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Abstract. A parallel adaptive mesh refinement (AMR) scheme isdescribed for solving the governing
equations of ideal magnetohydrodynamics (MHD) in three space dimensions. Thissolution algorithm
makes use of modern finite-volume numerical methodology to provide a combination of high solu-
tion accuracy and computational robustness. Efficient and scalable implementations of the method
have been developed for massively parallel computer architectures and high performance achieved.
Numerical results are discussed for asimplified model of the initiation and evolution of coronal mass
gjections (CMES) in the inner heliosphere. The results demonstrate the potential of this numerical
tool for enhancing our understanding of coronal and solar wind plasma processes.
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1. Introduction

Globa models based on the numerical solution of the equations of magnetohydro-
dynamics (MHD) represent a very important component of efforts to understand
corona and solar wind plasma flows. While providing only a low-order approxi-
mation to the behavior of conducting fluids, MHD models have been used success-
fully to simulate and advance our understanding of many space plasma processes.
Examples of the application of MHD models to the study of coronal and solar
wind plasma flows include the studies by Miki¢ and Linker (1994), Linker and
Mikic (1995), Wu and Guo (1997), Guo and Wu (1998), Lionello et al. (1998),
Dryer (1998), and Odstrcil and Pizzo (1998). In this paper, the application of anew
parallel solution-adaptive MHD model to the ssimulation of fully three-dimensional
solar wind plasma flowsis described. Numerical results are discussed for a corona
mass gjection (CME) driven by a local plasma density enhancement in order to
demonstrate the potentia of the approach.

2. Paralldl Solution-Adaptive 3D MHD Model

In the last decade, severa developments have led to anew paradigm for the numer-
ical solution of partial differential equations (PDEs). They are: (1) advances in
numerical methods, particularly for hyperbolic conservation laws, (2) the evolution
of solution-adaptive techniques from aresearch topic to a practical tool, and (3) the
advent of massively paralel computers. By capitalizing on these developments, a
new, efficient, and reliable parallel solution-adaptive algorithm has been devel oped
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for solving the hyperbolic PDEsof ideal MHD inthree space dimensions. Themain
elements of this algorithm are now briefly outlined.

2.1. UPwIND FINITE-VOLUME SCHEME

A cell-centered upwind finite-volume formulation of the type first proposed by
Godunov (1959) is adopted to solve the standard eight equations of ideal MHD
in weak conservation or divergence form (Powell 1994; Powell et al. 1995).* Two
of the more popular approximate Riemann solvers—the Riemann solver due to
Roe (1981) and a modified version of the method of Harten, Lax, Van Leer, and
Einfeldt (Harten et al. 1983; Einfeldt et al. 1991)—are employed in the evauation
of the numerical flux. Originally devised for gas dynamics, these flux functions
have been rederived for MHD to cope with the solenoidal condition and deal with
degeneraciesin the MHD eigenstructure (Powell 1994; Powell et al. 1995; Roe and
Balsara 1996; Linde 1998). Limited linear reconstruction is used to achieve higher-
order accuracy (Van Leer 1979) and multi-stage schemes (Van Leer et al. 1989),
with point-implicit treatment of source terms, are used to integrate the ordinary
differential equations that result from the spatial discretization of the governing
PDEs. The finite-volume scheme solves the hydrodynamic and magnetic equations
in atightly coupled manner, provides accurate resolution of discontinuities, and
works equally well across arange of plasma 3, where 3 isthe ratio of thermal and
magnetic pressures.

2.2. BLOCK-BASED ADAPTIVE MESH REFINEMENT

Computational gridsthat automatically adapt to the solution of the governing PDES
are effective in treating problems with multiple length scales, greatly reducing
the computing resources required for many problems. Borrowing form previous
work by Berger (Berger 1984; Berger and Colella 1989), Quirk (Quirk 1991; Quirk
and Hanebutte 1993), and De Zeeuw and Powell (1993) and keeping in mind the
desire for high performance on parallel architectures, a block-based adaptive mesh
refinement (AMR) technique has been developed for the preceding upwind finite-
volume formulation. In this approach, the governing equations are integrated to
obtain volume-averaged solution quantities within rectangular Cartesian computa-
tional cells. The cells are embedded in regular structured blocks with cells of equal
size. The blocks are self-similar and all consist of IV, x N, x N, cells. Compu-
tational grids are then taken to be composed of many blocks and mesh adaption
is accomplished by dividing and coarsening the appropriate blocks, with changes
in cell resolution by a factor of two permitted between adjacent blocks. In regions

* For theapplications of interest here, the MHD equations are supplemented with additional source
terms representing the effects of the solar gravitational force and plasma heating. In the case of the
latter, an empirically formulated volumetric heating function is included to model micro-physical
processes not represented by the ideal MHD description, such as coronal heating and heat transfer
effects.
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Figure 1. Four meridional snapshots of the computed CME solution depicting the initiation and
evolution of the disturbance from ¢ = 0 hoursto ¢ = 24 hours.

that require increased resolution, a block is refined by dividing, with each of its
eight octants becoming a block having the same number of cells asthe original. In
regions that are deemed over-resolved, the refinement processis reversed and eight
blocks are coarsened and coalesced into a single block with half the spatial resolu-
tion. Physics-based refinement criteria are used to direct coarsening and division of
blocks. A hierarchical data structure is used to track mesh refinement and solution
block connectivity (De Zeeuw et al. 1998).

2.3. PARALLEL IMPLEMENTATION

The preceding solution-adaptive scheme is designed to achieve high performance
on massively parald architectures. Parallel implementation of the agorithm has
been carried out using FORTRAN 90 and the message passing interface (MPI)
library on several multi-processor platforms, and 233 GFlops has been attained on
a1,024-processor Cray T3E with near-perfect scalability (De Zeeuw et al. 1998).
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3. Simulation of Coronal Mass Ejections

Someinitial studies of the formation and evolution of CMEs have been carried out
using the parallel solution-adaptive MHD scheme described above. In these studies,
amodel of the nominal background solar wind for conditions during solar minimum
was used to represent the initial state of the solar wind, and CMEswere initiated by
localized isothermal density and pressure enhancements. While the magnetic field
configuration and CME onset mechanism used in the simulations were somewhat
oversimplified, these calculations represent initial steps towards developing more
sophisticated models of the solar wind.

Inthe CME simulations, the " steady-state” solar wind was modeled by assuming
that the inner solar corona is a large rotating reservoir of hot plasma with an
embedded dipole field. The reservoir temperature and number density were taken
to be 3.1 MK and 108 cm~—3, respectively, and the strength of the magnetic field
at the poles was 1 G. A value of 5/3 was used for the specific heat ratio such
that adiabatic cooling at large heliocentric distances was correctly modeled. The
corona plasma was heated by volumetric hesting in the vicinity of the Sun where
the latitude and radial dependence of the heat source was chosen to produce a
reasonable solar wind, having both fast and dow streams.

Figure 1la shows a meridional cut through the calculated initial solar wind
solution. The shading represents the logarithm of the magnitude of the magnetic
field and the white lines correspond to field lines. It is evident that the solution,
which is dictated by a complex baance between pressure, magnetic, gravitational,
and inertial forces, has regions of open and closed field lines and is characterized
by the now classical “helmet” streamer configuration with associated neutral point
and equatorial current sheet similar to that obtained by Pneuman and Kopp (1971).
However, unlike the Pneuman-Kopp model, the solution more correctly mimicsthe
two-state nature of the solar wind (McComas et al. 1998). Fast solar wind (800
km/s) originating from polar coronal holesis produced above 30° in heliolatitude,
slow solar wind (400 km/s) is produced near the solar equator at lower latitudes, and
reasonable values for the plasma properties and interplanetary magnetic field are
obtained at 1/2 AU. Refer to Figure 2. Shown is a polar diagram of the asymptotic
values of the computed flow speed as a function of heliolatitude. The numerical
solution is consistent with Ulysses SWOOPS observations (McComas et al. 1998),
aso shown in the figure.

Using the preceding initial state, numerical results for a CME driven by an
isothermal density enhancement are shown in Figures 1b—d. The solution at times
t = 2, 4, and 24 hours after onset are shown. For this calculation, a 40:1 density
enhancement was introduced with a duration of 16 hours at the solar surface just
above the equatorial plane. The density enhancement first leads to the “filling” of
closed magnetic field lineswith additional plasma. Thisisfollowed by an expansion
of the closed field line region. After aperiod of time, the closed field linesare unable
to contain additional plasmaand the streamer belt is disrupted. The resulting CME
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Figure 2. Predicted solar wind velocity and stream lines, and polar plot of computed solar wind speed
compared to Ulysses SWOOPS data (McComas et al. 1998).

moves rapidly through the inner corona and propagates outward, dragging out
closed field lines with it and disrupting the heliospheric current sheet as it moves.
A magnetic cavity propagates behind the front of the disturbance, which moves
at velocities nearing 450 km/s. Between ¢t = 17 and ¢ = 19 hours, the density
enhancement completely diminishes and CME field lines begin disconnecting from
the solar surface. This results in the reformation of the current sheet. The solution
a t = 24 hours of Figure 1d depicts this reformation process.

This work was supported by the NSF-NASA-AFOSR inter-agency grant NSF
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