range were interpolated from the
data of Poskanzer et al. and Cumming et al. Since the half life of C'l is
known, the decay constant, K, equals 0.564 x 10-3 sec-l.

The monitor counters were calibrated by using F/M and F/S as standard
radios for target full and target empty runs respectively, where M is the
number of coincidences in the M monitor and S is the number of coincidences
in the S monitor during irradiation of the foil by F protons. The statis-
tical error in D and the error in determination of well-counter efficiency
made the value of F uncertain by + 8%. Three or more foils were irradiated
for each energy, and the normalizations always agreed within L%,
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TABLE IV

CROSS SECTION FOR C'°(p,pn)ctt
Tp o(mb) Reference
1.0 26.6 + 1.3 70
2.0 26.2 + 0.9 71
3.0 26.8 + 1.0 71
3.0 29.5 + 1.6 72
4.5 27.4 + 1.4 72
6.0 29.5 + 1.6 72
9.0 26.2 + 1.5 73
28.0 25.9 + 1.2 T4
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VII. DATA CORRECTIONS

A. NUCLEAR ABSORPTION

While traversing the target, counters and air, a small percentage of the
scattered protons and deuterons were lost due to nuclear interactions. The
fraction of particles lost during passage through a single medium may be cal-
culated from

S v Ay

1 1 - __ 0ONp
_—— = — e A
S5 ) e"HX gx  ,pu i

o]

where Sy = number of incident particles,

fSl = number of surviving particles, £; = path length in medipm
N = Avogadro's number, p = density of medium
M = molecular weight, 0 = total cross section

Losses for a series of F media may then be expressed by

S Le al

-—,E = —-—i——a— ...f e _p'fxfu.-e -Hlxl Xmot-d.X

So  I1ldp...1 Tt
0 142 f o o

The integrals may easily be performed to yield

Eﬁ - ]ﬁ _1__:_22_1_{1_
So =L\ mily

A recorded event is characterized by both the scattered proton and its cor-
responding deuteron completely traversing their respective telescopes. The
probability of proton surviving nuclear interaction is stochastically indepen-
dent of the probability that a deuteron survives. The probability of two
stochastically independent processes occurring equals the product of their in-
dividual probabilities. Therefore the probability of both scattered particles
surviving nuclear interaction, P, equals
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The My and My in the above formula must be determined. The values for
N, p and M may be found in standard tables. A first approximation to the total
cross sections, 0, would be the geometrical cross section. A geometrical con-
sideration only yields 0 = g (rOAl/5)2 where A equals the mass number and r,
is the Bohr radius.

In the energy range investigated here, the deBroglie wavelength is suf-
ficiently small to allow one to consider the nuclear scattering as occurring
between the.incﬁdent proton or deuteron and individual nucleons of the nucleus.
The cross sections for proton-nucleon and deuteron-nucleon collisions are known
over the desired range.7 The energy’dependence of the cross sections has been
taken into account although the percentage of particles surviving changes only
as much as 0.5% for the P-telescope and 2% for D-telescope in the energy range
considered. The cross sections on materials with A > 1 can then be approxi-
mated by Opp = ODNAE/3 for deuterons and OPNAQ/B for protons. The resulting
formulae for Mk and “j are thus

- N
Mg = EEE GPN AE/B for deuterons
No,
-3 2/3
and My = N% GpN A ; for protons.

The effect of nuclear absorption was tested by placing a slab of lucite
.25 in. thick before the Pl counter. The differential cross section at several
points was measured with and without the lucite slab ard no statistically
significant difference was observed. Using the above formula, the percentage
of protons surviving nuclear absorption without the slab was shown to be
greater than the survival with the slab by magnitudes varying from .50% to
.50% which was well below our counting statistical error.

B. COUNTER EFFICIENCY AND DEAD TIME

The P1, P2, and Dl counters were essentially 100% efficient. However
the larger size of the D2 and D3 counters introduced a slight inefficiency.
The two photomultiplier tubes on the D3 counters served to reduce the inef-
ficiencies of these counters significantly. Although the efficiencies of the
D2 and D5 counters were not measured directly, they have been estimated to be
99% + 1% efficient.

The counter dead time is the time between the incidence of a particle in
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the scintillator and the time. that the subsequent electronics has recovered
sufficiently to record the incidence of another particle on the scintillator

of the counter. The dead time in a given pulse depends upon the length of the
beam spill, the number of particles incident per pulse, and the time resolution
of the electronic logic. In this experiment, the beam spill was typically 150
ms, and the singles rate on a given counter was usually less than 8 x 10* counts
per pulse. Since the time resolution of the logic circuitry was 8 ns, the
counter dead time was less than 1%. If one considers the nonuniform structure
of the beam spill, more .of the true coincidences may be lost because the losses
increase in proportion to the counting rate. The singles counting rates of
each counter were not monitored continuously because.they changed with each
pulse. ' Consequently the correction for anomalies in the beam spill are only
approximated. The uncertainties in the counter dead time have been included

in the systematic error corrections to the data.

C. BEAM ATTENUATION

The number of protons in the beam is not constant because many of the
protons interact while transversing the target. Since . the downstream end of
the target is exposed to only a fraction of the initial beam intensity, N, the
total target is exposed to an effective beam intensity Ng. The initial and
effective beam intensities are related by

N -
= folop's
N LL/\ e"PuS dx

S]
0]

where L equals the target length, p equals the density of deuterons in liquid
deuterium, and 0 equals. the total proton-deuteron cross section. The point

x = 0 corresponds to the upstream end of the target. The effective beam in-
tensity was 0.6% less than the initial beam intensity.

D. ANGULAR UNCERTAINTY

The finite width of the Pl counter, w, and the length of the target, L,
introduce .an error in the polar angle, ©. The particles from the target enter-
ing the Pl counter may have angles as large as © + Aep or as small as © - A6,

where
tan-1 | ¥+ L sin ©
2r - L cos ©

tapn-1 | Wt L sin ©
2r + I cos ©
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with r equal to the distance between the counter and the target.

Transforming the Aep and A6, into the center-of-mass frame, one obtains
the: expression

' [27 ;_ tan® e, i]
hox =t e 2
b,n

tan2 & + 1 (Aep,n)
al’l-g

-

Y )

using Aeg,n b0
J

The values of cos ©O%, 6%, A6X, and Aeg are given in Table V for the various
angles and counter distances used in this experiment.

E. MULTIPLE COULOMB SCATTERING

The sizes of the counters were designed to eliminate loss of events due
to multiple Coulomb scattering. This requirement was checked during the ex-
perimental run by substituting a smaller Pl counter for the original Pl de-
fining counter at given points. No significant difference was measured bet
tween using the designed subtended solid angle and the smaller solid angle,
which would confine the corresponding particles in the D-channel to a smaller
portion of the D counters and thus minimize the losses. This technique could
not be applied to determine the Coulomb scattering losses sustained by the Pl
counter itself. To a first approximation the number of particles scattered
out of the line of coincidence with the P telescope is equal to those scattered
into the telescope. Due to the energy of the particles and the distances in-
volved, less than 1% of the coincidences are estimated to have been lost
through multiple Coulomb scattering.

F. ACCIDENTAL AND BACKGROUND COINCIDENCES

Independent particles in the deuteron and proton channels may produce
pulses which would be recorded as an event if they occurred within a short
time interval. These chance coincidences were continuously monitored by re-
cording the coincidences between the P and D channels when they were 50 ns
out of time. The length of this delay cable was varied over a range of 30ns
with no appreciable difference in the percentage of accidentals for a given
run. The percentage of chance events was always kept below 10% by adjusting
the beam intensity. In determining the number of good events, the number of
chance events was subtracted which.resulted inia larger statistical error to
compensate for the presence of undesireable coincidences.

For each point of the differential cross sections, the measurement was
made for a full target and an empty target. The S monitor counters provided
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TABLE V

UNCERTAINTY IN SCATTERING ANGLES

Cos 6% g*° Aeg° Ik
T,=1.0 GeV
-.885 152.25 3.03 3.07
-.875 151.04 3.07 3.11
-.850 148.21 3.33 3.37
-.825 145.59 3.61 3.65
-.800 143.13 4,20 L,oh
-.750 138.59 h.31 h.34
-.700 134,43 3.84 3.85
-.650 130.54 3.66 3.66
~.600 126.87 3.69 3.69
-.550 123.37 3.34 3.32
-.500 120,00 3.15 3.13
T,=2.0 GeV
.565 55 .60 1.41 1.39
.600 53.13 1.40 1.38
.650 49.46 1.37 1.36
.700 45.57 1.35  1.33
.750 hi.41 1.32 1.31
.800 36.87 1.29 1.28
.825 24,41 1.28 1.26
.850 31.79 1.26 1.24
875 28.95 1.24 1.22
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TABLE V. CONT'D

Cos 6% *° A6§° £6%°
Tp=1.3 GeV
-.895 153.51 3.16 3.21
-.875 151.04 3.45 3.50
-.850 148,21 3.79 3.84
-.825 145,59 b.15 h,19
-.800 143,13 L,s5h h.59
-.750 138.59 L,34 h.36
-.700 134.43 h,13 h,14
+.050 130.54 3.92 3.92
-.600 126.87 3.73 3.72
-.550 123.37 3.37 3.35
-.500 120.00 3.38 3.36
- 460 117.39 3.18 3.16
T,=1.5 GeV
-.900 154.16 3.14 3.19
-.875 151.04 3.46 3.51
-.850 148,21 3.56 3.60
-.825 145.59 3.89 3.93
-.800 143.13 Lok L,28
-.750 138.59 h.36 L.38
-.700 134.43 h,16 h.16
-.650 130.54 3.95 3.95
-.600 126.87 3.75 3.7
-.550 123.37 3.39 3.38
-.500 120.00 3.20 3.18
-.450 116.74 3.21 3.18
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the means to determine when the amount of incident beam for the empty target
equalled that for the full target. The average percentage of recorded target
empty events to target full events for all runs was 103%. Of these target
empty events, a .1% contribution was made by the residual deuterium vapor pre-
sent in the target when the liquid deuterium was removed. The full target does
not contain the vapor, consequently this contribution was not subtracted from
the true coincidences. The resultant 1.2% background were caused primarily by
interaction with the carbon atoms of the mylar surrounding the target. The
number of events for each point of the differential cross section was corrected
for background events by subtracting 1.2% as quasi-coincidences to yield a net
corrected number of PD coincidences.
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VIITI. RESULTS OF EXPERIMENT

The differential cross section at a given angle was calculated by the

formula

where Y

o, ¥ abcdgh

an pL%-”MJ(AQ)
(E - Bg) ru11 tgt. - (B - By) empty
number of events
number of accidental events
density of liquid deuterium in deuterons/cc.
length of deuterium target
normalization factor for M monitor
number of coincidences in M monitor
Jacobian transforming solid angle from laboratory to c.m. system
solid angle subtended by Pl counter
correction for nuclear absorption
correction for counter efficiency
correction for counter dead time
correction for multiple Coulomb scattering
correction for beam attenuation

correction for background events

SR

The

results are shown in Tables VI and VII and Figs. 25-26. The error

bars are those due to counting statistics and range from 5% to 10%. The total

error from

nonstatistical sources is 10% of which 8% is due to normalization

error and 2% is due to the error in the Jacobian introduced by the uncertainty
in beam energy.
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TABLE VI

BACKWARD PROTON-DEUTERON ELASTIC SCATTERING

do/dQ c.m. ub/ster

Cos 6% 1.0 GeV 1.3 GeV 1.5 GeV
-.900 2.05 + .2l
-.895 4.50 + .33

-.885 12.99 + .42

-.875 10.93 + .36 hL.07 + .35 1.73 + .17
-.850 8.80 + .29 3.47 + .26 1.06 + .12
-.825 7.99 + .26 3.39 + .23

-.800 6.82 + .22 2.22 + .11 0.76 + .08
-.750 h.52 + .15 1.49 + .15 0.63 + .06
-.700 3.30 + .11 1.08 + .11 0.49 + .04
-.650 2.84 + .09 1.00 + .10 0.30 + .03
-.600 2.70 + .12 0.80 + .08 0.34 + .03
-.550 2.15 + .13 0.56 + .06 0.29 + .03
-.500 1.99 + .09 0.66 + .06 0.29 + .03
-.460 0.50 + .05

TABLE VII

FORWARD PROTON-DEUTERON ELASTIC SCATTERING

do

Cos 6% -t ag ceme at 2.0 GeV
875 k22 78.09 + 2.52
.850 .5306 64.65 + 1.94
.800 .7075 51.55 + 1.55
.750 .8843 36.42 + 1.09
.700 1.0612 22.79 + 0.68
.650 1.2381 12.18 + 0.37
.600 1.4149 7.11 + 0.21
.565 1.5387 4.97 + 0.15
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The curve in Fig. 25 appear approximately exponential in character. 1In
low four momentum work many found it convenient to express differential cross
sections as exponentials in four momentum transfer. In Fig. 27 the backward
"differential cross sections have been plotted as an exponential to a poly-
nomial in T, where T equals the four-momentum transfer minus the four-momentum
transfer at 180°, A chi-square test of the powers of tau up to the fourth
power specified a quadratic as the best fit, The differential cross sections
were then written as

40 _ o(a + bT + cT2) ub
aT (GeV/c)2

where the values of a, b, and c were determined by a least square procedure
and are displayed in Table VIII.

TABLE VIII

COEFFICIENTS IN EXPONENTIAL FIT

T ” a b c
P )
(GeV) (Gev/c) ™2 (Gev/c) ™"
1.0 -4.,97 6.48 -3.54
1.3 -3.58 4,47 -1.49
1.5 -2.66 4,68 -1.82
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IX. CONCLUSIONS

The data of this experiment agreed well with the point of the differential
cross section obtained by Bayukov et glolu at 1.0 GeV. At present, there are
no other published data in the few GeV range with which to compare the backward
proton-deuteron elastic differential cross sections obtained in this experiment.
The 2.0 GeV small angle data of Kirillova et 22.15 described a strict exponen-
tial trend for four-momentum transfers below 0.13 (GeV/c)g. The experiment
observed a shoulderlike departure of the forward differential cross section
from the original slope of the diffraction peak as the four-momentum increased
above 0.4k (GeV/c)e.

The backward scattering of protons by deuterons has received reasonable
interpretation by assuming that one-neutron exchange is the dominant process.
The slope of the observed backward peak was predicted by the one-nucleon Feyn-
man diagram using the proton-neutron-deuteron vertex function of Blanken-
becler, Goldberger, and Halpern,l6 but the predicted magnitude exceeded that
of the observed peak by a factor of 5.00 at 1.0 GeV incident proton kinetic
energy. The use of various form factors reduced the magnitude considerably and
also adversely affected’ the shape of the cross section. The form factors were
the Fourier transforms of the deuteron wave function in coordinate space, and
their original purpose was to obtain an accurate representation of the high
momentum components of the deuteron. The form factors suggested by the regu-
lar Hulthén wave function, the Hulthén wave function with a hard core and the
Moravesik analytic fit to the Gartenhaus wave function were presented in this
work, and each of the form factors was shown to decrease the agreement of the
theoretical differential cross section with the experimental data. Appar-
ently, the high momentum components of the deuteron are somewhat larger than
previously suspected. A consideration of absorption in the initial and final
state interactions may lead to a modest reduction of the theoretical magni-
tude and to a possible change in the shape. However, due to the lack of pro-
ton-deuteron phase shift data in this energy range, the usual methods of com-
puting the absorption cannot be applied. Calculation of the phase shifts
from the scant forward data was considered, but the application of the re-
sulting absorption factors to a partial wave expansion of the backward scat-
tering amplitudes could not be justified. Ross and Shaw'' have pointed out
that the suppression of the differential cross sections due to absorption may
differ greatly in the forward and backward directions.

The backward differential cross sections were also analyzed within the
framework of three-body formalisms. The problem was formulated in the method
of Amado,59 and the zeroth iteration (the one-nucleon exchange diagram) was
found to exhibit the closest agreement with the available data. Since this
method utilized the low energy parameters of the effective range theory, a
nonrelativistic propagator was used. The difference in the predicted dif-
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ferential cross sections between using a relativistic propagator and & non-
relativistic propagator is shown in Fig. 28. The relativistic propagator pre-
dicts a slightly steeper slope, which more closely fits the experimental data.
The predictions of the three-body method may be improved by solving a com-
pletely relativistic set of Faddeev equations.

The shoulderlike departure of the data in this experiment at 2.0 GeV
from the forward diffraction peak has been interpreted by extending the high
energy approximation of Franco and Glauber™™ to higher momentum transfers.
Consideration of single-scattering only does not given a satisfactory inter-
pretation of the data above four-momentum transfers of 0.5 (GeV/c)g; however,
inclusion of double-scattering interactions is observed to account for the
change in slope of the differential cross section. The magnitude and slope
of the experimental data for four-momentum transfers above 0.5 (GeV/c) are
determined quite accurately as manifestitations of the incident proton being
successively scattered by both constituents of the deuteron. Due to inter-
ference between single- and double-scattering, a dip occurred in the predicted
differential cross section which has no apparent justification in the experi-
mental data., The depth of the dip has been shown to be sensitive to the sign
and magnitude of the real parts of the scattering amplitudes. The large un-
certainty of the ratio of the real part of the proton-neutron scattering
amplitude to the imaginary part of the scattering amplitude, o, = 0.2 + 0.k,
determined by Kirillova et al. 2 and the predictions of the high energy ap-
Proximation allow one to assert that o is negative as is the case for pro-
ton-proton elastic scattering at 2.0 GeV.
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Fig. 28. The effects of relativistic and nonrelativistic propagators at
1.0 GeV. (I) Using relativistic propagator; (II) using nonrelativistic
propagator.
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APPENDIX A
EVALUATION OF MATRIX ELEMENT

The square . of the matrix element with sums over the proton and deuteron
spins is evaluated. In Chapter II, the matrix element was expressed by

AT = 1 _ T
M=u T r. U )
(P;L) 23 o T i 1 (Pg

Then

(n= + e

+ T
| = i = -—-——¥—-—)E l:ﬁ('pg)T-J lfir (-if + m)T L, l:u(Pl)T]

u(pl)T re_:(é-iyi +m) Ty u(py)”

The expressions for TI'p and P2 are given in Chapter II. Using the identity

2 m
Logst, |T(mp) 7 ulp)]. = tr [74 ol 7 e * m)}

- 2m 2m
spins

and summing over the proton spins yields

L MM =T 1 . 1 1 :
deut. prot. deut. 2 2 2
spins gpins spins (n= + m%)= (2m)= (2 V2 Nb)

tr [(7 © 8) (Mg - idy) (<id +m) (Mg - i) (7-2) (1p + m)
(7 <82) (Mg - ido) (-if + m) (Mg - igdo) (y+£1) (ith + m?] .

The deuteron spins are summed over using the identities

L (p-&(n-E) =p-n+ ipiglgﬂiél

deut. M 2
spins d

>



and P + fip = 2 pen for any four vectors p and n. The matrix element then
assumes the form

LT M2 = 2 (emg - pydp)” () —2
6 128 my° (0 + m2)2

(<20 [Fm} ‘K

where

2
K = [mQMg-mdlodg-nEdlvdg-deno(dl+d2)

+ 2n o dl n e dg - Mg n °11] °

76



APPENDIX B

DEUTERON WAVE FUNCTIONS

This appendix lists the various deuteron wave functions used in present
theoretical work. A basic requirement of the wave functions is that they
adequately determine the static properties of the deuteron. If @ is the same
as defined in Chapter II with u(r) as the S-state wave function and w(r) as
the D-state wave function, the non-relativistic deuteron problem with a tensor
force consists in solving the coupled differential equations:

d°u r) . [o@ ~ vc(r)] u(r) + 21f§~vT(r) w(r) =0

dr®

w(r) [oﬁ Py (1) eva} w(r) + 2V2 v (r)u(r) = 0

dr2 r

(o]
safisfying the conditions that h/\ [ﬁg(r) + wg(ri] dr = 1 and the wave
functions go to6 zero as r goes &8 zero or infinity. The vo(r) is the central
potential and the vT(r} is the tensor potential comprising a total potential,

V(r) = -m |vg(r) + Syovp(r)

where H:= 1. Once the wave functions u(r) and w(r) are determined, the electric
quadrupole moment may be calculated by

1 2 wggr)J
Q = —— r u(r)w(r) - dr
\/ 50 “/; [ \/8

Since the electric quadrupole moment is known to be positive, the u(r) and
w(r) must have the same sign. If the proton magnetic moment Hp and the neutron
magnetic moment p, are known, the deuteron magnetic moment is given by

[oe]

*ay = 2 (i e - f e

0

B = By

The following deuteron wave functions are frequently used in practice.
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L.

Hulthén wave function28:
(a) Regular wave function
u(r) = N(e-ar - e Br)
a=0.232 71, B =5.18 ¢
(b) Wave function with radius r, hard core
N erar ['l _ e,g(r_rc)-}

- [o - o) |

C
7~
=
~
1}

=
—
H
—r
[

ar olre

{1 Q31 - e o3 - e"”‘)?}

where all positive n are allowed for rc% 0 and § and y are deter-
mined to fit Q,ug and other properties of the deutron.

Gartenhaus wave function’0:

A numerical tabulation for the deuteron wave function was computed
by Gartenhaus using a cutoff Yukawa theory. Moravcsik obtained ana-
lytic fits to the tabulation in the form:

u(r) = N(e™@ e =dr)(1 - e-Cr)(1 - e'gf)

0.658 17 for 0 < r < 0.63f

2.34r2e™2r  for 0.6% < r < 2.10f

=
o~

=
~—

1l

0°lh7e-0°256r + 0.810e~0-577r- £or
2,10 <r <+ w

where ¢ = 6.853q, 4 = 8.190q, g = 10.7760 .

Hamada~Johnston wave function78:

The deuteron wave function with a hard core of 0.343f was tabulated
by Hamada and Johnston, who assumed a potential with central, tensor,
linear LS and quadratic LS terms. The long range quadratic LS po-
tential was added to decrease the magnitude of the 3D2 phase shift
at high energies. An analytic fit to the Hamada-Johnston wave func-
tion without the hard core has been constructed by McGee. (9 The S-
and D-state wave functions are of the form
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L.

L
] = -Qr Z C -€s
u(r) = N(e +j=l ; e”St)

p)

w(r) = pN [?mhg(iom) + 'Zl Djnjrhg(iniry]

J:

where h2 (iy) is the spherical Hankel function and the values of Cj,
ej, Dj, and nj are given in the following table:

u(r) w(r)
J °; ® D3 3
1 -.6361 5.732a -20.34 4,833q,
2 - 6.6150 12.8Lhy -36.60 10.447q,
3 15.216 17.3310 -123.02 14,506,
4 - 8.9651 19.643 305.11 16.868q,
5 -126.16 21.154q

Gaussian wave function:

A convenient analytical form of the deuteron is the simple Gaussian.
By using a variational method to minimize the energy for the deuteron
ground state, VerdeBO obtained the form

gff35/u re'Bgre

u(r) = (&

where B = 1.3367q
Christian-Gammel wave function:

The deuteron wave function has been fit to a sum of Gaussians by
Christian and Gammel.8l They obtained a wave function of the form

u(r) = 0.02133r e=0-03t° 4 .08580r ¢-0.1672

+ 0.18115r e=0.76re
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The above are the most commonly ugedranalytical’forms .ofi:the dsuteron
wave function. There also exists many deuteron wave functions in tabular form
only which many researchers use in numerical calculations.
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