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ABSTRACT--The design of an instrument is described 
that measures three resultant force components and three 
resultant moment components acting on a surface. Within 
the framework of linear elastostatics of an isotropic homo- 
geneous material the device separates to a given precision 
the six resultant load components. Sensor paths of finite 
length are employed. Moreover if fiber-optic differential 
displacement sensors are used rather than traditional elec- 
trical resistance strain gages, the range and sensitivity of 
the instrument can in principle be improved without sacri- 
ficing the device stiffness. The primary reason for these 
improvements is that a complete solution to the equations 
of elasticity allows certain displacements to be measured 
over large distances and be combined to yield all of the 
resultant load components. These displacement measure- 
ments over a long distance accommodates the use of 
fiber-optic interferometric sensors, The use of optical sen- 
sors in contrast with electrical-resistance gages, has the 
potential to allow the measurement precision and range to 
scale with the geometry of the device rather than the 
maximum strain in the instrument. It becomes possible by 
virtue of these features to produce a better instrument. 

Introduction 

It is generally desirable to have a load-measuring instru- 
ment that is rigid and inherently free of calibration require- 
ments. For a given load, a stiff instrument is less invasive 
than a more flexible counterpart, in the sense that less 
energy is required from the measured system. Reducing 
calibration requirements lowers the number of intrinsic 
states of a device. This simplification makes the instrument 
more elemental and thereby increases the measurement 
confidence. 
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Typical multicomponent load-measuring instruments 
have some means to generate a response within the device 
that is particular to one of the desired load components. 
Frequently the device has a small area that is made sensi- 
tive to a single component of the applied load by mechani- 
cal means. This mechanical separation of the components 
is usually accomplished by weakening the instruments's 
structure along certain paths.l' 2 These weakened locations 
not only provide some separation of the various compo- 
nents, but due to their higher strain make ideal places to 
mount electrical strain gages. 3 

Unfortunately this methodology has several disadvan- 
tages. Increasing the strain in the instrument decreases the 
overall stiffness and typically precludes its use as a primary 
or cri t ical  load-bearing structure. Further,  most  
transducers frequently retain significant sensitivity to off 
design loading conditions. A way to correct for this cross- 
talk is to calibrate the instrument in a combined loading 
environment and compensate for the undesired properties 
by external circuitry. 4 The inspiration for this investigation 
comes from recognizing that typical multicomponent 

224 load transducers ' ' rely on structural-mechanics concepts 
such as Bernoulli-Euler beam theory or Kirchhoff plate 
theory 5 for their design. The present goal is to investigate 
an instrument's design if the more refined strains of a 
complete solution to the equations of elasticity are util- 
ized. In particular the intention is to determine means to 
eliminate cross-talk in sensing load components and 
improve the overall stiffness, range, and precision of the 
instrument. 

Here a methodology is described for the construction of 
a multicomponent load transducer that makes several im- 
provements on conventional designs. Within the frame- 
work of linear elastostatics of an isotropic homogenous 
material, and one-dimensional strain or displacement sen- 
sors, this transducer alleviates some calibration problems 
by separating the signals of all the six resultant load 
components to a desired precision. The use of a complete 
solution allows the load-component separation to be main- 
tained even for long sensor paths. 
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Fig. 1--Schematic of a circular cylinder and the asso- 
ciated Cartesian and cylindrical coordinate systems 
along with the resultant load components acting on 
the positive face of the cylinder 

The protracted sensor paths accommodates the use of 
displacement sensors such as fiber-optic Mach-Zehnder 
interferometers. 6 Using displacement sensors in lieu of 
electrical-resistance strain gages allows the measurement 
range and precision to be scaled with the geometry of the 
transducer rather than the maximum strain. Explicitly re- 
moving the strain from the measurement scaling has the 
potential to allow a stiffer instrument without sacrificing 
range or sensitivity. Further, reducing the maximum strain 
admits the use of the instrument as a primary load-bearing 
element. 

A Complete Solution in Elastostatics: 
A Cylinder with End Loads 

There are several exact solutions of finite regions with 
arbitrary loads in three-dimensional elasticity. For exam- 
ple, prismatic structures with either rectangular or ellipti- 
cal cross-sections and tractions on the end faces have been 
solved. 7 A prismatic tube with a circular section was 
chosen for this investigation for the simple reason that 
under pure torsion the cross-section does not warp. 7 A 
hollow tube is employed to give some flexibility in scaling 
the geometry. 

Consider a prismatic circular tube of outside radius a, 
inside radius b, and half length c as shown in Fig. 1. The 
axis of the cylinder is aligned with the x3 direction of a 
Cartesian coordinate system (Xl, x2, x3). For convenience 
a typical cylindrical coordinate system (r, 0, x3) is also 
defined. 

The cylinder is assumed to be in static equilibrium. The 
positive face of the cylinder, at x3 = c, is loaded by arbitrary 
surface tractions. The lateral surfaces, r = a and r = b are 
not loaded. The cylinder is further loaded by a constant 
gravitational acceleration, g3, in the x3 direction, and 
strained by a uniform change in temperature AT, measured 
from ambient. The negative end of the cylinder, at x3 = -c, 
has the surface tractions necessary to maintain static equi- 
librium. 

Integrating the arbitrary surface tractions on the positive 
face of the cylinder yields the resultant or statically equiva- 
lent loads. 8 The three resultant force components due to the 
applied surface tractions on the x3 = c face are denoted by 
F~ where i (i = 1, 2, 3) indicates the component direction. 
The three resultant moment components on the same face 
are similarly denoted by M~, assuming the moment is 
positive in the direction of the Cartesian coordinate system 
using a right-hand rule. 

The cylinder is assumed to be composed of an isotropic, 
homogeneous, linear elastic material. Let E denote the 
Young's modulus, v the Poisson ratio, P the density, and 
c~ the coefficient of thermal expansion of the material. This 
problem can be made nondimensional as given in eq (1). 
For a particular set of surface tractions, the components of 
the Lagrangian strain tensor in the Cartesian coordinate 
system, throughout the entire cylinder, are given by eq (2). 7 
Equation (3) defines terms that are used to m ~ e  the strain 
equations more compact. Note that A,I,J, and G are nondi- 
mensional versions of the cross-sectional area, moment of 
inertia, torsional constant, and the shear modulus, respec- 
tively. 

^ ^ c ^ 
a =  1 = C = -  Xi = -  a a a 

A Fi A apg3 ^ Mi A 
F~ - g3 = Mi = T = a AT  
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^ 
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(3) 

The str ess components  at the sur faceof thecyl inder  
can be calcula ted f rom these s t ra ins  using the 
Duhamel-Neumann constitutive law of thermo-elas-  
ticity. 7 If the applied surface tractions correspond in 
magnitude and distribution to these stresses, the solu- 
tion is exact everywhere. However, if the tractions are 
arbitrary this solution is valid only in the Saint Venant 
sense. 8 That is, far from the cylinder faces the solution for 
arbitrary end loads exponentially approaches this answer. 
Therefore, this solution can be considered exact to some 
precision for arbitrary end loading as long as it is used 
some distance from the cylinder faces. 

Measurement Techniques 

There are numerous methods to measure the properties 
Of a deforming body? To further complicate matters, the 
selection of a measurement path is strongly intertwined 
with the technique. For the sake of brevity the construction 
of a load transducer using two types of sensors will be 
explored. A very general technique to infer the global state 
of a device is to measure the local strains by the use of 
electrical-resistance strain gages. Using this common elec- 
trical method as a baseline for comparison, the use of a 
fiber-optic differential displacement sensor will also be 
examined. 

Electrical Resistance Strain Gage 

The resistance R, of a conductive material attached to a 
strained device by a specified path is given by eq  (4). 3 The 
path is parameterized by the distance along the path, s. 
Here Ag is the cross-sectional area of the strain gage. p~ is 
the resistivity and Sg is the strain sensitivity of the gage 
material, e (s) is the normal strain along the path of inte- 
gration. This equation assumes that the strain and the gage 
cross-sectional area are small. That is, I e (s)l < 10 4 andAg 
~ d 2, where d is the half-length of the gage. 

d 

Pg 
R (e) = I Agg [ 1 + Sg e (s) ] ds 

-d  (4) 

The actual strain measurement comes from determining 
the change in resistance of the gage from its initial state. 
This change in resistance due to a strain RA (~), where 
R~ (~) = R (e) - R(0), is frequently obscured due to other 
spurious effects such as tem~,erature induced strain and the 
connecting lead resistance. This small resistance change 
is also imbedded in a large initial resistance R(0), where 
RA(E) << R(0). To determine this small change in resistance 

and to account for some of the false signals, the resistance 
is typically found through a voltage measurement of a 
balanced resistance bridge circuit. 3' 9 

For two strain gages that are identical except that they 
are placed at two different locations, the measured change 
in voltage can be written as in eq (5). 3 Here Sb = 1/4 is the 
proportionality constant of the bridge circuit, and ~ is the 
average strain seen by each integration path as given in eq 
(6). 

A 

VA (re,e2) = & Se (el - e=) (5) 

d 

1 f E(s) ds 
- d  (6) 

Part of the versatility of an electrical resistance technique 
is that the gage path can be quite general. Zigzagging paths 
are frequently employed to increase the sensor length in a 
small neighborhood on the device. Varying the cross-sec- 
tional area allows the region of greatest sensitivity to be 
localized to the area of maximum strain. 

The sensitivity of this electrical technique for a given 
maximum strain, can be augmented by increasing both the 
bridge-excitation voltage, V, and the strain sensitivity, Sg. 
Unfortunately both of these parameters have restrictions. 
The bridge-excitation voltage is limited by several con- 
cerns such as heat dissipation or common mode isolation. 9 
The strain sensitivity is a material property and is thus 
limited by known materials. 3 

Fiber-optic Differential Displacement Gage 

An alternative to the above resistive technique is a 
measurement based on optical wave guides, z~ A fiber can 
be used to measure displacements or other phenomenon by 
various means, u One such displacement measuring 
method is to configure two fibers in the form of a Mach- 
Zehnder interferometer to make a 'fiber optic strain gage.'6 
The change in phase of the light between two axially 
strained fibers is given in eq (7). 

~Pa = SI (ul - u2) (7) 

is the displacement of the fiber as given in eq (8) and d 
is the fiber half-length. The phase sensitivity of the fiber- 
optic measurement, St; is dependent on the material prop- 
erties of the fiber and the wavelength of light being 
employed. For the present purposes this sensitivity is taken 
as a given parameter and is good to first order in strain. ~3 

The sensitivity of this technique can be increased by 
using a short wavelength of light. At the same time this 
particular fiber-optic method has a geometric property the 
resistive technique lacks. Namely, for a fixed change in 
phase as the measurement path is increased the strain 
sensitivity will also increase. 

d 

-~= I e (s) ds = 2-~d 
- d  (8) 
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Unfortunately, this scaling of the strain sensitivity with the 
distance has a price. These fibers have other limitations 
that are not found in their electrical cousins. In particular, 
fibers in general have very restrictive path requirements 
(e.g. minimum radii of curvature limitation) to maintain 
light in the wave guideJ ~ Consequently the zigzagging 
paths (paths that are for practical purposes discontinuous 
in the first derivative of position with respect to the path 
length) are not allowed. In addition this interferometric 
sensor is no longer a state device. The sensor can only 
detect a relative change in phase. That is, the interferomet- 
tic output beyond a single fringe is not one-to-one invert- 
ible to the strain. External means such as counters or phase 
trackers are required in order to integrate the change in 
phase."' 12, 14, 15 

Further Discussion 

Neither the electrical nor fiber-optic sensors chosen for 
this study are necessarily optimal. For instance restricting 
the electrical measurement to a half-bridge circuit will not 
be necessary for the measurement of the twisting moment; 
a full-bridge circuit could be employed. Similarly, restrict- 
ing the fiber-optic technique to a Mach-Zehnder inter- 
ferometer is accompanied by the problem of lead 
sensitivity. Other fiber-optic interferometric techniques 
that can relieve this lead problem might be employed. 16 
The primary reason for choosing the half-bridge and 
Mach-Zehnder techniques is that they are mathematically 
similar in that they both employ two differential measure- 
ment paths. This differential property will allow a natural 
means to subtract measured quantities. Designing for these 
two techniques illustrates the flavor of finding completely 
separable measurement paths. Focusing on these two 
methods here is not to suggest that others systems might 
not be equally useful. 

Helical Paths 

A family of helicoids on the surface of the cylinder are 
~arameterized in terms of the angle 8 as in eq (9). The term 
y gives the location of the center of the path in the three- 

direction. The term r indicates the angular position of the 
center of the measurement path in the plane of the cross- 
section. The symbol [3 represents the angle of the helix. 

~, (8,r = cos (5 + ~0) ~3 (5,},~) = } + tan (13) 8 
~2 (5,,) = sin (8 + r (9) 

Since the helicoids are parameterized in terms of the angle 
8 instead of the arc length s, it is convenient to rewrite eq 
(6) in terms of 8 as shown in eq (11). Here the subtended 
angle 5h is defined in terms of the nondimensional half- 
length, ~ in eq (10). 

A 

8h = cos (]3) dh (10) 

, '  , ,  sec(~) ~ , ,  
eh (dh, ~b, y, 13) = ,,, e (8, r y, ~) d8 

2& ~ (11) 

Combining eqs (9)-(11), and integrating leads to expres- 
sion (12) for the average strain for the helical paths; a)3 and 
"04 are defined in eq (13). 

Measurement Paths 

Even with the restriction of the designated two types of 
sensors there are innumerable choices for the measurement 
paths. It is conceivable that the paths can traverse any part 
of the cylinder. Again for the sake of simplicity, the 
measurement paths will be assumed to be restricted to the 
cylinder surface. Clearly the sensors need to be located 
away from the cylinder faces, to allow the arbitrary end 
loading to approach the exact solution. Also the paths will 
be further restricted to the outside lateral surface (i.e., 
A 
r = 1) due to its guaranteed accessibility. 

The strain along the measurement path can be re- 
written in terms of the components of the strain tensor 
and provperties of the path (e.g. local unit tangent 
vector). Here the Cartesian components of the position 

A 
vectorp~ (s) (i = 1, 2, 3) are required. 

Two families of paths are used to separate the load 
components. In the case of fiber-optic sensors they provide 
for a potential increase in measurement precision. The 
chief attribute of these paths is that they are reasonably 
easy to integrate for the average strain. The helixes can be 
used almost exclusively except for some of the fiber-optic 
cases. 

I 

\ /  
1 

-c 0 x3 c 

Fig. 2--Schematic of the terms used to located a 
measurement path on the outside lateral surface of 
the cylinder 
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A ^ 

eh(~h,(~,y, 13)=T+'u3 +g3 (~-- }) &)sec (~) + 

~3[r ~ A A (~_})]sin(Sh) ~ COS(Sh)] 

[F~a)4 - M1 + F2 (c - y)] & ~ }  

( 1 2 )  

'O3 ~ 
tan (13)2-~ I (D1 + 2~)2~2) ] 
tan (13)2 + 1 ~4 = tan (13) i + [ tan(13)2 _ ag] 

(13) 

Elliptical Paths  

The second family of measurement paths are ellipses. 
The ellipses are parameterized in terms analogous with the 
helix. 

~ (5, ~) = cos (8 + O) 
~2 (5, d)) = sin (6 + ~) 

j~3 (5, (~, ~, ~) = ~ "t- tan (13) sin (5) 

(14) 

The elliptical path can be considered to be formed from the 
intersection of a plane with the outside cylindrical surface 
of the tube. 13 is the angle between the normal of this plane 
and the x3 direction. Notably here the relationship between 
the differential length element and differential angle is not 
constant as given in eq (15). 

ds = "41 + tan2([3) cos z (8) d8 (15) 

The relationship between the half-length of the elliptical 
path ~e and the subtended angle &is given by eq (16). The 
function E (q0, k) is the elliptic integral of the second kind.~7 

A 
de = sec (13) E ( 5e, sin (13)) 

Combining eqs (14)-(16), integrating and simplifying, re- 
suits in the average strain for the elliptical paths. This result 
is given in eq (18). The function F (<p, k) is the elliptic 
integral of the first kind, 17 and the function as (% cx) is 
defined in eq (17). 

as (% (x) -= sin < (sin(q0) sin(R) ) 

^ A 

s r y, ~J) = T + ~ (as (Be, 13)) + -E" + g3 (~ - ~) 
deGJ de 

�9 [ sec(J3) E ( Be, sin (13)) - cos (13) (1 + aJ) F (Be, sin(J3))] 
l {  ^ ^ ^ cos(r " ^ ~ }  

+~-  [M2+F1 ( c - ~ ) ] ' - - - A - - + [ - M I + F 2 ( ~ - } ) ]  
de I 

�9 'Ol + 
tan ([5) 

+7 -  F2 ^ 1 
de I I 

�9 {- ~ sin (Be) cos(Be) ~1 + tan 2 ([~) cos 2 (Be) 

^2 - [ (a)l + 2~2b ) cos 2 ([5) vS] csc ([3) F ( Be, sin (6)) } 

(18) 

Signal Combinat ions  

These families of paths can now be combined to yield 
the resultant load components acting on the positive face 
of the cylinder. To provide a basis for comparison, the 
application of the electrical and optical measurement tech- 
niques will be explored independently. 

Elec t r i ca l - res is tance  St ra in  G a g e s  

Motivated by eq (5), the voltage measurement in terms 
of the strain of the helix is given in eq (19). The half-length 
of all the sensors are chosen to be constant and denoted by 
~h. The center position and helical angle can be varied to 
provide different sensitivities to the six-load components. 
The primed and double primed symbols are merely 
dummy variable to define the function. 

A 
V/((p,, , , ,~,,~,q0,,  , ,~) ,y , , ,  ^,, 13-)= 

' ' ^ '  ' - , V ' )  Sb Sg [ -~h (~h,(P + r ,y ,13 ) -- Eh (~h (P" + " ^ ' '  * , Y ,  ] 

( 1 9 )  

(16) An example of combinations of signals using helical paths 
to give the resultant force and moment components on the 
face of cylinder are given in eqs (20)-(21). A schematic of 
these paths for a particular choice of parameters is shown 
in Fig. 3. The parameters, ~h,~l;(~l,[~2, and131 must be cho- 
sen such that the paths do not cross and stay near the central 
area of the cylinder. The requirement that the sensors do 
not cross is to avoid having to address this problem in a 
future error analysis. The end result of this procedure are 
the signal coefficients C4g~, (i = 1, 2 ..... 6), given in eq (22) 
which will determine the precision of the resultant load 

(17) measurement for a given sensor arrangement. 

3 3 0  �9 December 1993 



- R  
. I ~ 

I I 

~ J  L ~  

d 
1 L _ _  

l -  __.......__.D 

i F 

{ "/ 

i f  -~  

2 
, .2  t ~  

-c 0 x3 

Fig. 3~Schematic of the layout of the sensor 
paths on the outside (~--- 1) cylinder surface. 
Referring to eqs (19)-(22) the black lines indi- 
cate signals paths with parameters 

A A A 
{~, = (3/22) c, y~ = (5/22)c, , ,  =rd16, 0~ =,~, and 
I~ = (2/10)~. The grey lines are for additional 
transversely connected paths 

The half-bridge circuit uses sensor paths in pairs. Here 
the pairs of paths are typically separated by an angle of x. 
This separation allows the trigonometric terms in the average 
strain to change sign and permit the subsequent additive 
operations to yield the results of interest�9 Further, to keep 
the presentation brief some sensors are utilized repeatedly. 

^ d For instance the sensors that are used to fend F~ are exploite 
again in a different combination to find M2. The signals 
used to find F3 are a bit involved because of the compen- 
sation for the change in temperature of the cylinder and the 
presence of a uniform constant gravitational field�9 

It is difficult to discuss the signal coefficients given in 
eq (22) in detail without specifying the magnitudes of the 
components to be measured and the subsequent sizing of 
the cylinder. However some general observations can be 
made. The measurement defined in eqs (20)-(22) exactly 
separate the resultant load components�9 In other words the 
signal coefficients ~ (i = 1, 2 ..... 6) are independent of the 
load components�9 Also as expected the measurements are 
independent of the length of the stral'n gage. That is, the 
signal coefficients do not depend on ~h. 

It turns out that even with the zigzagging paths shown 
in Fig. 3, and even if eq (4) is modified to include a 
dependence on the strain perpendicular to the path tangent 

�9 �9 �9 3 (i.e., a cross-sensmwty ), the load components are still 

separable. In both of these cases the locations and group- 
ings of the signals remain as specified in eqs (20) and (21). 
For the a sensor with cross sensitivity (i.e., a foil-type 
strain gage rather than a bonded wire gage 3) the net effect 
on the coefficients in eq (22) is that in some cases & simply 
needs to be modified. The zigzagging paths greatly com- 
plicate the coefficients while retaining the aforementioned 
favorable qualities. Unfortunately space does not permit 
the inclusion of this work here. 

F1 41  ^ , ^ )T = ( 0, , 1 ,  Yl, ~ , , ,  01, y l ,  "~ )+ 

^ , ^ /1: 

V/(O,-01, yl, .7, ", - *1, Yl, .7 ) + 
A ^ g A /~ 
Vz~ (g, *I,-yl,  ~, O, 01,-Yl, "~) + 

^ A ~ ^ 2 1 V / ( ", -~1, -Yl,.7, 0, -*1, -yl, ) ! 
A A 

C l  I V  I . , ,  ^ , 3 ,  A " .7, ~11, yl, *l, yl, .7) + , 2 =  .1 L ,~c ~ - , y .  
1% 
vz{(" ,, , 3 ,  ^ , - -  -@1, y l ,  -411, Yl, 2' 7 ' T '  . 7 )+  
A 3 g  A '~ g A " 

v~ ( -7-' *~' -Y~' 7' 7 '*~' -:Y~' .7 ) + 
A _~ A ~ , ,', 11; ] 
v~ ( , - ,1 ,  -yl, .7, .7, -4,1, ~- -yl,  ) 

^ I ;A  ~ ~ A F3=C7�89 ,i ( 0 , , 1  2 y l , . 7 , 7 _ , g , , 2 _ y 1 , 0 )  + 
L,, 

^ ~ 3"1~ ^ 1 
V~("~bl ' -Yl '2 '  4 ' 2 , ' 2 , - y l , 0 ) 3 +  

g,,[^ ^ ,  C V I A ( O , * I , y l , ~ , O , * I , - - y l , . 7 ) +  

^ ^ , A " 7 
V x ( g, *1, Yl, "~, ", '1, -yl, ~- ) J (20) 

^ A 

MI = C V1 rc ^ , 3 ,  A IC (-~, *l, yl, ~,--~-, Ox, yl, .7 ) + 

A l ~ ^ ~3rC ^ " I 
VX ( ~ , - -~I ,  yl,  ~ , -~, -C~I ,  y l ,~  ) .J + 

I [ ^ l  ~ A X3rC A , 
Cg5 V,~ ( "~, *l,-yl,~-,-~-, *1, -yl, ~- )+ 

L A I " ^ , 37r ^ , } 
"3 

V~ ( "~, -*1, -yl, .7,-~-, - '1,  -Yl,.7 ) J 
^ I I - ^ " ^ " M2=C~4 V~ ( , ,  *I, Yl, '~,  O, *I, yl ,  .7 ) + 

^ 

O,-* t ,  yt,  ) + 

I ^ A , A , . ,  
Cl5 V / ( ", 01, -yl,-~, O, 01, -Yl;'.7 ) + 

A ^ , A 71; 7 
V / ( g, -#1, -Yl, ~, O, -~l, -Yl, ~ ) 

3 
^ 1 I ~ ^ 37I' ^ 

M3 = Cg6 V~ ( -~ - ' ~ ,  ~2, Yl, f~l, --2- - ' 2 ,  '2 ,  r l ,  -~1)  + 

VA( .~___,2,1~2, yl,131,_4_~2,,2, y l ,_~l )  ) 1  3,  ^ ^ 

(21) 
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8 s ,  c o s  ( , , )  

A 

C ~ _ A C ~ - -  I g2  g5 ~ - ( ~ 1  tC)Cgl  
2 S ~ S g ( I + ~ )  

^ A  

C~ = A ( #I + ~ C~6 _ GJ 
4 So Sg y~ 4 Sb Sg cos (p) sin(p) 

(22) 

Fiber-optic Differential Displacement Gage 

Motivated by eq (7) the phase, q0~, is given in terms of 
the average strain of the helical paths as seen in eq (23). 
Here it is again assumed for the sake of brevity that all the 
measurement paths have the same half-length ~h. Analo- 
gous with the half-bridge measurement of the strain gages, 
the change in phase is determined between two fibers. 

[ ~ 11 A t  ~ t  x l r  A l l  o ? t  x 
~ P a ( 9 , y , p , ~ ^ , y , p A  )=  

2 S y ~ h [ - ~ h ( d h , ( p ' , y ' , ~ ' ) -  ^ 9" -- Eh ( dh, "-'" ^," q~ ,y , )] 
(23) 

An example of signals using fiber-optic sensors and helical 
paths is shown in Fig. 4. The signals are combined as 
shown in eqs (24) and (25) to yield the resultant forces and 
resultant moments, respectively. The solutions for the 
signal coefficients ~ (i = 1, 2 ..... 6), are given in eq (26). 

As with the electrical strain gages, these signal combi- 
nations yield independent measurements of each of the 
load components. That is, each of the coefficients do not 
depend on the load components leading to zero theoretical 
cross-talk. Unlike the electrical case, these coefficients 
have a length parameter ~h [or through eq (10), ~h~ for an 
inclination of 131] in the denominator. This dependence 
allows the length of the sensor elements to be used to vary 
the magnitude of the signal coefficients and thus the 
sensitivity of the measurement. In other words, for a fixed 
geometry and a fixed minimum phase, smaller load com- 
ponents can be measured if there is room on the cylinder 
surface to increase the sensor length. 

The fiber-optic signal coefficients, excluding the two 
bending-moment measurements and the shear measure- 
ments, can in principle be made arbitrarily small by in- 
creasing the sensor length. 

The signal coefficients C~ and C~ have the proper term, 
8hZ in the denominator, except it is embedded in a sinusoi- 
dal function. This behavior has an easy explanation. As 8hr 
approaches rd2 the bending moment coefficients are at 
their maximum sensitivity. This corresponds to the sensor 
covering a total subtended angle of r~. The sensors traverse 
the region where the normal strains are nonzero for each 
of the respective components. As the length increases, the 
path is taken to the opposite side of the cylinder and the 
normal strains change sign. When the total subtended 
angle of the path covers 2rt (as shown in Fig. 4) the 
measured displacements cancel leading to singular coeffi- 
cients. In fact this method of determining the bending 

moments does not have an unrestricted scaling with sensor 
length. In effect the bending moment sensor paths with a 
half-arc-length that is an integer number times n is invari- 
ant with respect to all the resultant loads. This sensor path, 
while not terribly useful for measuring loads, would be 
useful in a situation where the effects of cylinder loading 
were to be excluded in favor of sensin~ some other phe- 
nomenon (e.g. fiber-optic gyroscopes). 'U' 

A I '~ A '~"~ A 
FI=C/1 qo~x(--2-,Yl, p,,-~,y,,~l) + 

L 
1 .T[~ A - - -  A 

q)A ( -~, -y2, -[St, 2 '  -y2,-[~, ) + 

A '~ A 
(P~ ( -~,  -yl, P,, ~, "yx, P, ) + 

/'I:A --~A 1 q)i ( ~-, y2, -P , ,  -~-, y2, -Px ) 

C/, ' ^ ^ - ~OX ( 0, y~, p,, g, y,, 131 ) + 
L l A A 

cpA ( r~, --y2, -Pl,  O, -yz, --~1 ) "I- 
A A 

(p~ ( O,-y,, Pl, g,-W1, 91 )+ 

^ 0 ^ ] ~p~ ( re, y2, -91, , yz, -P,  ) 

^[  F3= C/2 ~pi(0,~,[3~,rt, y3, [3z )^  + 

^ ^ 
-- -Y2, -131, -y3 , -~2 )  + 2'  -2- '  

^ ^ 
yl, Pl, O, y3, ~2 ) + 

"~ ^ ~ ^ -132)J+ q~ ( ~- ,  -ye,-P,,  ~,-Y3, 

131 ) + 
L A 

qo[ ( O, -y=, -Pl, ~, }2,-P, ) + 
--g A '~ A 

^ ^ ] ~o / ( re, -y2, -~1, O, y2,-~1 ) 
(24) 

Examining the average strain of the helical path in eq 
(12) for the bending moments is revealing. The only 
place the bending coefficients arise are in terms contain- 
ing a sinusoidal change in length which is divided by a 
length! In effect the goal to get the bending coefficients 
to scale with length was doomed from the start. The 
average displacement of the helical paths has bending 
moments terms which at most scale sinusoidally with 
the sensor length. 

An alternative approach is to sequence several portions 
of helical paths together such that there is a nonzero 
measurement as the path circles around the circumference. 
An example of such a sequence would be to leave the first 
half of the path covering a total subtended angle of rt at an 
inclination of 13~, and to make the second half of the 
distance at a slant of 92. In effect the contribution of the 
negative strain could be made smaller so as to not cancel 
the first half of the measurement. 
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"-c 0 x3 

Fig. 4---Schematic of the layout of helical fiber- 
optic paths on the outside ('f= 1) of the cylinder 
surface. Referring to eqs (23) -(26) here ~i, = ~, 
A A A ~ A A 
y=  (5/44)~ y~ = 3y~, y~ = Bye, I~ = O.014rt, and 
I~ = 0.028m The paths are displayed with vari- 
ous widths and degrees of opacity. This assists 
in differentiating amongst the tracks, especially 
at 0 =_+'a 

M1 : (p/( ~, ~1, Ill, , Yl, ~Jl ) + 

-y2,-131, , -y2 , -~  ) + 

7t ^ 3/t ^ 

~ ^ 3g ^ ] 
~ ( -y, y2, -Ih,  -y-, y2, -I~1 ) 

/142 C/4 I ^ ^ = r ( re, yt, ~1, O, y], [31 ) + 

^ ^ --~1 )I+ r ~, -y2, -1~1, O, -Y2, 
J 

+ 

^ ^ ] q~/A ( ~, Y2, -~1, 0, Y2, "~1 ) 

6 C/6[ ^ 3~ a M3 = ~pl ( 0, Yl, ~1, "~-, -y2, -~1 ) + 
L 

^ ~ ^ 

(p~ ( K, Yl, ~1, "~, --Y2, --~1) + 

~ ^ 3~ ^ 
(0, -yl ,  ~1, -~--, Y2, -~1 ) + 

^ ~ ^ ] 
(Pl ( ~, -Yl, 1~1, ~', y2, -1~1 ) J (25) 

A 
i I 

C]l = ( - - T s e c  (~l) c sc (~ l ) l /  
(16dh Sf  . ) 

Ices (thl)[~)- tan 2 (~1)] q sln~(-~lhl)[l+ tan ([~1)+ 2V2~2]] 

see 2 (~1) sec 2 (~2) 
c / :  _ 

8dh Sf(1 + 1)) [tan 2 (~l) - tan 2 (~2) ] 

C/3 4 sec 2 (]~1) F 2~ 
16dh S f  L" ̂ A q- @2 - Yl) [1) - tan 2 (~1)1 

sec 2 (~2) 1 
(1 +1)) [tan 2 (~ )  - tan 2 (~1)] 

I (~1 + 2~ - y2) 

16Sf [ t~ tan 2 ^ ^ " - (~1) ] Cv2 - y l )  sln(~hl) Cos (~1) 
A A A 

I (Yl - 2c - y2) 
A A 

16Sf [ ~ - tan 2 (~1) ] (~x- Yl) sin(Shl) cos (~1) 
GJ 

C:/6 = 16~h SfCOS (~1) sin(~l) (26) 

Unfortunately, this leaves the problem of connecting the 
two helical paths at different inclinations. Two crossing 
helicoids of  dissimilar inclinations contained in the same 
cylindrical surface necessarily are not smooth at the point 
of intersection. Having a kink in a fiber-optic path allows 
light to escape the cable and disrupts the measurement] ~ 
One could argue that in practice such a kink could be 
avoided and replaced with a small transition path with a 
suitable radius of curvature. However, this would violate 
the spirit of  this work to exactly find separable paths. As 
it turns out, such an argument is not necessary. 

The problem of smoothly connecting the series of paths 
can he solved by using a path which can intersect with the 
same slope. Elliptical paths have this connection capabil- 
ity. When half of the surface of  the cylinder is traversed by 
an elliptical path, at the ends 5 = +fie = _+rt/2 this results in 
a tangent vector with a zero axial component. This tangen- 
tial property allows the inclination on the path to change 
smoothly halfway around the cylinder from one inclination 
to another. 

Rewriting eq (23) to incorporate the elfiptical paths is 
shown in eq (27). (pg (~',~',[3", [3") determines the difference 
in phase between two fiber paths, each of which are com- 
posed of two intersecting half ellipses. The two paths are 
separated along the circumference of  the cylinder by an 
angle of It. Adding a total of m elements allows the path to 
be lengthened as shown in eq (28) (m > 1). 

C _ , ^  . . . . . . .  2sF ~ .... -i'~ . . . . . .  ^ . . . .  +~ . . . . .  A tip ,y ,p ,p ) = fiE. e tP ) e t e  tP ),~ ,Y ,P ) e (p ) 

�9 -Ee (~e (~"), I~' + ~, y" + tan(~') + tan(lY') sgn y', I]"sgn IY) 
A t 

-- [de(~') Ee (~e( l ] ' ) ,  ~" + 7~, y ,  ~" ) +~e (~") 
�9 - -  p t  �9 Ap 

Ee (~e (~),~) + 2/~, y + tan (~')+ 

tan (lY') sgn y',[~"sgn I~') ] } 
-/ 

J (27) 
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r (m, ' ^' O , y ,  lY, ~") = 
m 

j= l  
(28) 

The length of each portion of the half elliptical curve is 
found from eq (16) and is shown in eq (29). Note that by 
using half-elliptical paths not only is there a smooth con- 
nection but 8e = n/2 leads to a significant simplification to 
the equation for the average strain) 8 

~e(~) = sec (15)E/2' sin (13)) (29) 

~'1 = C H H A + H m "A [ q0a (m,~,-yl,-~l,~2) q0A (,g,y2,1]l,~2) ] + 

(rn,0,yl,~l,~2) + ~A (m,0,-y2,-[31,~2) ] + 

- t l ,  cpg ~r ,, 11 rt ,, 
2 = t~l  t ( m , ~ ' , y l , ~ l , ~ 2 )  + (PA ( m , ~ , - y 2 , - ~ l , ~ 2 )  1 - 

MI=C~ [ 

(m,-~,-yl,-~l,~2) + Cpa (m,-~,y2,[51,[52) ] 

~ ^  II ~ ^ (m,~,yl,~l,I]2) + ~A (m,-~,-y2,-[~l,[32) l + 

C151[ ~I~ ~ ^ + I ~ ^ (m,~,-yl,-~l,[~2) {p~ (m,-~,y2,~l,~2) ] 

~'1 .-,lI~ li t, 1I ^ 2 = I..4 [ q0A (m,~,yl,~l,~2) + q0a (mJt,-y2,-~l,~2) ] + 

A A 
C~ "/[ qo~ (m,~,-yl,-~l,[~2) + (p~ (m,g,y2,~l,~2) ] 

(30) 

An example of using fiber-optic sensors and a sequence 
of half-elliptical paths to determine the two shear load 
components and the two bending moment load compo- 
nents is shown in Fig. 5. The signals are combined as given 
in eq (30). The solutions for the new signals coefficients 
~ ,  (i = 1, 4, 5) are given in eq (31). 

These new coefficients now have a length parameter, m, 
in the denominator. This puts the bending moment coeffi- 
cients on equal footing with the other helical path coeffi- 
cients. In addition if space permitted, the sensitivity of the 
fiber to transverse strains could also be included) 3 As with 
the electrical sensors these optical measurements would 
retain their separability and scaling with only a change to 

A 

U~= I 
8m Sf ( YI2"- y2) [ g (~2) - g (~,) ] 

I ( ~ , -  ~2 +2~) 
A /k 

C~ = 16m S f f j ~ -  y2) [ g (~2) - g  (~1) ] 
" "  A A A 

I @ 2  - -  yl +2C) 

= 16m Sz ~ 1 -  ~2) [ g (~1) - -  g (~2)] 

g(~) =cos  (~)sin [2  cos (~)][1)- tan2 (~) ] 
(31) 

F u r t h e r  D i s c u s s i o n  

Within the confines of elastostatics of an isotropic, 
homogeneous, linear-elastic material the above descrip- 
tion shows that separable component measurements exist 
for both electrical and optical sensors. The Mach-Zehnder 
optical sensors in contrast with their electrical-resistance 
strain-gage counterparts retain a geometric property (i.e., 
the sensor length) in the coefficients that determine the 
measurement precision. Thus a transducer designer can 
adjust how a fixed-phase measurement precision gets 
translated into a load measurement without loosing com- 
ponent separability or needing to increase the maximum 
strain. 

This geometric property is double edged in the sense that 
if the sensor is large and there is room to extend the sensor 
length the measurement precision can be extended. On the 
other hand if the sensor needs to be small the scaling of 
this optical method's precision becomes worse. In this 
small case, the electrical gage methods might be pre- 
ferred.3, n 

To properly complete the design and construct this 
transducer an error analysis would be required. The 
error study would necessarily examine the effect of the 
fundamental assumptions as well as the precision and 
accuracy in which they can be implemented using too- 

/I 
/r / /' / 

I i 

-C C 

'//' 
it//i / 

[//i 
_/_ 

0 x 3 

Fig. 5--Schematic of the layout of the sequence  
of half-elliptical fiber-optic paths on the outside 
surface of the cylinder. Referring to eqs (27)-(31) 

A A 
here 8 o = 5el + 8 ~  = ~/2  + ~/2  = ~, yl = (2 /11)c,  
.~2 = 3~1,[3~ = (1/11)~, [52 = (3722)~, and m = 1. The 
paths are shown with various line densities and 
widths to assist in differentiating amongst the 
tracks 
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dem construction techniques. For instance the errors in 
position in placing long paths on the cylinder surface may 
accumulate for long path lengths and cause significant 
cross-talk. Another example would the accumulation of 
errors due to the wires and fibers being other than one-di- 
mensional.3, 13 

The instrument must be long enough to allow the arbi- 
trary stresses on the ends of the cylinder to decay within 
some precision of the exact solution. To allow for this 
decay the cylinder needs to be long in relation to the other 
dimensions (i.e., c >> a, and c >> b). Unfortunately, load 
transducers are typically intended to be compact and 
nonobtrusive to a structural system. A long-aspect ratio 
instrument would limit its utility.l' 2., 

Conclusions 

A six-component load transducer is described that 
within the confines of elastostatics has zero cross-talk 
amongst the resultant component measurements. This in- 
strument can be constructed using both electrical and 
optical sensors of finite-measurement path length. The 
electrical strain gages can even have zigzagging paths and 
still retain the component separation. The Mach-Zehnder 
optical sensors allow an instrument in which the signal 
(i.e., total phase change) at maximum load grows with the 
geometry. For a fixed maximum load and signal measure- 
ment capability this geometric scaling corresponds to an 
increase in the precision of the load measurement. 

There are some further consequences of this study. For 
instance, the helical paths used to measure the bending 
moments with fiber-optics, as discussed in 'Fiber-optic 
Differential Displacement Gage' above, can be made in- 
sensitive to all end loads. In effect the phase change along 
these paths is load invariant. Even though this sensor 
arrangement is not suitable for a bending-moment meas- 
urement, they would be useful for fiber-optic rotation 

18 sensors. 
A consequence of the fiber-optic geometric scaling is 

that the optical instruments can have lower material design 
strains than electrical transducers. This lower strain allows 
the actual instrument to be a direct load-bearing structure. 

Another consequence of this geometric scaling is that 
the load instrument need not be constructed of structurally 
efficient materials. For instance, for a constant load and 
design strain, a lower modulus construction material 
would result in a bigger geometry. This larger geometry 
corresponds to a longer fiber-optic sensor path and thus a 
larger signal. Thus, constructing the sensing portion of the 
cylinder entirely out of glass can be considered. 

Finally, making the load instrument out of a transparent 
material has some intriguing possibilities. Typically when 
imbedding fibers in a composite structure the matrix and 
fibers have radically different material properties. If glass 
fibers could he imbedded in a glass matrix, or alternatively 
if the index of refraction could be controlled along micron 
width paths through a transparent material, this would 
satisfy the initial material assumption for the sensing cyl- 
inder. Thus, rather than restricting the measurement paths 
to the cylinder surface, the entire volume of the cylinder 
might be utilized as a sensor. 
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