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Abstract. On the basis of the observational picture established in the report of Mason, von 8teiger

al. (1999) the status of theoretical models on origin, injection, and acceleration of particles associated
with Corotating Interaction Regions (CIRs) is reviewed. This includes diffusive or first-order Fermi
acceleration at oblique shocks, adiabatic deceleration in the solar wind, stochastic acceleration in
Alfvén waves and oblique propagating magnetosonic waves, and shock surfing as possible injection
mechanism to discriminate pickup ions from solar wind ions.

1. Introduction

The basic features of energetic particles associated with CIRs have been known
since the 1970s from Pioneer and Voyager observations (McDehaddl, 1976;
Barnes and Simpson, 1976) and are summarized in the accompanying paper by
Mason and Sanderson (1999). Figure 1 shows, as a typical example, more recent
measurements of various particle data and of the magnetic field magnitude during
the passage of a CIR by Ulysses. From top to bottom are shown the electron and
proton fluxes in the range 0.1-0.4 MeV and 0.8-1.0 MeV, respectively, and the
solar wind velocity, temperature, density and magnetic field strength. The energetic
protons exhibit two reasonably well-resolved peaks centered approximately on the
forward and reverse shock. The intensity increase of the protons near the reverse
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Figure 1.Behavior of the fluxes of electrons (0.1-0.4 MeV) and protons (0.8-1.0 MeV), the solar
wind speedVsyy, the proton temperaturg, the proton number density and the magnitude of the
magnetic fieldB during the crossing of CIR No. 5 by Ulysses.
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shock is an order of magnitude larger than that near the forward shock, a feature
which is well known from the Pioneer and Voyager measurements (Barnes and
Simpson, 1976; Scholest al, 1980; Tsurutanet al, 1982). In contrast to the
two-peak ion structure the flux of energetic electrons is only enhanced at the reverse
shock relative to the background by a factor~e.

The spectral and compositional characteristics of CIR associated energetic ions
have been summarized in the accompanying paper by Mason, von Steiger
(1999). In brief, the spectral form of CIR ions in the energy range above a few tens
of keV is a power law with a steepening beyornd MeV and the composition is
solar wind like. There are some differenceg, the He/O and Ne/O ratios are ob-
served to be a strong function of solar wind speed, while other ratios do not exhibit
this variation. Strong heating and acceleration of pickup ions has been observed in
association with CIRs (Gloecklet al, 1994). As stressed by Gloeckler (1999) in
an accompanying paper, the intensity of pickup"Hebove twice the solar wind
speed exceeds within CIRs a6 AU that of suprathermal solar wind Fi& even
though solar wind He' is at least a factor of famore abundant than pickup He
Furthermore, there is no difference in the spectral shapes of pickup He behind
the forward and the reverse shock, while the solar wind heating efficiency is rather
different. Gloeckler (1999) further points out that the inner source pickup ions with
a C/O ratio of~1 could also contribute to CIR accelerated particles.

As can be seen from this brief overview and from the more detailed papers in
this volume any successful theory of injection and acceleration of CIR particles has
to explain a wide variety of phenomena. The present state of the theory is far from
such a goal and what we have is merely a number of possible mechanisms. These
mechanisms are not necessarily exclusive, but may well work at the same time for
different species or at different locations. This chapter collects the mechanisms as
favored by the different authors.

In the next section M. A. Lee and J. Kdéta first introduce the general energetic
particle transport equation and then evaluate the transport coefficients by quasi-
linear theory. J.R. Jokipii then reviews the theory of diffusive or first order Fermi
acceleration at oblique shocks. Subsequently M. A. Lee outlines in Sect. 4 a theory
for diffusive acceleration at CIR shocks, which takes into account adiabatic de-
celeration in the expanding solar wind. This theory predicts the different spectral
shapes at the forward and reverse CIR shocks, and has been successfully compared
with spectral data in many cases. In Sect.5 M. Scholer reviews work on patrticle
injection at quasi-perpendicular shocks. Shock surfing may be an important injec-
tion and acceleration mechanism for pickup ions at the CIR shocks if the shock
thickness is considerably less than the ion inertial length. The shock surfing theory
is described by R. Kallenbach and M. A. Lee in Sect. 6. In this section there is also
a discussion on theoretical constraints for a possible charge-per-@#gsiépen-
dence of the injection efficiency. There is observational evidence that stochastic
acceleration is important for pickup ions well within the CIRs. L. A. Fisk reviews
the theory of stochastic acceleration by Alfvén waves and by oblique propagating
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magnetosonic waves. He points out that transit time dampiag,acceleration

due to Landau resonance in magnetosonic waves is very efficient and can accel-
erate pickup ions well within the CIRs, where large fluctuations of the magnetic
field strength have actually been observed. Only very little work has been done in
the past on electron acceleration. In Sect. 8, G. Mann reviews what is known on
electron acceleration and concentrates on shock drift acceleration of electrons. We
should like to point out that in an accompanying paper Scholer (1999) presents a
complementary review of injection and acceleration at CIR shocks. In the present
chapter only the section on shock surfing addresses the problem of particle in-
jection, and this process concerns basically the injection of pickup ions. Little
theoretical/simulational work has been done on the problem of injection of solar
wind ions at quasi-perpendicular shocks. A discussion of some of the ideas can be
found in the article by Scholer (1999).

2. Energetic Particle Transport and the Diffusion Tensor

M. A. LEE andJ. KOTA
2.1. INTRODUCTION

The transport of energetic particles in the heliosphere is effectively described by
the equation (Parker, 1965; Gleeson and Axford, 1967)

of 1 of

E+(V+VD)-Df—DK-Df—éﬂ-Vp%_Q 1)
wheref(x, p,t) is the particle omnidirectional distribution functiop,is momen-
tum magnitude) (x,t) is the solar wind velocity, an@(x, p,t) is the source term
(to describe for example ion injection at a shock). The magnetic field controls the
spatial transport through the drift velocityp = (pvc/3q)0 x (B/B?), wherevand
g are the particle speed and charge, Brisithe average magnetic field, and through
the spatial diffusion tensat. Equation 1 is based on the assumption thgt V
and the spatial scalelength, is sufficiently larger than the scattering mean-free-
path:|K| < vL/3. The latter assumption is equivalent to the requirement that the
particle distribution be nearly isotropic. If these conditions are not met then one
should consider the more general Fokker-Planck equation (Skilling, 1971; Isen-
berg, 1997; Kéta and Jokipii, 1997) which remains valid for slow particle velocities
and is equally applicable to either strong or weak scattering. Equation 1 may also
be extended to include terms which describe stochastic acceleration (see Sect. 7),
and viscous acceleration due to a sheaf (izarlet al., 1988; Jokipiiet al,, 1989).

The drift term describes transport due to curvature, gradient, and magnetization
drifts in the “average” (usually viewed as an ensemble average) magnetic field. All
other effects of the magnetic field are assumed to be diffusive and are lumped into
the diffusion tensok. The diffusion tensor is often assumed to be axisymmetric
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about the unit vectob = B/B (although it need not necessarily be), and therefore
has the form

Kij :KLéij—}—(KH—KL)bibj (2)

whered;j is the Kronecker symbok (k) describes spatial diffusion parallel (per-
pendicular) td due to magnetic field fluctuations. It is the efficiency of this spatial
diffusive transport which insures near isotropy of the particle distribution. An addi-
tional antisymmetric component of the diffusion tensoe;jx bk, associated with
the regular spiraling motion, is absorbed in the drift term in Eq. 1.

2.2. QUASILINEAR DERIVATION OF K|

The derivation ofk; proceeds from the pitch-angle diffusion equation within a
magnetic flux tube in the limit of strong scattering

oF 0 5.~ OF
Wisg = (1 HID G
where F(s;t, ) is the particle phase-space distribution functiseris arclength
along the flux tubey is the cosine of the particle pitch-angle, ddds the pitch-
angle diffusion coefficient. Assuming that magnetic fluctuations vary only with

s (slab model), the quasilinear theory yields (Jokipii, 1966, Jokipii, 1971b, Lee,
1971; 1982)

L )
D= 2mzc2|u|vI <uv) “)

wherem is particle massw = gB/mcis the cyclotron frequency, ardk) is the
wave intensity (or power) defined by

®3)

(k) = %1/_st< 3B(s0) - 3B(so+5) > e kS (5)

(k is wavenumber). The cyclotron-resonance condition dictates that particles are
scattered only ikvu = w. Equation 4 can be generalized to include wave fluctua-
tions which also propagate oblique to the magnetic field.

With F = f +g(p) and|g| <« f (nearly isotropic distribution), Equation 3 may
be integrated to yield (Jokipii, 1966; Hasselmann and Wibberenz, 1970)

v [t Vol 1P of of
S—ElldUUQU)——g 71dH D &——KH& (6)

Thus, K is a weighted integral oveD()~L. If D(p) vanishes for a range af,
K| diverges since particles cannot be scattered through this rangevitiiin the
quasilinear theory. Higher-order correctionsii¢y) may be important for large-
amplitude fluctuations and may lead to finitgin this case.



374 M. SCHOLER, G.MANN ET AL.
2.3. THE PERPENDICULAR DIFFUSION COEFFICIENT K|

Stochastic transport normal to the average field is more complicated and contro-
versial. The resonant scattering which causes the pitch-angle diffusion and parallel
spatial diffusion also contributes to,, since any scattering in pitch-angle causes
the particle to shift the field line about which it gyrates. In addition, a given field
line “random walks” about the averad® causing perpendicular transport of a
particle following the field line, the field line followed by the particle is ill-defined
due to the finite gyroradius of the particle, and a particle drifts stochastically due
to fluctuations on a scale larger than the gyroradius. All these effects, which con-
tribute to perpendicular transport normalBgare proportional to the intensity of
the fluctuations (see.g, Formanet al., 1974, Moussast al., 1982).

If fluctuations are small and gradients are not confined to the directions normal
to B, thenk, < k|, and it is often appropriate to neglect . Alternatively, it is
often assumed ad hoc that = nk;;, wheren is constant and satisfies< 1. For
large amplitude fluctuation®B ~ B) isotropic spatial diffusion is often appropriate
(K1 = K)). A further idealized model is based on “hard sphere scattering” and
yields

vt 1 d VT Wt -
L= 3 Tr e an AT Z 17w 0
wheret is the characteristic timescale for a large-angle (hard-sphere) scatter. Since
K| = V21/3, this formula gives the expected result~ K in the limit Wt < 1.Kp
is the antisymmetric diffusion responsible for drift motion.
The contribution ta; from the random walk of field lines is (Jokipii, 1971b)

__v
- 2B?
wherel (k) is the magnetic field fluctuation power as given by Eq. 5 at zero wave-

number. Evaluation of the power &t= 0 follows from the fact that the long
wavelength fluctuations dominate the random walk of field lines.

K. I(k=0) 8)

2.4. (HALLENGES

It is clear that Egs. 7 and 8 far, are specialized and do not include all processes
leading to stochastic transport across the average magnetic field. A more general
approach follows from the Taylor-Green-Kubo formula (see Forman, 1977; Bieber
and Matthaeus, 1997)

i = [ty tovto-+1) ©

where the bracket§ describe an ensemble average over an appropriate ensemble
of particle trajectories. Equation 9 also yields the drift transport (contained in the
the antisymmetric terms) in the average magnetic field as described separately in
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Eq. 1. In a sense Eq. 9 simply shifts the difficulty from evaluakpgo evaluating
the velocity correlation(vj(0)vi(t)). Bieber and Matthaeus (1997) postulate an
exponential decay ofv;(0)vi(t)) with time to infer perpendicular diffusion and
effective drift velocities, that are formally equivalent to Eq. 7 buhcludes the
effects of both scattering and random walk of field lines.

If particles scatter back and forth in pitch angle, but remain strictly tied to field
lines, then perpendicular diffusion results solely from the random walk and mixing
of field lines. This idealized, but still physically valid, process is the so-called
compound diffusion (Lingenfeltest al, 1971) which is a non-Markovian motion,
and which yields a slower diffusion than Brownian motion. In this case, the mean
square displacement perpendicular to the mean field increas@s@s t1/2,
in contrast to thgAx?) Ot dependence of standard diffusion. Compound diffu-
sion may serve as a fair description when particle transport across the actual field
lines is negligible. For the non-Markovian compound diffusipn(0)vi(t)) has a
long-time anticorrelation trend and may differ substantially from an exponential
decay.

Observational investigation of an appropriate function or has been lim-
ited, sincek is usually dominated by;. However, Dwyeret al. (1997) have
observed large anisotropy components normal to the average magnetic field for
~100 keV/amu ions in the fast solar wind stream at 1 AU upstream of several large
CIRs. The dependence of the anisotropy on the orientatidh alfowed them to
deduce that these normal anisotropy components are due to large perpendicular
diffusion with k ; ~ K|, even though the scattering fluctuations are apparently not
large amplitude. The reason for the lakgeis not known.

3. Theory of Shock Acceleration

J.R. DKIPII

The mechanism for accelerating particles t8-1I eV energies and higher, in the
heliosphere, is generally thought to be diffusive shock acceleration. It is possible
that other mechanisms have arole in the acceleration of the low-energy pickup ions
and thermal ions to energies where shock acceleration takes over. However, shock
acceleration may be responsible for accelerating these particles as well.

Diffusive shock acceleration has the virtue of naturally producing a power-law
energy spectrum which is quite close to the spectrum observed. Diffusive shock
acceleration is the natural consequence of the diffusive transport of fast charged
particles at and near collisionless shock waves. Hence it can be derived readily
from the general transport equation (1).

Associated with the solution to the pitch-angle-averaged distribution funétion
is a streaming fluxs , which may be written in terms df as

1. of
S=—K0f—3Vpg.. (10)
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with an associated anisotropy magnitude
0 =3|9|/(vf). (11)

The anisotropy magnitude must be small compared with unity for the diffusion
approximation to be valid.

Consider the solution of the above transport equation in a standard, planar shock
configuration. We work in the shock frame, with the shock at 0, and take the
magnetic field to be weak enough that the flow is unaffected by it.XFhe plane
is chosen to contaif3. The upstream and downstream quantities are given the
subscripts 1 and 2, respectively. We denote the strength of the shock by the ratio of
upstream to downstream velocity, = Vi1 /V> = p2/p1, wherep is the density. The
normal magnetic field is unchanged at the shock and the transverse field increases
by rsh, B2/Bz = Ish.

The solution to the transport equation may be obtained by solving it in the
upstream regions and relating the solutions across the shock by the jump condition
(obtained by integrating across the shock) (Jokipii, 1987)

2

“ax T 3anp 3q B2y,
whereQ; is that part of the source which is concentrated at the shock, and where
Kxx, the coefficient of diffusion normal to the shock face, may be written, in terms
of the angled between the magnetic field and theirection, axxx = k| cos’ (6) +
K| sir? (9) .

The first two terms on the left yield the standard jump condition, and the third
term gives the effects of the gradient and curvature drifts at the shock front. The
third, drift term vanishes in planar, one-dimensional systems, gifgéy is zero
in this case. However, even though the drifts at the shock do not appear explicitly
in the mathematics for the diffusive shock acceleration at a planar shock, they play
an extremely important role in understanding the physics of particle acceleration
in all but purely parallel shocks. This is because it may be demonstratec (ee,
Jokipii, 1987) that a significant fraction of the energy gain comes from drifting
along the shock face, in théx B electric field. Due to the fact that the mathematics
is the same, the energy spectrum produced at a near-planar perpendicular shock
including drifts is the same power law in momentum that is produced in the absence
of drifts

f(p) O p~¥sn/rsn=1), (13)

The only difference in the spectrum produced including drifts from simple shock
theory is that the particles may be accelerated considerably faster at oblique or
quasi-perpendicular shocks, whetre contributes more teyy, as the acceleration
time is

KXX
Tacc R 4—5 14
acc Vlz ) ( )
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and usuallyk; < K. This extra energy gain comes from the drift in the electric
field, as mentioned above. Also, the injection of low-energy particles, such as ther-
mal particles or pickup ions, is more difficult at quasi-perpendicular shocks than at
guasi-parallel shocks. One may also show that the e-folding fall-off distance of the
accelerated particles upstream of the shock is the dameyy/Vi.

The association of energetic nuclei with CIRs has been recognized for more than
20 years (Barnes and Simpson, 1976; McDomraldl., 1976). Since the shocks are
generally highly oblique, drifts must play a role in the acceleration. Currently, it is
thought that the particles are accelerated to several MeV energies at the forward and
reverse shock waves bounding the CIR'’s. Less clear is the initial source of these
particles. Early observations near 1 AU suggested that the composition resembled
solar particles €.g. Gloeckleret al., 1979). Recent observations show that inter-
stellar pickup ions are the likely source of many of these particles (Gloeekler
al., 1994, and Gloeckler, 1999, in this volume).

4. A Model for Diffusive Shock Acceleration at CIRs

M.A. LEE

As pointed out in the previous section, steady state theory of diffusive shock accel-
eration at a planar shock predicts a power law distribution function, which is not
observed at the CIR shocks for the full particle energy range. Fisk and Lee (1980)
have solved the diffusion equation (1) by taking into account adiabatic deceleration
(last term on the left hand side). Under the assumptions that the ion distribution is
stationary in the frame corotating with the Sun and the spatial diffusion tensor
is dominated by diffusion parallel to the Archimedes spiral magnetic field, the
transport equation (Eq. 1) can be written
of 10[2 af] v of

- = ~Zv—=0 15
or r2or Kar 3r Vav (15)

wherek is here and subsequently the radial spatial diffusion coefficient, and drift
transport has been neglected. Equation 15 describes the ion transport within an
Archimedes spiral flux tube upstream of either the forward shock in the slow
stream, or the reverse shock in the fast stream. The terms on the left hand side
of Eq. 15 describe advection of the ions with the solar wind, diffusion within
the flux tube, and adiabatic deceleration in the expanding solar wind. The shock
acceleration is introduced with the boundary conditions at the shoekr§) that
(1) f be continuous and (2) at speeds above ion injection, the component of the ion
streamingS normal to the shock front be continuous. Neglecting diffusive trans-
port within the CIR, where the large-amplitude turbulence suppresses diffusive
transport along the average field, these conditions combine to yield the boundary
condition atr =rg:

of 1 of

— K — = — — — 71
K3 3Vvav(l R™) (16)
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whereR is the shock compression ratio. Fisk and Lee (1980) made the reasonable
choice thatk = Kowr, consistent with scattering mean free paths which increase
with r and which are independent of rigidity (Palmer, 1982). With this choice Fisk
and Lee derived the asymptotic solution to Egs. 15 and 16 for laege

r

fN
(F;

)ZR/(R71)+V/(K0V)V73R/(R71) exp(—6K0vR/[V(R— 1)2]) (17)
The middle factor of Eq. 17 is the standard power law characteristic of shock accel-
eration at a stationary planar shock. The exponential factor describes the competing
effect of adiabatic deceleration. Interestingly the factgrs)V/(KoV)y—3R/(R-1)
give the expected distribution for low speeds (above the injection speed), even
though the solution is asymptotic¥nthe first factor describes the convective/diffu-
sive ramp and the second factor is the standard power law. Thus Eq. 17 would
appear to be more generally valid. Eq. 17 indeed satisfies the boundary condition
of Eq. 16 exactly. If Eq. 17 is substituted into Eq. 15 one term remains uncanceled.
This term is smaller than the other terms ifdg/r) < 3/2 (for Kov < V) or if
In(rs/r) < (3/2)k3(v/V)? (for Kov > V). Thus the spatial realm of validity of
Eq. 17 increases with increasimgas expected. At the lower speedgy < V) the
solution requires at least/r < 4.5 with improving accuracy closer to the shock.
Equation 17 accounts for observed features of many corotating ion events: (1)
the spectrum is exponential inat higher energies with an e-folding speed inde-
pendent of species; (2) at lower energies at the shock the spectrum is a power law;
(3) the gradientf~1af/or Or~1, is larger in the inner heliosphere; (4)k§ and
R are similar at the forward and reverse shocks, then the e-folding speed at higher
energies is larger at the reverse shock swhiglarger in the fast stream, in general
agreement with higher ion intensities observed at the reverse shock. Furthermore,
the general decrease in ion intensity within the CIR simply arises from adiabatic
deceleration of the ions, which are trapped there by the large-amplitude turbulence.
In addition, adjacent to the stream interface the ion intensity is expected to exhibit
a dip since these field lines do not intersect the shocks (Palmer and Gosling, 1978).
Masonet al. (1997) present WIND observations of the large corotating ion
event of DOY 340-343, 1994. At energies less thdrMeV/amu in the fast stream
they measure a power-law dependence of differential intenSity’ {) on energy
with an index of~2.2. According to Eqg. 17 that implies a compression ratio
R ~1.9, which is reasonable for a strong reverse shock. For the same event at
energies greater thakl MeV/amu they measure an exponential spectrum with
an e-folding speed 0£8.5 x10-2 (MeV/amu)/2 = 1200 km/s. With an observed
solar wind speed of.700 km/s, Equation 17 impliag ~ 4.1 x 10~2. With Kowr =
Arv/3, we obtain a radial scattering mean free patfr ~ 0.12, which again is
reasonable. However, it should be noted that Mataad. (1997) do not observe the
reduced intensity at low energies expected from the first factor in Eq. 17; the low
energy ions appear to be more mobile than expected. Restnads(1997) com-
pare Eq. 17 with spectra observed by WIND during the event of May 30—June 9,
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1995, and find very good agreement at three different times during the event. The
adjusted parameters are very reasonable with the exception of the implied shock
compression ratio late in the event, which is too large. Dessal. (1999) fit the last

two factors of Eq. 17 to the spectra measured by Ulysses during the hour centered
on shock passage for all forward and reverse shocks encountered from Day 183,
1992 to Day 91, 1993. The inferred power-law spectral index was generally much
smaller than the predicted valueR/BR-1); assuming an exponential in energy
rather than speed appeared to provide a better fit and increased the inferred power-
law spectral index to a value closer to the predicted value. These discrepancies
appear to emphasize the importance upstream of the shock of the first factor in
Eq. 17, which would harden the spectrum and reduce the inferred spectral index,
and of a sheath of enhanced turbulence adjacent to the shock, which would modify
the speed dependence of the exponential factor in Eq. 17.

The theory of Fisk and Lee (1980) makes assumptions which may have to
be relaxed to obtain better agreement with observations. Their neglect of diffu-
sive transport perpendicular to the average magnetic field is at odds with recent
observations in the fast stream for several events of large diffusive fluxes nor-
mal to the magnetic field (Dwyeet al, 1997). Since CIR shocks tend to be
guasi-perpendicular, even small perpendicular diffusion coefficients can facilitate
ion transport from the shock into the upstream solar wind. The assumption that
K O r does not allow for a sheath of enhanced turbulence adjacent to the shock,
which may be excited by the accelerated ions. Finally, the theory of diffusive
shock acceleration cannot address the mechanism of ion injection at the shock.
At quasi-perpendicular shocks the energy threshold for injection into the process
of diffusive shock acceleration is quite large. Based on Ulysses observations at
~5 AU, Gloeckleret al.(1994) find that interstellar pickup ions are preferentially
accelerated by the CIR shocks. This may point to shock surfing as an important
injection mechanism.

5. Numerical Models for lon Injection at Shocks

M. SCHOLER

As has been outlined in the previous sections, the model of diffusive shock accel-
eration at CIR shocks in the expanding solar wind explains many observations as-
sociated with corotating energetic particle events. However, diffusive shock theory
does not deal with the so-called injection problém,why and how a certain part

of the thermal ions is extracted from the solar wind and becomes a suprathermal
population, which is further accelerated by diffusive shock acceleration. Diffusive
shock acceleration theory is thus not able to make statements about elemental abun-
dances in corotating energetic particle events. In this and in the following section
we will discuss analytical and numerical attempts which deal with the problem of
injecting solar wind and pickup ions into a diffusive shock acceleration process.
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Since CIR shocks tend to be quasi-perpendicular we have to deal at first sight
only with the injection problem at quasi-perpendicular shocks. The only analytic
attempt which is applicable to the problem of solar wind ion injection deals with
guasi-parallel shocks: Malkov and Volk (1995) have extended the theory of dif-
fusive particle acceleration to low energies, where the difference between the up-
stream and the downstream fluid frame is essential and the particle distribution
is highly anisotropic at the shock front. In their model wave excitation and pitch
angle scattering are treated self-consistently by assuming that pitch angle scattering
is due to self-excited MHD waves propagating along the ambient magnetic field.
These waves are excited in cyclotron resonance due to the pitch angle anisotropy
of the backstreaming ions.e., by an electromagnetic ion/ion beam instability.
However, since it is assumed that the source of the injected particles are those
downstream heated particles with an upstream velocity exceeding the shock ve-
locity, the formalism does not really treat the injection problem, but rather treats
acceleration in the thermal and suprathermal energy regime.

Shock surfing, which belongs to the category of shock drift acceleration pro-
cesses at perpendicular shocks, has been modeled analytically by &le€1996)
and will be discussed in detail in the next section to offer an explanation for the
extremely preferential injection of pickup ions into CIR shock acceleration.

Numerical models for injection and acceleration at collisionless shocks fall into
two categories:

— In Monte Carlo simulations it is assumed that thermal particles collide with
scattering centers (magnetic irregularities) in the same way as the accelerated
population. The process of acceleration during the sampling of the velocity
difference across the shock can be modeled by the Monte Carlo technique
(Ellison et al, 1990). The scattering mean free path is usually assumed to be
a power law function of momentum down to thermal energies. This approach
does not really solve, but rather circumvents, the injection problem.

— In kinetic and hybrid simulations the interaction of particles with the shock is
modeled self-consistently. Hybrid simulations of collisionless shocks treating
the electrons as a neutralizing fluid not only successfully explain the shock
micro-structure, but also show how diffuse suprathermal particles are directly
injected out of the incident thermal plasma at quasi-parallel shocks (Quest,
1988; Giacalonet al., 1992; Scholer, 1990).

5.1. MONTE CARLO SIMULATIONS

In the Monte Carlo simulations the mean free paths assumed for the thermal and
suprathermal population are justified a posteriori from the mean free paths ob-
tained by the hybrid simulations. These mean free paths are calculated from spatial
intensity profiles of suprathermal particles upstream of the shock over one or more
e-folding distances. Extrapolating the diffusion coefficient down to thermal ener-
gies in particle scattering across the shock does not necessarily describe correctly
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the process of thermal particle injection at quasi-parallel shocks. In particular, the
assumption is made implicitly that the particles conserve their adiabatic moment
during the shock interaction, which assumes that the magnetic field varies smoothly
on spatial scales larger than the thermal gyroradius.

As mentioned, CIR shocks tend to be quasi-perpendicular shocks so that the
Monte Carlo simulations and the one-dimensional and two-dimensional hybrid
simulations are only of limited use. In the Monte Carlo model injection is basically
due to that part of the downstream thermal distribution that has an upstream-
directed velocity greater than the downstream bulk flow speed parallel to the mag-
netic field. Scattering is assumed to be isotropic in the de Hoffmann-Teller frame,
where the upstream drift electric field is transformed to zero. In this model the
efficiency of injection decreases rapidly with increasing shock obliquity and is
effectively shut off wher@g, > 30° (Baring et al, 1994), since for large oblig-
uity the thermal particles are rapidly swept downstream by the flow. Injection at
quasi-perpendicular shocks can only be achieved by including cross-field diffusion.
Baringet al.(1995) have extended the Monte Carlo technique by including cross-
field diffusion: they found that cross-field diffusion effectively traps the thermal
particles in the shock environs when the ratio of scattering mean free path to the
particle gyroradius\/rq is of the order of one. Baringt al. (1995) were able
to fit the proton spectrum for a quasi-perpendicular interplanetary traveling shock
(©gn = 77°) by assuming thak /rg = 4. Kinetic simulations should, in principle,
include the cross-field diffusion process self-consistently. However, simulations
in one or two dimensions have serious limitations. First, a reduction of dimen-
sions implies a reduction in the allowable wave vector space. Second, Jekipii
al. (1993) have presented a general theorem according to which they show that
charged particles in fields with at least one ignorable spatial coordinate are effec-
tively forever tied to the same magnetic lines of force, except for motion along the
ignorable coordinate. This theorem was derived by Jokipal. (1993) in a heuris-
tic manner and has recently been derived rigorously by Jenas (1998). Since
long-time 3-D simulations of shocks are not feasible at present, other approaches
are necessary.

5.2. HYBRID SIMULATIONS

Giacaloneet al. (1994) took refuge to a similar approach as did Baratgal.
(2995). In 1-D hybrid simulations of perpendicular shocks they imposed an as-
sumption on the ion motion so that diffusion across the magnetic field is possible.
The cross-field scattering efficiency is expressed in terms of a scattering time
measured in units of the inverse ion gyrofrequency, during which the gyrophase
is randomised. Pickup ions were included self-consistently. Assuming a scattering
time 1sc of the order of 2@~ (Q is the gyrofrequency) they obtained fast injection
and acceleration of pickup protons, Heand heavier ions at perpendicular shocks.
However, solar wind particles could not be injected into the acceleration process
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unless the rather unphysical valueCdf = 1 was chosen. As will be outlined in the
next section, another injection and acceleration mechanism for pickup ions may be
shock surfing.

As stated earlier, energetic ion-H0 keV) intensities at CIR reverse shocks
typically are greater and broader in extent than at CIR forward shocks. Giacalone
and Jokipii (1997) discussed two specific mechanisms for producing this effect.
First, they pointed out that the model discussed by Fisk and Lee (1980) produces
somewhat flatter spectra at the reverse shock, and this would, in general, produce
higher intensities at the reverse shock, at least at the higher energies. Second, they
introduced another possible effect which would produce an overall enhancement
at the reverse shock at all energies, if the energetic particles were pickup ions: The
pickup ions have a higher energy in the fast wind into which the reverse shock is
propagating than in the slow wind into which the forward shock is propagating,
because their energy (relative to the local plasma) is proportional to the square of
the flow speed. They pointed out that this effect could be used to help establish the
role of pickup ions in CIR-associated energetic particles.

As proposed by Scholer (1999) there might be another solution to the injec-
tion problem at CIR shocks without invoking extremely small mean free paths or
small scattering times for thermal solar wind ions. Hybrid simulations show that
solar wind ions are injected at quasi-parallel shocks. Since these ions are accel-
erated during their first shock encounter to energies considerably higher than that
corresponding to specular reflection, backstreaming ions occur for shock angles
Opn > 45° (Scholer, 1998). Furthermore, the characteristic time required to pro-
duce backstreaming ions is short and only of the order of several gyroperiods. The
interplanetary magnetic field (IMF) is fluctuating on all time and length scales.
Large amplitude long wavelength fluctuations of the IMF may well lead locally to
sporadic quasi-parallel situations, where ion injection can occur, although, on aver-
age, the CIR shocks are quasi-perpendicular. The observations at CIR shocks show
that compared to pickup Hesolar wind H&* ions are accelerated less effectively
although they are present in number densities that exceed those of pickup ions
by orders of magnitude. The scenario with an occasional injection of ions during a
more quasi-parallel situation would also explain the preferential injection of pickup
He' ions relative to solar wind He: Scholer and Kucharek (1999) have recently
demonstrated that quasi-parallel shocks have a reflection efficiency for pickup ions
exceeding that for solar wind ions by one to two orders of magnitude.

In concluding this section it should be noted that there exists no difficulty in
injecting pickup ions into a shock acceleration process. As will be discussed in
Sect. 7 pickup ions are easily accelerated by transit time damping in the down-
stream region. Transit time damping is acceleration in obliquely propagating fast
magnetosonic waves by Landau=£ 0) resonance. Since the minimum energy in
order to accelerate ions by time= 0 resonance in magnetosonic waves is given
by the Alfvén speed, thermal solar wind ions are not accelerated by transit time
damping. Pickup ions are injected and accelerated at perpendicular shocks when a
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reasonable amount of cross field scattering occurs, whereas for injecting solar wind
ions the scattering time has to be of the order of the inverse ion gyrofrequency.
The kinetic simulations indicate that solar wind ions are easily injected into a
diffusive acceleration process for more quasi-parallel shock configurations. This
process also favors the injection of pickup ions by one to two orders of magnitude.
Finally, shock drift acceleration also favors injection of pickup ions.

6. Shock Surfing and Shock Drift

R. KALLENBACH and M. A. LEE

A possible injection mechanism which strongly favors the injection of pickup over
solar wind ions is “shock surfing” (Sagdeev, 1966; leteal, 1996; Zanket al,,
1996; Zilbersher and Gedalin, 1997; Lipattval., 1998). As illustrated in Fig. 2, a
fraction of the gyrating pickup ions approach the shock under a peculiar angle with
|vx| < u, whereu is the solar wind bulk velocity in the shock frame. These ions
find themselves trapped between the electrostatic shock potential and the upstream
Lorentz force. With each reflection at the shock potential they gyrate parallel to
the motional electric field, picking up energy and surfing along the shock surface.
Eventually their energy in the shock normal direction exceeds the shock potential,
or the Lorentz force exceeds the electric field given by the gradient of the potential,
and the ions gyrate downstream with a substantial energy gain. These ions can
attain the threshold for diffusive shock acceleration at a perpendicular shock. In
the simple case of a perpendicular shock witim the direction of the upstream
shock normal an® = B,e,, the ion equations of motion are

dv, do dw, dv.

d—::—%&Jrvyw, d_ty:_(quVX)w’ d—tZ:O (18)
wherew = qB,/m, —u, (u > 0) is the upstream flow speed relative to the shock,
and @ is the shock potential. On the right hand side of the equationsfare
the two forces which can trap the ion and cawgeo oscillate. Averaging the
equation forvy over this oscillation period yieldsy = wo — uwt. Taking a step
function is in many cases a reasonable approximation for the potential of quasi-
perpendicular shocks because their characteristic ldnigthsually much less than
uw, the characteristic gyroradius of a pickup ion. For a discontinuous potential the
ion is reflected (at timé= 0) in the upstream direction without changevig and
Vo but changing the sign ofyo if mv2/2 < q®p and o < 0. The time between
two bounceq is then approximately given by= (Vo + wW\oT/2 — Uw?T/6)T = 0;
from this it also follows that there is a velocity chanlyg, = —uw?1%/6 compared
to the case of no acceleration by the motional electric fieldwAs —2v,o/vyo One
can estimate (Leet al, 1996) that after the first bounce or two in the adiabatic
limit, Tv,~1dv/dt < 1, the relations

|Vy| 1/3 Sy 1/3
il = vl == ), &=8&o| | (19)
|Wol €0
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Figure 2.a) Schematic diagram of an ion interacting with a perpendicular shock 8twhen the ion

first encounters the shock witl < uandw, < 0. E denotes the motional electric field,= —uB, ey

(u = —uey). b) Pickup ion and solar wind velocity-space distributions in the plage=(0). The
distributions are in the shock frame in which the solar wind (dark circle) is normally incident with a
speedu. The pickup ion distributions are spherically symmetric in the solar wind frame with speeds
of the order of the solar wind bulk veloci¥sy (adapted from Leet al, 1996).

are valid, whereeyy are the particle energies in theandy directions. When
mv2/2 > qdg the ion is transmitted downstream, which can yield very large in-
jection energiesnv?/2 > mw?/2 because the ion gains much more energy in the
y direction than in thex direction. For a continuous potential the electric field
Ex = ®o/L across the shock is finite and in addition has to balance the Lorentz
force on the order ofvyB; due to the high ion velocity along, so that the ion

is transmitted ifq®o < £0(&y/ey0) Y/ + mwl|v,| where the variation oB; inside

the shock layer has been neglected. Including a posgibamponents, of the
magnetic field in the shock layer, the condition for transmission becaihgs<
€x0(&y/€y0) /3 +muwL |y | + gL|v||By|. It has been shown by Lest al. (1996) that

for adiabatic particle motiont¢y,~1dv/dt < 1) the relation between the energy
gain in thex andy directions represented by the first right-hand term is conserved
inside and outside the shock. In case of sraglnd smalBy the maximum injec-

tion energy is determined by®o/L ~ mw|vy|, which implies an injection energy

of mv/2= mu/2 [(%)2%} Here we usedPo ~ 52u? as the upper limit of

the magnitude of the potential jump at the shock, which applies for high Mach
numbers; in reality this jump is typically still about a few tenths of this value.
If L < u/wthe mechanism yields large injection energies. The size ahd its
implications on the efficiency of shock surfing remains to be discussed later in this
section after the presentation of the case of non-adiabatic motion.
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In the case of non-adiabatic motion inside the shock layer the acceleration of
particles depends on the detailed field configuration there. Usually the equations
of motion are non-linear and non-integrable and have to be treated numerically
(Lembegeet al,, 1983). However, here we present the example of a magnetosonic
shock wave, where the solutions to the equations of motion can be approximated
analytically. We refer to Tidman and Krall (1971) who described the potential step
of a shock wave by the potential slope ahead of a solitary magnetosonic wave in a
two-fluid plasma of protons and electrons. Electric and magnetic BEedlddB of
the solitary wave are given by

%Bexp(%)
E = —B(X)Wye(X)&x — uB1ey, B = B(X)e;, B(X) =B1 + 7
[1+exp(lE)]
2u? —V2(X) +V2, dB ) B2(x) 5 B2
el = Zmie ax A~ oNpomy YA oy @Y

whereBy, Ny, andVa 1 are the upstream magnetic field, plasma density, and Alfvén
velocity, respectively, antll(x) =~ N;; B, = B; + AB is the downstream magnetic
field. The smaller the shock (soliton) width the larger is the electron fluid ve-
locity We(x) and therefore the trapping field within the shock wave. The equation
of motion for a test particl¢g, m) = (Qe Amy) with cyclotron frequencyo(x) =
gB(x) /mincluding its energy gain can be described as:

dv, dv,
—= = QX vy — (X)Vye(X), —L = —0(X)Vx— o,
dt dt
1de
g — 01 VyU — 0(X) Vye(X) Vi (21)

In addition to the cyclotron terms, the equation dv/dt contains a trapping term

due to the shock potential, and the equationday/dt contains a term describing

the acceleration in the motional electric field that determines the kinetic energy
gain with time. The energy gain is positive fervy > w\We(X)w(X)/(uw;) which
excludes practically all solar wind ions with typically ~ —u and vy ~ 0 (note
thatVye(x) <0) from injection but not the pickup ions witfw,| < u and negative

vy as initial conditions. The second term on the right-hand side can be integrated
analytically. The first term corresponds to the energy gain due to the acceleration
in the motional electric field and can be estimated for the usual wasgVye| SO
that v < V& ~ 2E/m ~ wfu’t?. However, this is only valid untilv| approaches

the maximum electron drift velocitVyem| (See also Lembeget al, 1983) at

x =~ 1.3L. Then, the Lorentz force overcomes the trapping force due to the shock
potential and bends the ion motion into the negatigdirection with|vy| compara-

ble to|v| to leave the shock layer. This leads to a t¢\mm|2/2 (Ohsawa, 1985)
independent of)/A, which turns out to be dominant in most cases for the energy
gain of the particle transmitted through the shock:
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The numerical constants, 3, andy are typically on the order of 3, 0.7, and 0.2,
respectively, depending on the individual ion trajectory. The electron drift velocity
Vyem| and hence the energy gain of the particle crucially depends on the shock
width L; it is approximately proportional to l1f. The theoretical value fdris close
to the electron inertia length (Tidman and Krall, 1971)= c(B;/AB)Y*/wpe.
In that case, maximum patrticle energies of 100 keV/amu can be reached in CIR
shocks, assuming an Alfvén velocity of about 50 km/s and jumps in the magnetic
field by a factor~3. Data of the SOHO/CELIAS proton monitor at 1 AU suggest
that the change in proton speed typically occurs on scales that are on the order of
the proton inertia length or even longer (seg, Ipavichet al, 1998). However,
the proton fluid is not expected to react within the electron inertia scale length. The
proton scale length rather determines the decay of the “overshoot” visible in the
magnetic field data presented in Fig. 4 of Livessyal. (1982). The overshoot
thickness of shocks observed by ISEE1 and 2 is a few proton inertia lengths.
The leading ramps of the shocks, in fact, have a thickness on the order of the
electron inertia length, which matches theory quite closely. The many “wiggles” in
the downstream turbulence also have similar short leading magnetic field ramps.

With increasing shock strength the terms contair@ig§ become more impor-
tant. At moderately strong shocks such as interplanetary shocks, particles with
low Q/A are favored for injection and acceleration. In fact, particle abundances
observed in the anomalous component of cosmic rays suggest that pickup ions
with small Q/A are accelerated or transported more efficiently. In case of larger
Alfvén velocities such as for shocks close to the Sun the accelerated particles may
undergo even strongé&)/A-fractionation. This would match observations in solar
energetic particles (Breneman and Stone, 1985): Elemental particle abundances
can be ordered b§/A where individual events favor large or sm&llA, possibly
depending on the shock parameters according to Eq. 22. Observed abundances
of the anomalous component of the cosmic rays also sRbwas an ordering
parameter that is related to the acceleration and/or the transport efficiency of pickup
ions in the heliosphere.

After the shock surfing the particles are injected into the diffusive acceleration
process or they are possibly further accelerated by shock drift, which is a process
similar to shock surfing except that particle is transmitted across the shock twice
during each gyration.

Shock surfing and shock drift describe in an idealized way part of the motion
during the injection and acceleration process. As pointed out in Sect. 3 where a
general theory of shock acceleration is given (see also Jokipii, 1987), a signif-

Sl
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icant fraction of the energy gain comes from drifting along the shock face, in
the motional electric field. However, for pre-acceleration and injection the particle
interaction with magnetosonic waves is not only important at the main ramp of the
shock wave, but in a more statistical form in the waves and turbulence of the solar
wind downstream from the shocks as outlined in the next section.

7. Statistical Acceleration in the Solar Wind

L. A. FISK

The solar wind contains extensive waves and turbulence. The statistical interac-
tion of energetic particles by these waves and turbulence is another mechanism
for particle acceleration. Indeed, in regions of enhanced turbulence such as Co-
rotating Interaction Regions (CIRS) it is reasonable to expect that some of the
acceleration of energetic particles, particularly the relatively low-energy particles,
must be statistical acceleration. It is possible also, given that turbulence is present
throughout the solar wind, that there is a residual statistical acceleration always
present, whose effects accumulate during the transit of the solar wind outward
through the heliosphere and result in ever-present accelerated particles in the outer
heliosphere.

Statistical acceleration is most readily described as a diffusion in momentum
space. In other words, Equation 1 for the time variation of the isotropic particle
distribution function,f, needs to include a term,

dfy 19 [, of
(ﬂﬂ—@a—pz(”ppa—p) @3)

to describe statistical acceleration. HelDg,, is the rms change in momentum per
unit time, averaged over particle direction. The change in momentum resulting
from particles interacting with waves and turbulence is equally likely to be positive
or negative; it is a true diffusion in momentum. However, since the magnitude of
the particle momentum, or equivalently the energy, is only positive, the diffusive
process moves the particles in the direction of increasing momentum or energy,
and is a net acceleration.

To illustrate the change in the mean energy that results it is possible to describe
the diffusion term in Eq. 23 in terms of the differential number dendifyer unit
interval of kinetic energyl, or as:

df 0 oU 0 (Dy7U
(E)TT Tar (DTT 0T> oT ( 2T ) 24)
Here,Dr1 = V?Dpp, Wherev is particle speed. The statistical acceleration results

in an rms change in energy, which is described by the coeffi€ignt and a mean
change in energy which is given by the tebwt/2T.
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There are two principal forms for propagating variations in the magnetic field
in the solar wind which can give rise to statistical acceleration. (It is important
to note that the waves must be propagating; static structures will not accelerate
since an electric field is required.) Alfvénic fluctuations are the most common,
and do not involve significant variations in the magnitude of the magnetic field
strength. Magnetosonic waves are also present, in smaller amplitudes, and involve
significant magnitude variations. There is, however, considerable difference in the
acceleration capability of these two wave forms.

In the case of Alfvén waves the particles are pitch-angle scattered by the mov-
ing Alfvén wave. They gain or lose speed equal to the Alfvén speed, and, as has
been shown bye.g, Jokipii (1971a) and Wibberenz and Beuermann (1972), the
diffusion coefficient in energy space is given approximately by:

Drr ~ V2T?/K| (25)

wherek| is the spatial diffusion coefficient for pitch angle scattering parallel to
the mean magnetic field direction. Thus, the rate of statistical acceleration depends
inversely on the scattering mean free path. Said another way, pitch-angle scattering
and statistical acceleration by Alfvén waves both depend on resonant scattering,
where the interaction is at the first harmonic of the cyclotron frequency.

Indeed, it can be shown that the required mean free path for any interesting
statistical acceleration from Alfvén waves is extremely small (Fisk, 1976a). For
example, if the Alfvén speed is50 km/s and the mean free pati.01 AU, then
the characteristic acceleration time for 100 keV/amu particles is~s80 days.

Mean free paths are generally considered to be much longer than this in the solar
wind, although perhaps in very turbulent regions they could be this small. In any
event, only for time scales characteristic of the transit of the solar wind over large
distances is acceleration by Alfvén waves likely to be importaatijt is unlikely

to be important in the acceleration of particles in CIRs in the inner heliosphere, but
perhaps, although probably not likely, it could yield accelerated particles during
the transit of the solar wind into the outer heliosphere.

In the case of magnetosonic waves the acceleration is much more efficient, and,
indeed, this efficiency is the expected reason for the low amplitudes of such waves
in the solar wind. Here, the acceleration occurs not due to a resonant interaction at
the cyclotron frequency, but rather at the Landau resonance, where the phase speed
of the wave parallel to the mean field direction is equal to the parallel speed of the
particle; this mechanism is known as transit-time damping. In this case acceleration
can occur in the absence of significant pitch angle scattering.

In Fisk (1976b) a detailed derivation is provided for the diffusion coefficient
in momentum spac&)p, for the transit-time damping of, or equivalently the sta-
tistical acceleration by, magnetosonic waves. The derivation is based on standard
guasi-linear theory, which may not be too bad in this case, since the wave ampli-
tudes are expected to be small. As expected, the diffusion coefficient depends on
the amplitude of the magnitude of the field variations, on the phase speed of the
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waves, and itis an integral over the power of all the waves which satisfy the Landau
resonance. In simple terms, the particles interact with moving magnetic gradients
in the magnetic field, which, statistically, increase their parallel speeds.

The acceleration rates in Fisk (1976b) are considerable. That is, if there are
magnitude variations in the magnetic field, there should be noticeable statistical
acceleration. In the case of CIRs, such magnitude variations can be generated
locally through the interaction of high and low speed flows, and the resulting shock
waves. This local generation would be balanced, then, by the transit-time damping
and subsequent acceleration of energetic particles. In the outer heliosphere, large-
scale magnitude variations in the magnetic field are observed (Bwiaga1987)
and could contribute to a general acceleration in the outer heliosphere. However,
such variations may be more static than propagating.

The clearest evidence for statistical acceleration in the solar wind occurs for
pick-up ions in CIRs. Schwadrogt al. (1996) examined the spectrum of inter-
stellar pickup ions in the solar wind as observed by Ulysses in 1992 at about 5.5
AU from the Sun, near the equatorial plane. During the period studied, some 22
forward and reverse shocks were observed, surrounding CIRs. The spectra of the
pickup ions showed clear evidence of acceleration. Pickup ions are injected into
the solar wind with a speed less than or equal to twice the solar wind speed, in the
frame of the spacecraft; pickup ions observed in excess of this speed result from
local acceleration. Clear evidence was seen for tails on the distribution function
in excess of twice the solar wind speed. However, these tails clearly did not occur
in coincidence with the shocks surrounding the CIRs, but rather were more likely,
although not exclusively, to occur in coincidence with magnitude fluctuations in the
magnetic field in the region between the shocks. Indeed, Schwatirah(1996)
were able to fit quite well the observed spectra of the pickup ions by assuming the
transit-time damping rates of Fisk (1976b).

8. Electron Acceleration

G. MANN

So far, we have only discussed injection and acceleration of ions at CIR shocks.
CIR related shock waves are not only able to produce energetic ions but also en-
ergetic electrons, as can be seen from Fig. 1. While during this event the flux of
energetic protons increases by a few orders of magnitude at both the forward and
reverse shock, the flux of energetic electrons is predominantly enhanced only at
the reverse shock. The evolution of energetic electrons and ions has been discussed
by Simnett and Roelof (1995) and Roe#if al. (1996) for the period of the south-
bound journey of Ulysses. At low heliospheric latitudes both energetic electron and
ion flux increases were seen with the appearance of the forward (FS) and reverse
shocks (RS), with the larger flux increases usually observed at the reverse shocks
(Keppleret al, 1996). The last FS-RS pair was observed during CIR No. 15 at
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a distance of 4.58 AU and a latitude of33.7°, although the RSs were observed

by Ulysses for several more solar rotations (Goskngl, 1993a). After that, the
peaks of energetic electron fluxes were delayed with respect to those of ions by
a few days (Simnett and Roelof, 1995). Simnett and Roelof (1995) suggested the
following explanation for this delay: Electrons accelerated at CIR shocks have high
speeds (for 0.4 MeVW = 0.8c; cis the speed of light) and move essentially scatter-
free. They are thus able to propagate upstream into the inner heliosphere. Since the
IMF increases towards the Sun, these electrons are reflected due to the conservation
of their magnetic moment and return to the RS for repeated acceleration.

Thus, a population of energetic electrons can be established due to the inter-
relation of a global mirroring in the inner heliosphere and a local acceleration at
CIR related shocks. After the spacecraft encounters the local corotating shock it
will be magnetically connected to the shock beyond 5 AU. Since the RS is stronger
at larger radial distances out to about 10 AU (Pizzo, 1994), it is able to accelerate
electrons more efficiently. Thus, higher fluxes of energetic electrons are expected
when the spacecraft is further upstream on field lines connected to the stronger
shock. On the other hand, energetic ions have a velocity (& (for 1 MeV).
Therefore they cannot penetrate deep into the inner heliosphere like the electrons.
Furthermore their mean free path is smaller and they do not travel scatter free. Their
maximum flux is expected close to the shock and falls off rapidly with distance
along the field line in the upstream direction (Simnett and Roelof, 1995; Retlof
al., 1996).

The efficiency of electron acceleration at CIR-related shocks is investigated by
comparing the electron fluxes at the shock crossing with the shock parameters
presented in Mason, von Steigerr al. (1999). Here, the electron fluxes are used
as measured by the HISCALE instrument (Lanzerettial., 1992) in the range
30-50 keV. The electron fluxgghock at the shock crossing are compared with the
unperturbed fluxego determined during quiet periods before and after the CIR.
The values for lo@jshock/ jo) Vary between 0.207 and 3.259 for 32 shock crossings
at the CIRs 1-18. The reverse shocks of CIRs 4-7, 9, and 13 as well as the forward
shock of CIR 6 accelerate electrons very efficientl@. jshock/ jo > 54. In 18 of
these 32 shocks the flux ratios [@ghock/ jo) could be related to the jumps of the
magnetic fieldB,/B; and the Alfvén-Mach numbergl, of the associated shocks
as depicted in Fig. 3. Thus, the efficiency of electron acceleration expressed by
log(jshock/ Jo) increases for shocks with a stronger magnetic field j@BxB, and
a higher Alfvén-Mach numbevl, as can be seen from Fig. 3.

Since CIR-related shocks become stronger at larger heliospheric distargzes (
Pizzo, 1994) the intensity of energetic electrons produced by CIR-related shocks
is larger at several AU than at 1 AU as indeed observed. Mason, von Segiger
al. (1999) reported that electrons in the energy range 50 to a few 100 keV are
mainly produced at CIR related shocks at several AU, while only small intensities
of energetic electrons have been measured at 1 AU. Note that there are also fewer
shocks at 1 AU.
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Figure 3.Correlation between the ratio 10@nock/ jo) andBy/B; of the magnetic field (left) and the
Alfvén-Mach numbeMp (right) for 18 CIR related shock crossings. The dashed lines represent the
linear regression.

Shock waves can accelerate electrons by (1) shock drift acceleration, (2) a
first-order Fermi process, or (3) by stochastic acceleration. Stochastic acceleration
of electrons has been considered as an acceleration mechanism in the corona in
connection with flares (Miller, 1997). However, in interplanetary space energetic
electrons are almost scatter-free, so that stochastic acceleration here is unlikely. As
outlined in Sect. 3, in the diffusive limit first-order Fermi acceleration incorporates
shock drift acceleration at oblique shocks. However, since electrons behave es-
sentially scatter-free the diffusion-convection equation (1) cannot be immediately
applied to electron acceleration at CIR shocks. Furthermore, electrons behave quite
differently in comparison to ions because of their smaller gyroradius, and they
respond to rather different frequency regimes of the shock-induced plasma waves
because of their opposite gyromotion and higher velocities. In the following, we
will discuss shock drift acceleration of electrons in some detail.

A fast magnetosonic shock represents a moving magnetic mirror at which charged
particles can be reflected and accelerated. Following the nonrelativistic approach
given by Holman and Pesses (1983) and Schwetrtal. (1983) the calculations
are conveniently done in the de Hoffmann-Teller frame, in which the shock is at
rest and the motional upstream electric field is removed. In this frame the particles
are reflected by conserving their magnetic moment and kinetic energy. After the
transformation into the inertial frame the velocity componént parallel to the
upstream magnetic field after the shock encounter is related to the initia pne
via

Vr7H = 2Vsse(BBn_Vi7H (26)

Here,Bg is the angle between the shock normal and the upstream magnetic field
andvs denotes the shock speed. This mechanism is called shock drift acceleration.
Assuming a Maxwellian distribution for the electrons with a thermal velogjty=
(kBT/me)l/2 (kg, Boltzmann’s constanff, temperaturemm, electron mass) in the
upstream region, shifted loss-condistribution
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f(VEH?VU—) ~ O(VEH _VS)O(VLL — [VEH —VS] tanouc)

s 2., \2
< expf (V) ;VZ;h/S) +Vr7¢]} @7
t

(whereVs = vssedg)) results for the reflected particles (Leroy and Mangeney,
1984, Wu, 1984). Here® denotes the step function akf, is the velocity com-

ponent perpendicular to the upstream magnetic field for the reflected electrons.
The loss-cone anglec is given by the jump of the magnetic fieBh/B; across

the shockgc = arcsirj(B/B1)~/?]. The ratio between the velocity gain (Eq. 26)
and the thermal velocity is given iy / vin = (2me/my)Y/2B~1/22Ma sed8gy) (B,
plasma betam,, proton mass). Inspecting Egs. 26 and 27 the energy gain and
the number of accelerated electrons increase with increasing Alfvén-Mach number
Ma and magnetic field jumB,/B; (or decreasingrc), respectively. Both prop-
erties are seen in the observations as demonstrated in Fig. 3. Addfging3.0,

Bsn = 70°, andp = 1 as typical parameters of reverse shocalsTable | of Mason,

von Steigeeet al,, 1999) the velocity gai\V /vi, = 0.6 is small for a single shock
encounter. But the mirroring of the accelerated electrons in the inner heliosphere
as proposed by Simnett and Roelof (1995) leads to multiple encounters with the
shock and in turn to higher electron energies. It is an open question how solar wind
electrons are injected into such a shock drift acceleration process. We note in this
respect that backstreaming suprathermal solar wind electrons are commonly ob-
served upstream of corotating forward and reverse shocks bey?Adl (Gosling

et al, 1993b). The shocks are evidently able to accelerate electrons directly out of
the solar wind.

9. Summary

9.1. ACCELERATION

lons. There is general agreement that diffusive or first-order Fermi acceleration
at the corotating shocks is responsible for many corotating energetic ion events.
Diffusive shock acceleration explains the intensity peaks at well developed for-
ward and reverse CIR shocks between about 3-5 AU. Diffusive shock acceleration
theory, including adiabatic deceleration in the expanding solar wind, explains rea-
sonably well the spectral shapes of many events, as well as the differences in
intensities between forward and reverse shocks.

Energetic ion increases have also been observed at trailing edges of compres-
sion regions even when no reverse shock was detected. Currently, it cannot be
decided whether acceleration in these cases occurs at the trailing boundaries of
these compression regions in a similar fashion as at shocks, or whether accelera-
tion occurs at localized shocks and the particles then undergo cross-field diffusion
onto field lines not connected with the shock. The theory of shock acceleration is
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rather well developed, the missing ingredients as far as CIR shock acceleration is
concerned are details of the transport coefficieings, the radial dependence, the
dependence on energy, and on mass/charge of the spatial diffusion tensor. These
transport coefficients are important for predicting spectral shapes and abundance
variations away from the source regiomng,, at different heliographic longitudes

or in the inner solar system. Another open question is the importance of the large-
scale structure and spatial extent of the CIR shocks on the acceleration process.

Electrons.Electron acceleration at CIR shocks has not received much theo-
retical attention. Shock drift acceleration plays a more important role than for
ions. One important question is whether electrons can get accelerated out of the
solar wind or whether an energetic background population is further accelerated
by shock drift acceleration. There is experimental evidence that electrons can be
accelerated to suprathermal energies at CIR shocks (Gaalingy, 1993b). Since
the electron mean free path is large, such a drift cannot be described in terms of a
diffusive acceleration mechanism. Electrons can more easily probe large distances
along the magnetic field; the large-scale IMF structure is therefore important for
an understanding of the electron time-intensity profiles.

9.2. ORIGIN AND INJECTION

The abundances of different energetic particle species is rather given by pre-accele-
ration and injection mechanisms which discriminate particles by their velocity
distribution and therefore also by their origin. A number of possibilities have been
discussed in the literature for the injection and/or acceleration of pickup ions at
or downstream of CIR shocks. These mechanisms or scenarios either favor pickup
ions relative to thermal solar wind ions or do not work for thermal ions at all.

Pickup lons.Strong heating and acceleration of pickup ions has been observed
in association with CIRs. Above twice the solar wind speed the intensity of pickup
He' exceeds within CIRs that of solar wind He. Pickup ions have speeds be-
tween zero and twice the solar wind speed and thus part of the pickup ion dis-
tribution constitutes a suprathermal particle population. This eases the injection
problem for pickup ions as compared to thermal solar wind ions. For efficient in-
jection and diffusive acceleration at a perpendicular shock it is sufficient that there
is cross-field scattering with a scattering time of about 20 times the inverse proton
gyrofrequency. Pickup ions are then injected and accelerated at a perpendicular
shock, but solar wind ions are not. However, the observational evidence in data
from Ulysses at-5 AU that energetic pickup ions are enhanced in their abundance
over the solar wind ions by several orders of magnitude is notable and requests
a further quantitative theoretical investigation. Some analytical models have been
proposed for preferential injection and acceleration of pickup ions:
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— Shock surfing works for pickup ions but not for thermal solar wind ions. This
is simply due to the fact that part of the pickup ion distribution has almost
zero velocity with respect to the shock. However, shock surfing is only an ef-
ficient acceleration mechanism up to energies- @00 keV/amu if the length
scale of the leading ramp of the cross shock potential is on the order of the
electron inertial length; there is observational evidence for such strong field
gradients in magnetosonic shock waves at Earth’s bow shock. At larger shock
length scales, part of the pickup ions are, like solar wind ions, just specularly
reflected at a quasi-perpendicular shock and are convected downstream.

— Transit time damping is another mechanism which favors pickup ions relative
to solar wind ions. It is a statistical way of ion acceleration by obliquely
propagating magnetosonic waves. It has been proposed as an acceleration
mechanism for pickup ions in the region downstream of the CIR shocks, and
there is observational evidence for a correlation between suprathermal pickup
ion fluxes and fluctuating magnetic field strengths in CIRs. The accelerated
pickup ions can travel upstream and could then participate in a diffusive shock
acceleration mechanism which boosts them to higher energies.

Solar Wind lonsOne of the main open questions in models is how solar wind
ions are injected into a diffusive acceleration process at CIR shocks; there exists
so far no reasonable model for the injection of thermal ions into a first-order Fermi
acceleration process at quasi-perpendicular shocks although there has already been
experimental evidence that this happens at the bow shock and at shocks driven by
coronal mass ejections at 1 AU:

— One proposal made is that since the IMF fluctuates on all time and length scales
the IMF direction is variable and, although CIR shocks are on average quasi-
perpendicular, they are sufficiently often quasi-parallel. Injection of thermal
ions at quasi-parallel shocks occurs on time scales of a few ion gyroperiods;
in addition, injection of pickup ions at quasi-parallel shocks is by orders of
magnitude more efficient so that this scenario would also favor pickup ions.

— Solar wind ions could participate in a Fermi type process at the shock if
they scatter very efficiently, almost at the Bohm diffusion rate, across field
lines. This seems rather unlikely, since with such a small scattering time
(of the order of the inverse gyrofrequency) the whole magnetic field profile
across the shock would change considerably. Such drastic changes have at
least not been seen at Earth’s bow shock. One of the outstanding questions is
a self-consistent determination of the cross-field diffusion coefficient down to
thermal energies.

Finally, in Table | we summarize the models discussed in this working group
chapter and the related key observational features which are reported in the accom-
panying papers by Mason, von Steigeral. (1999), Gloeckler (1999), and Mason
and Sanderson (1999) in this volume. For a discussion of models on the energetic
particle transport from CIRs to high latitudes we refer to the introductory article by
Fisk and Jokipii (1999) and the working group report by Kunow, eeal. (1999).
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TABLE |

Summary of models on ion injection and acceleration in CIRs and related observations

Process

Related Observations

Diffusive shock acceleration

Adiabatic deceleration
Diffusive transport

Injection processes sensitive to
the seed particle velocity dis-

tributions (transit time damping

and/or shock surfing)

Shock drift acceleration of elec-
trons

- Intensity peaks of accelerated particles at well developed
forward and reverse CIR shocks between about 3-5 AU.
- Power law energy spectra in the rang&0-1000 keV/amu.
- Same time-intensity profiles from He through Fe (no strong
Q/A dependence above injection threshold).
- Different energetic ion intensities at forward/reverse shocks.

- Steepening of energy spectra abdvdleV/amu.

- At 1 AU generally sunward flow away from the location of
peak intensities at-3-5 AU).
- No change in spectral forms out to tens of AU (energetic
particle transport froma-3-5 AU).
- Poor inward transport of Heat tens of keV/amu between
1land5 AU.
- Strong inhibition of particle transport across stream inter-
face (small cross-field diffusion).

- Suprathermal tails in the velocity distributions of differ-
ent species have identical spectral shapes (pre-acceleration
mechanisms are velocity dependent).

- Strong enhancement of pickup over solar wind ions.

- He/O and Ne/O ratios increase with solar wind speed.

- C abundance enhanced by a factor of 2—3 over O (predomi-
nantly inner source pickup C).

- Non-shock pre-acceleration takes place in the turbulent in-
ecliptic solar wind; tens of keV ions at 1 AU even in absence
of shocks.

- More pre-accelerated Hethan He™t is observed down-
stream of shocks where turbulence is stronger.

- Spectral shapes of tails are complicated (not simple power
laws).

- CIR pre-acceleration is limited to about 10 keV/amu.

-50keV to 100 keV electrons at several AU; small intensities
at 1 AU.

Acknowledgements

Two of the co-authors (SC and RK) contributed to this article in the frame of the
INTAS cooperative project “The Heliosphere in the Local Interstellar Cloud”.



396 M. SCHOLER, G. MANN ET AL.
References

Baring, M. G., Ellison, D. C., and Jones, F. C.: 1994, ‘Monte Carlo Simulations of Particle Accelera-
tion at Oblique ShocksAstrophys. J. Suppf0, 547-552.

Baring, M. G., Ogilvie, K. W., Ellison, D. C., and Forsyth, R.: 1995, ‘Acceleration of Solar Wind lons
by Oblique Interplanetary Shock#idv. Space Re45, 385-388.

Barnes, C.W., and Simpson, J. A.: 1976, ‘Evidence for Interplanetary Acceleration of Nucleons in
Corotating Interaction RegionsAstrophys. J210, L91-L96.

Bieber, J.W., and Mattheaus, W.H.: 1997, ‘Perpendicular Diffusion and Drift at Intermediate
Cosmic-Ray EnergiesAstrophys. J485 655—659.

Burlaga, L. F., Ness, N. F., and McDonald, F. B.: 1987, ‘Large-Scale Fluctuations between 13 AU and
25 AU and Their Effects on Cosmic Rayd’,Geophys. Re82, 13,647-13,652.

Breneman, H. H., and Stone, E. C.: 1985, ‘Solar Coronal and Photospheric Abundances from Solar
Energetic Particle Measurement8strophys. J. Let99 L57-L61.

Desai, M. |., Marsden, R. G., Sanderson, T. R., Lario, D., Roelof, E. C., Simnett, G. M., Gosling, J. T.,
Balogh, A., and Forsyth, R. J.: 1999, ‘Energy Spectra of 50-keV to 20-MeV Protons Accelerated
at Corotating Interaction Regions at Ulysseks'Geophys. Resl04, 6,705-6,719.

Dwyer, J.R., Mason, G.M., Mazur, J.E., Jokipii, J.R., von Rosenvinge, T.T., and Lepping,
R.P.: 1997, ‘Perpendicular Transport of Low-Energy Corotating Interaction Region-associated
Nuclei’, Astrophys. J490 L115-1118.

Earl, J. A., Jokipii, J. R., and Morfill, G.: 1988, ‘Cosmic-Ray Viscosi#trophys. J331, L91-L94.

Ellison, D. C., M&bius, E., and Paschmann, G.: 1990, ‘Particle Injection and Acceleration at Earth’s
Bow Shock: Comparison of Upstream and Downstream Evelssipphys. J352 376—394.

Fisk, L. A.: 1976a, ‘On the Acceleration of Energetic Particles in the Interplanetary Mediun’,
Geophys. Ref1, 4,641-4,645.

Fisk, L. A.: 1976b, ‘The Acceleration of Energetic Particles in the Interplanetary Medium by Transit
Time Damping’,J. Geophys, Re81, 4,633—4,640.

Fisk, L.A., and Lee, M.A.: 1980, ‘Shock Acceleration of Energetic Particles in Corotating
Interaction Regions in the Solar Windstrophys. J237, 620-626.

Fisk, L. A., and Jokipii, J. R.: 1999, ‘Mechanisms for the Latitudinal Transport of Energetic Particles
in the Heliosphere’Space Sci. Reuhis volume, 115-124.

Forman, M.A.: 1977, ‘The Velocity Correlation Function in Cosmic-Ray Diffusion Theory’,
Astrophys. Space Sd9, 83-97.

Forman, M. A., Jokipii, J.R., and Owens, A. J.: 1974, ‘Cosmic Ray Streaming Perpendicular to the
Mean Magnetic Field’Astrophys. J192 535-540.

Giacalone, J., and Jokipii, J. R.: 1997, ‘Spatial Variation of Accelerated Pickup lons at Corotating
Interaction Regions'Geophys. Res. Le24, 1723-1726.

Giacalone, J., Burgess, D., Schwartz, S. J., and Ellison, D. C.: 1992, ‘Hybrid Simulations of Protons
Strongly Accelerated by a Parallel Collisionless Sho@epphys. Res. Lett9, 433-436.

Giacalone, J., Jokipii, J.R., and Kéta, J.: 1992, ‘lon Injection and Acceleration at Quasi-
Perpendicular Shocks], Geophys. Re89, 19,351-19,358.

Gleeson, L.J., and Axford, W.1.: 1967, ‘Cosmic Rays in the Interplanetary Medilisttpphys. J.

149 L115-L118.

Gloeckler, G., Hovestadt, D., and Fisk, L. A.: 1979, ‘Observed Distribution Functions of H, He, C,
0, and Fe in Corotating Energetic Particle Streams: Implications for Interplanetary Acceleration
and Propagation’Astrophys. J230, L191-1L195.

Gloeckler, G., Geiss, J., Roelof, E.C., Fisk, L. A., Ipavich, F. M., Ogilvie, K. W., Lanzerotti, L. J.,
von Steiger, R., and Wilken, B.: 1994, ‘Acceleration of Interstellar Pickup lons in the Disturbed
Solar Wind Observed on Ulyssegd:,Geophys. Re89, 17,637-17,643.

Gloeckler, G.: 1999, ‘Observation of Injection and Pre-Acceleration Processes in the Slow Solar
Wind’, Space Sci. Reuthis volume, 91-104.



ORIGIN, INJECTION, ACCELERATION: THEORY 397

Gosling, J. T., Bame, S., McComas, D. J., Philips, J. L., Pizzo, V., Goldstein, B. E., and Neugebauer,
M.: 19934, ‘Latitudinal Variation of Solar Wind Corotating Stream Interaction Regions: Ulysses’,
Geophys. Res. Left0, 2789-2792.

Gosling, J.T., Bame, S., Feldman, W. C., McComas, D. J., Philips, J. L., and Goldstein, E. B.: 1993b,
‘Counterstreaming Suprathermal Electron Events upstream of Corotating Shocks in the Solar
Wind beyond~2 AU: Ulysses’,Geophys. Res. Lef21, 2335-2338.

Hasselmann, K., and Wibberenz, G.: 1970, ‘A Note on the Parallel Diffusion Coefficksiro-
phys. J162 1049-1051.

Holman, G.D., and Pesses, M. E.: 1983, ‘Solar Type Il Radio Emission and Shock Drift Accelera-
tion’, Astrophys. J267, 837—840.

Isenberg, P.A.: 1997, ‘A Hemispherical Model of Anisotropic Pickup lodsGeophys. Red4.02,
4,719-4,724.

Ipavich, F. M., Galvin, A.B., Lasley, S.E., Paquette, J. A., Hefti, S., Reiche, K.-U., Coplan, M. A,
Gloeckler, G., Bochsler, P., Hovestadt, D., Grinwaldt, H., Hilchenbach, M., Gliem, F., Axford,
W. 1., Balsiger, H., Blrgi, A., Geiss, J., Hsieh, K. C., Kallenbach, R., Klecker, B., Lee, M. A.,
Managadze, G. G., Marsch, E., M&bius, E., Neugebauer, M., Scholer, M., Verigin, M. ., Wilken,
B., and Wurz, P.: 1998, ‘The Solar Wind Proton Monitor on the SOHO Spacedr&eophys.
Res.103 17,205-17,214.

Jokipii, J. R.: 1966, ‘Cosmic Ray Propagation - |I. Charged Particles in a Random Magnetic Field’,
Astrophys. J146 480-487.

Jokipii, J. R.: 19714, ‘Deceleration and Acceleration of Cosmic Rays in the Solar \Wings, Rev.

Lett. 26, 666—669.

Jokipii, J. R.: 1971b, ‘Propagation of Cosmic Rays in the Solar WiRdYy. Geophys. Space Ph9s.
27-87.

Jokipii, J.R.: 1987, ‘Rate of Energy Gain and Maximum Energy in Diffusive Shock Acceleration’,
Astrophys. J313 842-846.

Jokipii, J. R., Kéta, J., and Morfill, G.: 1989, ‘Cosmic Rays at Fluid Discontinuiti&strophys. J.

345 L67-L69.

Jokipii, J.R., Kéta, J., and Giacalone, J.: 1993, ‘Perpendicular Transport in 1- and 2-Dimensional
Simulations’,Geophys. Res. Lef0, 1759-1762.

Jones, F.C., Jokipii, J.R., and Baring, M. G.: 1998, ‘Charged Particle Motion in Electromagnetic
Fields Having at Least one Ignorable Spatial Coordindtsfrophys. J509, 238-243.

Keppler, E., Drolias, B., Franz, M., Korth, A., Reuss, M. K., J. B. Blake, Quenby, J.J.: 1996, ‘The
High Latitude Pass of Ulysses: Energetic Particle Observations with ER&Bon. Astrophys.

316 464-480.

Kéta, J. and Jokipii, J. R.: 1997, ‘Energy Changes of Particles Moving along Field Litres’ 28"
Int. Cosmic Ray Confl, 213-216.

Kunow, H., Lee, M. A., Fisk, L.A., Forsyth, R.J., Heber, B., Horbury, T.S., Keppler, E., Kéta, J.,
Lou, Y.-Q., McKibben, R.B., Paizis, C., Potgieter, M. S., Roelof, E.C., Sanderson, T.R., Sim-
nett, G. M., von Steiger, R., Tsurutani, B., Wimmer-Schweingruber, R. F., and Jokipii, JR.: 1999,
‘Corotating Interaction Regions at High LatitudeSpace Sci. Reuthis volume, 221-268.

Lanzerotti, L.J., Gold, R. E., Anderson, K. A., Armstrong, T.P., Lin, R. P, Krimigis, S. M., Roelof,
E.C., Sarris, E.T., Simnett, G.M., and Frain, W.E.: 1992, ‘A Heliospheric Instrument for
Spectra, Composition and Anisotropy at Low Energi@stron. Astrophys. Sup®2, 349-356.

Lee, M. A.: 1971, ‘Self-consistent Kinetic Equations and the Evolution of Relativistic Plasma in an
Ambient Magnetic Field’Plasma Physic403 1079.

Lee, M. A.: 1982, ‘Coupled Hydromagnetic Wave Excitation and lon Acceleration upstream of the
Earth’'s Bow Shock’)J. Geophys. Re87, 5,063-5,080.

Lee, M. A,, Shapiro, V. D., and Sagdeeyv, R. Z.: 1996, ‘Pickup lon Energization by Shock Suifing’,
Geophys. Red01, 4,777-4,789.



398 M.SCHOLER, G.MANN ET AL.

Lembege, B., Ratliff, S. T., Dawson, J. M., and Ohsawa, Y.: 1983, ‘lon Heating and Acceleration by
Strong Magnetosonic Wave$hys. Rev. Letbl, 264—267.

Leroy, M. M., and Mangeney, A.: 1984, ‘A Theory of Energetisation of Solar Wind Electrons by
Earth’'s Bow Shock’ Ann. Geophy<2, 449-456.

Lingenfelter, R.E., Ramaty, R., and Fisk, L.A.: 1971, ‘Compound Diffusion of Cosmic Rays’,
Astrophys. Lett8, 93.

Lipatov, A. L., Zank, G. P., and Pauls, H. L.: 1998, ‘The Acceleration of Pickup lons at Shock Waves:
Test Particle-Mesh Simulations), Geophys. Re403 29,679-29,696.

Livesey, W. A,, Kennel, C.F., and Russell, C.T.: 1982, ‘ISEE-1 and -2 Observations of Magnetic
Field Strength Overshoots in Quasi-Perpendicular Bow Sho@eophys. Res. Le®, 1,037—
1,040.

Malkov, M. A., and Vélk, H.J.: 1995, ‘Theory of lon Injection at Shock&stron. Astrophys300,
605-626.

Mason, G. M., Mazur, J.E., Dwyer, J.R., Reames, D.V., and von Rosenvinge, T.T.: 1997, ‘New
Spectral and Abundance Features of Interplanetary Heavy lons in Corotating Interaction
Regions’ Astrophys. J486, L149-1L152.

Mason, G. M., von Steiger, R., Decker, R. B., Desai, M. I., Dwyer, J.R., Fisk, L. A., Gloeckler, G.,
Gosling, J.T., Hilchenbach, M., Kallenbach, R., Keppler, E., Klecker, B., Kunow, H., Mann,
G., Richardson, I.G., Sanderson, T.R., Simnett, G. M., Wang, Y.-M., Wimmer-Schweingruber,
R.F., Franz, M., and Mazur, J. E.: 1999, ‘Origin, Injection, and Acceleration of CIR Particles:
Observations’Space Sci. Rewthis volume, 327-367.

Mason, G. M., and Sanderson, T.R.: 1999, ‘CIR Associated Energetic Particles in the Inner and
Middle Heliosphere’Space Sci. Rewthis volume, 77-90.

McDonald, F.B., Teegarden, B. J., Trainor, J.H., von Rosenvinge, T.T., and Webber, W.R.: 1976,
‘The Interplanetary Acceleration of Planetary Nucleorstrophys. J203 L149-L152.

Miller, J. A.: 1997, ‘Electron Acceleration in Solar Flares by Fast Mode Waves: Quasi-Linear Theory
and Pitch-Angle ScatteringAstrophys. J491, 939-951.

Moussas, X., Quenby, J. J., and Valdes-Galicia, J. F.: 1982, ‘Drift Motion and Perpendicular Diffusion
of Energetic Particles in Interplanetary Space Based on Spacecraft Bstt@phys. Space Sci.

86, 197-207.

Ohsawa, Y.: 1985, ‘Strong lon Acceleration by a Collisionless Magnetosonic Shock Wave Propagat-
ing Perpendicularly to a Magnetic FieldPhys. Fluids28, 2130-2136.

Palmer, I.D.: 1982, ‘Transport Coefficients of Low-Energy Cosmic Rays in Interplanetary Space’,
Rev. Geophy<0, 335.

Palmer, I.D., and Gosling, J.T.: 1978, ‘Shock-Associated Energetic Proton Events at Large
Heliocentric DistancesJ. Geophys. Re83, 2,037-2,046.

Parker, E. N.: 1965, ‘The Passage of Energetic Particles Through Interplanetary Stewet, Space
Sci.13, 9-49.

Pizzo, V.J.: 1994, ‘Global, Quasi-steady Dynamics of the Distant Solar Wind - I. Origin of the
North-South Flows in the Outer Heliospher&! Geophys. Re89, 4,173-4,182.

Quest, K. B.: 1988, ‘Particle Injection and Cosmic Ray Acceleration at Collisionless Parallel Shocks’,
in V. J. Pizzo, T.E. Holzer, and D. G. Sime (ed®joc. Sixth Intern. Solar Wind ConNCAR
Techn. Note 306, p. 503.

Reames, D. V., Ng, C.K., Mason, G. M., Dwyer, J.R., Mazur, J. E., and von Rosenvinge, T. T.: 1997,
‘Late-Phase Acceleration of Energetic lons in Corotating Interaction RegiGesiphys. Res.

Lett. 24, 2917-2920.

Roelof, E. C., Simnett, G. M., and Tappin, S.J.: 1996, ‘The Regular Structure of Shock Accelerated
~40-100 keV Electrons in the High Latitude Heliosphefestron. Astrophys316, 481-486.

Sagdeev, R.Z.: 1966, ‘Cooperative Phenomena and Shock Waves in Collisionless Plasvhas!,
Leontovich (ed.), Reviews of Plasma Physics 4, Consultants Bur., New York, p. 23.



ORIGIN, INJECTION, ACCELERATION: THEORY 399

Scholer, M.: 1990, ‘Diffuse lons at Quasi-Parallel Shocks: SimulatiocBeophys. Res. Letl7,
1821-1824.

Scholer, M.: 1998, ‘Injection and Acceleration of Energetic Particles at Collisionless Shécks’,
Space Re21, 533-542.

Scholer, M.: 1999, ‘Injection and Acceleration Processes in Corotating Interaction Regions: Theo-
retical Concepts'Space Sci. Reuhis volume, 105-114.

Scholer, M., and Kucharek, H.: 1999, ‘Interaction of Pickup lons with Quasi-Parallel Shocks’,
Geophys. Res. Lett. 289-32.

Scholer, M., Morfill, G., and van Hollebeke, M.A.l.: 1980, ‘On the Origin of Corotating Energetic
Particle Events’). Geophys. Re85, 1,743-1,748.

Schwadron, N. A., Fisk, L. A., and Gloeckler, G.: 1996, ‘Statistical Acceleration of Interstellar Pick-
up lons in Corotating Interaction Region&geophys. Res. Le23, 2871-2874.

Schwartz, S.J., Thomsen, M. F., and Gosling, J. T.: 1983, ‘lons upstream of the Earth’s Bow Shock:
A Theoretical Comparison of Alternative Source PopulatidnGeophys. Re88, 2,039-2,047.

Simnett, G. M., and Roelof, E.C.: 1995, ‘Reverse Shock Acceleration of Electrons and Protons at
Mid-Heliolatitudes from 5.3-3.8 AU'Space Sci. Rev2, 303-308.

Skilling, J.: 1971, ‘Cosmic Rays in the Galaxy: Convection or Diffusiéwstrophys. J170, 265-273.

Tidman, D. A., and Krall, N. A.: 1971, ‘Shock Waves in Collisionless Plasnias, C. Brown (ed.),
Series in Plasma Physics, Wiley, New York, pp. 29-38.

Tsurutani, B. T., Smith, E. J., Pyle, K. R., and Simpson, J. A.: 1982, ‘Energetic Protons Accelerated
at Corotating Shocks: Pioneer 10 and 11 Observations from 1 to 6 ABeophys. Rek7,
7,389-7,404.

Wibberenz, G., and Beuermann, K.P.: 1972, ‘Fermi Acceleration in Interplanetary Spa&e’,
Schindler (ed.)Cosmic Plasma PhysicBlenum, New York, p. 339.

Wu, C.S.: 1984, ‘A Fast Fermi Process: Energetic Electrons Accelerated by a nearly Perpendicular
Bow Shock’,J. Geophys. Re89, 8,857-8,862.

Zank, G.P., Pauls, H.L., Cairns, I.H., and Webb, G. M.: 1996, ‘Interstellar Pickup lons and Quasi-
Perpendicular Shocks: Implications for the Termination Shock and Interplanetary Shacks’,
Geophys. Red01, 457-477.

Zilbersher, D., and Gedalin, M.: 1997, ‘Pickup lon Dynamics at the Structured Quasi-Perpendicular
Shock’, Planetary and Space SciendB, 693-703.

Address for Offprints:M. Scholer, Max-Planck-Institut fir Extraterrestrische Physik, Postfach 1603,
D-85740 Garching, Germany






