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Abstract. A typical question in MDS is whether two alternative configurations that are both 
acceptable in terms of data fit may be considered "practically the same". To answer such 
questions on the equivalency of MDS solutions, Lingoes & Borg (1983) have recently proposed a 
quasistatistical decision strategy that allows one to take various features of the situation into 
account. This paper adds another important piece of information to this approach: for the 
Lingoes-Borg decision criterion R, we compute what proportion of R-values is greater/less than 
the observed coefficient if one were to consider all possible alternative distance sets within certain 
bounds defined by the observed fit coefficients for two alternative MDS solutions, what are the 
limits of acceptability for such fit coefficients, and how are the observed MDS configurations 
interrelated. 

I. Introduction 

In the context of multidimensional scaling (MDS), in particular in its con- 
firmatory variety, one often faces the question whether two alternative repre- 
sentations should be considered 'equivalent'. E.g., given a set of proximity 
data, we could represent them optimally in some geometry via a standard 
procedure like SSA-I (Lingoes, 1973), and then again in the same geometry 
with additional external constraints on the distances by using CMDA (Borg & 
Lingoes, 1980). Or, in another context, two MDS solutions differing only in 
their dimensionality may be computed. In either case, one would first compare 
the respective fit coefficients. If they are both within the limits of acceptabil- 
ity, one proceeds to evaluate whether the more demanding mapping conditions 
of the more restrictive scaling approach had an appreciable effect. 

Lingoes & Borg (1983a) describe two coefficients that are useful in such 
evaluations. Let y the vector of proximity data, and x and z the representing 
distances in two MDS representations, where z is generated under the more 
restrictive conditions. We then compute the product-moment correlation coef- 
ficients Pl = P~y, 02 = Pzy, and P3 = Pxz- (In ordinal MDS, due allowance is 
made for the weaker mapping constraints by substituting the original x, y, 
and z values with their ranks and by an appropriate coefficient of monotonic- 
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ity. These values are combined into the partial or conditional correlation 
coefficient: 

Pc = O(xz-y ) = (P3 - PP2)/kak2, [1.11 

k i = ( 1 - 0 2 )  ~/2. [1.21 

A simple absolute benchmark for evaluating the size of & would be to 
check whether p~ > 0.5. If so, the distances in the two MDS configurations 
share more variance, independent of their common data source y, than they 
do not due to the additional constraints on z. Naturally, as Pc ~ 1, one should 
be more and more inclined to conclude that these additional constraints are 
essentially irrelevant. 

But rather than evaluating the absolute size of Pc, one can compare it to 
another measure, 1 -  p], the decrement in common variance due to the 
imposition of the additional constraints onto z, i.e., in other words, the loss 
from satisfying the constraints. If p~ >> 1 - O 2, one should feel very confident 
about the essential equivalency of the solutions x and z. In the context of a 
decision approach, where the equivalency is the H a, Lingoes & Borg (1983a) 
suggest that: 

R= pc / (1 -  Oz3) a/2 [1.31 

should be greater than 3. For R-values less than 3, additional criteria may be 
considered. Seven such factors are discussed by Lingoes & Borg (1983a). E.g., 
if the number of points, n, is small, one should expect that additional 
constraints can generally be satisfied without moving the points around very 
much. Hence, one should require that R be greater for a small n than for a 
large n. So, e.g., with w = 3  for n < 9 ,  w = 2  for 9~<n~<15, and w = l  for 
n > 15, R should be greater than w to accept Ha. Similar weights result from 
taking into account the sample size for the proximities, the dimensionality, the 
ratio of additional constraints on z relative to those on x, etc. Each of these 
Conditions gives rise to a weight w of 1, 2, or 3, and then the average of various 
weights defines the final decision hurdle w. 

The coefficient R is apparently purely descriptive and involves only the 
given vectors x, y, and z. However, in setting w criteria, one does actually go 
beyond the observed values and expresses an expectancy that, e.g., R should 
generally be greater when n decreases. Some bounds for such expectancies will 
now be derived. 

2. Populations for Pc and R 

With x, y, and z as given eliminate vectors, the three bivariate correlations Pa, 
P2, and P3, and, consequently, also p~ and R are fixed values. Yet, this does 
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not correspond to the situation in which the researcher finds h im/herse l f  in 
practice. Even if we assume that x and z are indeed optimal and unique 
representations for y - and so there would be no higher values for p] and P2-,  
it would be unreasonable to argue that the given x and z are the only 
acceptable solutions. Rather, if x and z are acceptable, then other solutions 
with somewhat lower fit coefficients pl and P2 could certainly not be com- 
pletely unacceptable representations of y either. 

Assume now we define two lower bounds for Pl and P2 so that distance sets 
with fit values at least as great as these would be considered acceptably precise 
representations of y. Without any considerations as to what realizations of x 
and z are feasible in a particular distance context, it is clear that by going over 
all numerically feasible vectors x and z (i.e., all unit length vectors in case of 
interval MDS or all permissible permutations of n ranking numbers in case of 
ordinal MDS) one will obtain a certain proportion of conditional correlation 
values greater and less than the empirically observed value. Analogous to the 
lower bounds for the fit values of x and z, we could define a lower bound for 
the conditional correlations below which the question as to the equivalency of 
any two distance sets is automatically answered in the negative. Setting this 
bound to 0 would certainly be ' low enough'. So, for conditional correlations 
lying between 0, say, and 1, what proportion of them is greater than the 
observed p,. if all x and z with fit values exceeding certain minima are 
considered? 

We can add another condition here, i.e., the requirement that only those x 
and z are taken into account whose difference in representational goodness is 
not greater than the observed difference 0 1 -  02 or some other fixed dif- 
ference. 

The various coefficients and constraints are best described by the diagram 
in Fig. 1 (suggested by a reviewer). The observed coefficients are denoted by 
Greek letters. The values resulting from considering all possible x and z are 
denoted by corresponding Roman letters. Fig. 1 then shows a region in r 1, r2, 
r 3 space. The region ABCDEF consists of all admissible triples ( r l ,  r2, r3) 
which result as a consequence of the constraints: 

0 ~ q ~< Pl; [2.1] 

0 ~< r 2 ~ 02; [2.2] 

0 ~< r 1 - r 2 ~< Pl --  P2; [2.31 

r l r  2 ~ r l r  2 + [ ( 1 -  r 2 ) ( 1 -  4 ) ] l / 2 ;  [2.4] 

where the latter constraints follow from 0 ~< r c ~< 1. The surface ABC is the 
level surface for re = 0; the surface UVW is defined by the condition r c = &.; 
and the surface DEF is the set of all triples (r  1, r 2, r3) satisfying r C = 1. 

What  we are interested in is the proportion of the volume of the region 
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Fig .  1. I n t e g r a t i o n  in  ( r  1, r 2, r 3 ) - space .  L i n e  A S  is  d e f i n e d  b y  r 1 - r  2 = P1P2. P o i n t  c o o r d i n a t e s :  

A=(p] -p2,0,0) ,  B=(01,0,0), S=(p], p2,0), C=(P1, P2, PIP2), W=(P], P2, P3), M =  
(r l ,  r2, rlr  2 + k l k 2 ) ,  N = ( r ] ,  r2, r3), L = ( r l ,  r z, r l r 2 ) ,  R = ( r  1, r 2, 0).  

UVWDEF to the volume of the entire feasible region ABCDEF. This propor- 
tion, P(rc > Pc), can be computed by some method of numerical integration. 

The diagram in Fig. 1 can also be used to illustrate the criterion R. In that 
case, the surface UVW defines the correlation triples with an R value equal to 
the one for the three observed correlations, i.e., R e. The surface DEF is the 
level for R = oo. The proportion P ( R  > Re)  is derived by the same methods as 
for P ( r  e > Pc). 

3. S o m e  remarks on computing the proportions 

Many procedures exist for computing the volume of three dimensional regions 
with curved surfaces. One fairly simple but relatively expensive approach 
would be to randomly choose the coordinates from a rectangular distribution 
of a large number of points lying within the feasible region and then check 
what proportion of them falls into the region UVWDEF. More and more 
points could be added until the proportions converged within reasonable 
bounds. 
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Another method is to define a sufficiently fine rectilinear three-dimensional 
lattice and count over all its points, whether or not r~ > Pc and R > R e, 
respectively. Lingoes & Borg (1983b) find that a relatively coarse lattice will 
yield sufficiently precise estimates of the desired proportions. 

However, some results or short-cuts can be arrived at analytically. The most 
important one is P ( r  c > p~), which can be found directly. Consider Fig. 1. 
Given some r 1 and r 2 and the observed value Pc, we can find the r3-coordinate 
of the points L, N, and M by using formula [1.1]: L = (rl ,  r 2, rlr2), N = 

(r l ,  r2, r lr  2 4- pck l k2 ) ,  and M = (r  a, r2, r lr  2 + k~k2) .  Hence we obtain the 
distanced d(N, M ) = k l k z ( 1 - O e )  and d(L, M ) = k l k 2 ,  and their ratio 
d(N, M) /d (L ,  M) = 1 - Pc. But this ratio is constant over the (rl, r2) region, 
and, thus, is just the proportion of the volumes of UVWDEF and ABCEDEF. 
So, P ( r  c > Pc) = 1 - Pc. 

No such direct solutions exists for R. However, given some rl, r z, and R e, 
we can compute d(N, M) = {(a + b)  - [a + b R e ( b 2 R 2  e + 1 - a Z ) W 2 / ( b Z R 2  e + 

1)]}, with a = r l r  2 and b =  kak  2, for k i =  (1 - r iZ )  1/2 and hence the ratio 
d(N, M) /d (R ,  M) = 1 - r,., which when integrated over all (ra, r2) pairs yields 
P ( R  > R~) = 1 - % for a sufficiently fine grid in the feasible region A B S .  A 

computer program, GUIDER which proceeds in this manner is described by 
Lingoes & Borg (1983b). 

4. Evaluating the proportion P(R > R e) 

Having obtained the proportion P ( R  > R e )  we now ask how is it to be 
evaluated. It seems unproblematic to say that if one finds a very small 
proportion P ( R  > R e )  in a particular situation (e.g., P ( R  > R e )  less than 
0.05), then the observed R value, R e, can at least be called "remarkably 
high", because within the constraints defined by our choice of rl(min), 
r2(min ), and the maximal difference of r 1 and r 2, only a very small proportion 
of x and z would lead to higher conditional correlations. 

Obviously, there is no need to limit our use of P ( R  > R e )  as an efficacy 
coefficient. Rather, it could be embedded into a decision strategy if one felt 
that this would be useful. In that case one could proceed lexicographically and 
first test whether p2 > 0.5, and, if so, whether P ( R  < Re) < 0.05, say. If both 
decisions yield positive answers, then the equivalence hypothesis should be 
accepted. It should be noted, however, that our choice of P < 0.05 is merely 
illustrative of what might be considered 'low enough' and, depending upon the 
scientific context, some other choice might well be made. 

It is of immediate concern, of course, to ask about the stability of the 
obtained proportions when the distance context is re-introduced. In the above, 
we required only that x and z satisfy certain numerical constraints. But if x 
and z have to be distances, and even Euclidean distances in a fixed dimen- 
sionality, then they have to satisfy more constraints. What effects would such 
additional constraints have? Starting with point W in Fig. 1 we see that it is 
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no doubt possible to arrive at distance sets x and z correlating with r c = Pc if 
the fit values r 1 and r 2 were to be lowered. However, to move from W towards 
F or S, i.e., to find distance sets with the same fit to the data y but with any r c 
from [Pc, 1] or [0, Pc], respectively, is not possible in general. This is only 
possible at some cost for r~ a n d / o r  r2 (see, e.g., McGee, 1968). This means 
that we should consider the proportion of the regions UVWED to DEWBA - 
or an appropriate subregion with bounds q(min) and rz(min ) - rather than 
the one computed above. Yet, to determine the shape of the surfaces DEW 
and ABW would be very demanding indeed. In any case, we see what this 
problem implies: it is obvious that the resulting proportions P(r c > Pc) and 
P(R  > Re) can only be smaller under the additional constraints; hence, the 
proportions computed by the methods above are upper bounds, so that a 
P(R  > Re)< 0.05, say, should be taken as a strong indicator of configura- 
tional equivalency. 

5. Applications 

We now apply the evaluation procedure to three sets of data that have been 
analyzed in different ways in the literature. Of course, only those data were 
selected where the test described in Section 1 does not immediately lead to an 
acceptance of the equivalency hypothesis. All data sets are presented and 
discussed in Borg (1981). 

Glushko (1975) describes a set of (~7) data, y, on the similarity of different 
dot patterns vis-h-vis their 'patterns goodness". He presents unconstrained 
MDS solutions which showed roughly the predicted point groupings. The 
corresponding distances define the vector x. Borg & Lingoes (198) reanalyzed 
these data and enforced certain regional constraints consistent with the 
predicted groupings onto the point configurations. Their "weak contiguity 
test" (Lingoes, 1981) leads to the distance set z. We find p(x,  y ) =  0.873, 
p(z, y)  = 0.810, p(x, z) = 0.886, and p(xz .y )  = 0.626. This yield R e = 1.352. 
If we choose the constraints (2.1) + (2.4), P(R  > Re) could be computed with 
one of the described methods. In practice, however, it turns out that it is 
usually sufficient to compute P(R  > Re) for two simple versions of (2.3) only, 
i.e., for r 1 - 1"2 = P l  - -  P 2  = D and for r I - r 2 = 0, and then P(R  > Re) must lie 
between the values resulting under these conditions. We find P(R  > R e [D) = 
0.227 and P(R > Re/O ) = 0.230, and thus conclude that there is some reason 
to question the equivalency of the two alternative MDS configurations. 

Ekman (1954) presents a set of similarity data on 14 colors ranging from 
434 m# to 674 m/~. Using ordinal MDS, one obtains an almost perfect 
2-dimensional point configuration that looks roughly like a circle (Shepard, 
1962). One might ask whether it is possible to force the points onto a perfect 
circle without much loss (Borg & Lingoes, 1980). This question leads to MDS 
solutions x and z with coefficients p(x, y)  = 0.985, p(z, y)  = 0.968, p(x, z) 
= 0.972, p (x z . y )=  0.429, and R e = 1.824. Using the G U I D E R  program as 
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before, we find P ( R  > R e I D)  = 0.155 and P ( R  > R e 10) = 0.155, which sug- 
gests that the two alternative representations differ more than might be 
expected from looking at their very similar fit values, i.e., approximately 16% 
of all possible configuration pairs would be found to be more similar than the 
pair under consideration. 

Levelt et al. (1966) discussed the similarity of 15 tonial intervals. By metric 
MDS methods, they found that these data lead to a 'horseshoe-structure' in 
two dimensions. If three dimensions are used, this horseshoe exhibits three 
bending points on the third dimension. Shepard (1974) felt, however, that the 
data showed roughly a simplex gradient. Borg & Lingoes (1979) investigated 
the loss incurred from actually bending the horseshoe structure into a simpli- 
cial manifold. This yields O(xy) = 0.911, p ( zy )  = 0.866, O(xz) = 0.927, p ( x z .  

y) = 0.671, and R e = 1.795. Proceeding as before, we find P ( R  > R e [ D)  = 

0.154 and P ( R  > R e 10)= 0.156, and so Shepard's proposition should prob- 
ably be rejected. 

6. Discussion 

In the applications, it was conspicuous that P(  R > R e [ D)  ~ P(  R > R e 10). 
This relation of being almost equal was found in some three dozen empirical 
data sets that were investigated. Only when the difference in fit values, 
Pl - -  P2, becomes very large (>  0.5), then the two proportions tend to differ as 
Pc increases. However, the proportions are always ordered as P ( R  > R e I Pl - 

P2) < P ( R  < R e 10). So, P ( R  < R e [0) can be considered an upper bound for 
P ( R  < R e [ D). It seems more realistic though to go even further: since "large" 
differences in the fit values of x and z would prevent one from asking the 
equivalency question in the first place, one can conclude that 
d(N, M)/d(R,  M) remains almost equal over different choices of lines RM in 
the feasible region of Fig. 1. But then we could simply use P ( R  > R e [0) as an 
estimate for P ( R  > Re),  which can be computed directly, at a computational 
savings of roughly one half. 

Apart from considerable savings in computation time, the approximate 
invariance of the d(N, M)/d(R,  M) ratio over different lines leads to another 
benefit. We started out be noting that if the observed fit values p~ and 02 were 
deemed "acceptably high", then somewhat lower fit values should also be 
acceptable. However, it is incompatible with this argumentation - at least if 
one does not adhere to a scientifically questionable accept/reject decision 
logic - to set fixed lower bounds ra(min ) and r2(min ) below which the fit 
values become unacceptable. Rather, the lower these fit values, the less 
acceptable they get. The decrement in acceptability is thus continuous. Yet, it 
seems impossible to characterize this function except, perhaps, by such general 
statements that it is positively accelerated. But this is, of course, not sufficient 
to incorporate it into the procedure to compute efficacy coefficients on the 
equivalency of x and z. However, if d(N, M) /d(R,  M) is approximately 
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constant over all lines RM, then it is not relevant how rl(min ) and r2(min) are 
defined - just as P(r~ > Pc) = 1 - Pc = constant, whatever rl(min ) and r2(min ). 

Finally, we should point out that evaluating P(R > Re) will lead to the 
same conclusions whether: (a) the numerical sets that could have resulted in 
the various r's have much or no error, or (b) the N on which the r's could 
have been based is large or small, or (c) the true nature of the univariate, 
bivariate, or trivariate distributions for the quantities is normal or otherwise, 
or (d) the r's were computed on continuous Or discrete vectors. The method is 
independently efficacious without the usual statistical considerations. We do 
not imply, of  course, that such factors are unimportant or scientifically 
irrelevant, but only that for the restricted interpretations that are to be made 
with this model, knowledge of such factors is not helpful nor, in any way, 
determinative of the conclusions reached. 
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