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Abstract—The reigning paradigm of musculoskeletal modeling
is to construct deterministic models from parameters of an “aver-
age” subject and make predictions for muscle forces and joint
torques with this model. This approach is limited because it
does not perform well for outliers, and it does not model the
effects of population parameter variability. The purpose of this
study was to simulate variability in musculoskeletal parameters
on glenohumeral external rotation strength in healthy normals,
and in rotator cuff tear cases using a Monte Carlo model. The
goal was to determine if variability in musculoskeletal parameters
could quantifiably explain variability in glenohumeral external
rotation strength. Multivariate Gamma distributions for muscu-
loskeletal architecture and moment arm were constructed from
empirical data. Gamma distributions of measured joint strength
were constructed. Parameters were sampled from the distributions
and input to the model to predict muscle forces and joint torques.
The model predicted measured joint torques for healthy normals,
subjects with supraspinatus tears, and subjects with infraspinatus–
supraspinatus tears with small error. Muscle forces for the three
conditions were predicted and compared. Variability in measured
torques can be explained by differences in parameter variability.

Keywords—Shoulder, Stochastic, Monte Carlo, Musculoskeletal
model, Infraspinatus, Supraspinatus, Teres minor.

INTRODUCTION

Healthy normal subjects demonstrate remarkable vari-
ability in maximum glenohumeral external rotation
strength. For example, the standard deviation of external ro-
tation strength can be 41% of the mean.33 Additionally, with
rotator cuff tear there is variability in the amount of strength
deficit which appears to depend on factors other than
cuff tear size.12,13,40,41,74 Current musculoskeletal model-
ing paradigms have been unable to explain the variation
in strength, or the strength deficit. Observations of mus-
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culoskeletal parameters also exhibit variability.1,6,61,77 One
might hypothesize that the variation in strength can be ex-
plained via quantifiable differences in musculoskeletal pa-
rameter variability, specifically physiologic cross-sectional
areas (PCSA), moment arms and the muscle length–tension
relationships.

The historical approach to musculoskeletal modeling
has been to construct deterministic models from param-
eter means of a sample assumed to be representative of the
general population. Deterministic models have been made
for many joint systems including the hand,17 elbow,11,34,54

shoulder,28,76 spine,18,26,73 and lower extremity.31,39,49,69

Such models have been used with great success to predict
joint torques and muscle forces for the “average” subject.
However this approach does not reflect the inherent variabil-
ity in musculoskeletal parameters which ultimately results
in variability in muscle force and joint strength. Conse-
quently, it is questionable how well these models predict
muscle forces and joint torques across the population, in
particular for subjects quite different than the sample mean.

Monte Carlo methods are a means for modeling naturally
occurring variability and uncertainty in a population. A few
Monte Carlo models have been developed to model biome-
chanical and musculoskeletal phenomena,14,20,32,55,56,59,75

but such work has been limited. Monte Carlo methods uti-
lize input parameter distributions to model intersubject vari-
ability, and therefore provide distributions of output values.
Monte Carlo simulations are useful because the distribu-
tion of muscle forces in a population can be predicted.
Muscle–force distributions are necessary for understand-
ing the mechanical and biological responses to external
loads placed on the human body. The question of why
some athletes or laborers develop pathologies like rota-
tor cuff tendon tear while performing a task, while oth-
ers executing the same task do not develop the pathology,
has not been answered with deterministic models based
on average parameter data. Subject specific models could
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potentially answer these questions,3 but require large num-
bers of subjects to understand the affects of variability
across the population. Such large studies are costly in terms
of time and experimental involvement. Furthermore, an-
other strength of Monte Carlo methods is that the limi-
tations of traditional methods utilizing average values are
avoided,75 and conclusions can be made concerning output
probability.

The purpose of this study was to probabilistically sim-
ulate the effects of variability in PCSAs, moment arms
and the muscle length–tension relationships on predicted
muscle forces and joint torque. The aim was to develop
a model tuned to available data for glenohumeral external
rotation strength and, if the model predicts the torques with
small errors, then there is potential for predicting and an-
alyzing muscle force distributions in different populations.
Additionally, simulations such as this may help describe
why some subjects retain strength in the presence of rotator
cuff tear, while other subjects do not maintain strength,
and may help guide clinical management of cuff tear
injuries.

There were three objectives for this study: (1) to de-
velop a stochastic model of isometric glenohumeral ex-
ternal rotation; (2) to tune the model to predict isometric
external rotation torques, and to compare predicted and
measured torques; and (3) to estimate and compare ex-
ternal rotation muscle force distributions for normal sub-

jects and for subjects with supraspinatus, and infraspinatus–
supraspinatus rotator cuff tears.

METHODS

Variability in musculoskeletal parameters and their ef-
fects on glenohumeral external rotation strength in healthy
normals and in rotator cuff tear cases was simulated using a
Monte Carlo model (Fig. 1). Multivariate Gamma distribu-
tions were generated from summary statistics of empirical
moment arm, PCSA, and the muscle length–tension depen-
dencies (Fig. 1A). Gamma distributions for joint strength
were constructed from external rotation joint strength also
measured in the laboratory (1B). Predicted muscle force
and joint strength relationships described in the text were
used to make predictions from parameters sampled from the
distributions (1C). Muscle specific tension was predicted
for the healthy normal case by sampling from the distribu-
tions and using a least squares method to minimize the sum
of squared errors between measured and predicted strength
(1D). A nonparametric 95% confidence interval adjustment
of PCSA input distributions was used to ensure measured
and predicted torques matched for the two rotator cuff tear
cases (1E). Muscle forces and joint strength distributions
were then predicted with the model for the healthy normal
case, for isolated supraspinatus tear, and for supraspinatus
with infraspinatus tear (1F).
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FIGURE 1. Diagram depicting the Monte Carlo model. (A) Multivariate Gamma distributions generated from summary statistics of
moment arm, PCSA, and the muscle length–tension dependencies measured in our lab. (B) Gamma distributions for joint strength
constructed from measured external rotation joint strength. (C) Predicted muscle force and joint strength relationships described
in the text. (D) Muscle specific tension predicted for the healthy normal case (and assumed for all cases) using the method of Chang
et al.14 (E) The nonparametric 95% confidence interval adjustment of PCSA input distributions to ensure measured and predicted
torques matched for the two rotator cuff tear cases. (F) Muscle force and joint torque distributions predicted with the model for the
three cases.



Probabilistic Model of Shoulder External Rotation Strength 467

Musculoskeletal Model

An isometric model of glenohumeral external rotation
was developed that simulates maximum isometric external
rotation strength for the position of 15◦ humeral abduc-
tion at neutral glenohumeral rotation. This position was
chosen because it is relevant for functional activities, is
easily testable and frequently tested in a clinical setting,
and is a position for which isometric strength data is avail-
able. Three agonist muscles are included: supraspinatus,
infraspinatus and teres minor. Infraspinatus was represented
with four subregions, supraspinatus with three subregions,
and teres minor as one subregion (Fig. 2). The isomet-
ric force and torque-generating capacity of these mus-
cles/subregions were described by the physiologic cross-
sectional area, the length–tension relationships, and muscle
moment arms from empirical data collected in our labora-
tory.44–46

Glenohumeral external rotation joint torque (TP) was
predicted with a biomechanical model as the summation of
the products of muscle moment arm (rj) and muscle force
(Fj) at the joint angle position simulated in this study:

T p =
8∑

j=1

(r j × Fj ) (1)

Muscle force was modeled as a function of the current
muscle length, the level of neuromuscular activation (α),
muscle physiologic cross-sectional area (PCSA), and mus-
cle specific tension (σ ) [Fig. (1C)]. Eq. (2) represents the

FIGURE 2. Muscles simulated in this model. Individual
muscles/subregion paths are depicted as red segments;
Supraspinatus: three subregions, infraspinatus: four subre-
gions, teres minor: one region.

dependence of muscle force on these factors. Formulations
from the literature82 are used to model the dependency of
active muscle force (FL) on muscle length.

F = σPCSA[α FL] (2)

The level of neuromuscular activation was fixed at unity
since strength measurements, described in the next sec-
tion, were obtained at conditions of maximum voluntary
isometric contraction. Tendons were modeled as inelastic
which is a reasonable assumption for an isometric model at
one joint angle position. Incorporation of tendon stiffness
results in maximum tendon strain of 3.3%,82 and 1.99–
3.68%50 at maximum isometric muscle force. Chang et al.,
199915 found the discrepancy in muscle strain to be less
than 3% when tendon was modeled as elastic versus in-
elastic. For the muscles modeled here which are operating
near the peak of the length–tension curve (normalized force
approximately 0.9) a nominal muscle strain discrepancy of
3% introduces an error of less than 5% for muscle force.

Strength Data

Isometric external rotation strength data for healthy nor-
mals,33 and for patients with rotator cuff tears (unpublished
data) was collected in the laboratory. The data collected on
rotator cuff tear patients was collected by the same authors
(Biomechanics Laboratory, Mayo Clinic, Rochester, MN),
under the same conditions as the healthy normal data. All
data were collected with an institutional review board ap-
proved protocol. In each study, strength was measured with
a Cybex II isokinetic dynamometer (Cybex, Ronkonkoma,
New York). During testing, the elbow was flexed to 90◦ and
secured with an Orthoplast splint (AliMed Inc., Dedham,
Massachusetts) to allow measurement of isolated gleno-
humeral strength. One-hundred and twenty subjects (60
men and 60 women, mean 44, SD: 15 years) were tested
for the healthy normal case, and 46 subjects (34 men,
12 women, mean: 59, SD: 11 years) were tested for the
cuff tear cases. Of the 46 subjects with cuff tears, 41 tears
were full thickness tears, five tears were partial thickness.
Isolated supraspinatus tears were present in 23 subjects, and
23 subjects had combined supraspinatus and infraspinatus
tears established via intraoperative observation.

Monte Carlo Simulation

Variability in musculoskeletal architecture and muscle
moment arm were modeled as random variates with a Monte
Carlo method (Fig. 1). Summary statistics of empirical data
collected in our lab44–46 were used to construct multivariate
Gamma probability distributions. Muscles and tendons of
supraspinatus and infraspinatus were subdivided into three
and four equal width regions respectively. Excursions of
these tendon subregions and teres minor were measured for
full ranges of rotation on 10 independent glenohumeral ca-
daver specimens with the humerus abducted in the scapular
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plane at the position simulated with this model. Moment
arms were determined from tendon excursion via the prin-
ciple of virtual work.2 On the same 10 specimens, mus-
cle fascicle lengths, sarcomere lengths, pennation angles,
and muscle volumes were measured. From these param-
eter measurements and tendon excursions, optimal fasci-
cle length, physiological cross-sectional area (PCSA), and
muscle length–tension dependence were calculated. Sum-
mary statistics of these parameters are reported in Table 1
(healthy normal case).

Because natural correlation exists among PCSA, the
muscle length–tension relationship and muscle moment
arms, parameter covariance was established by calculating
covariance matrices of PCSA, normalized muscle force,
and muscle moment arm. Frequently, the calculated covari-
ance matrix was nonpositive definite. With small sample
size, sample covariance may be nonpositive definite due
to mere sampling fluctuation. An additional more likely
cause of nonpositive definiteness is colinearities between
vectors of the data from which the covariance is calculated.
The colinearities result in a covariance matrix which lacks
information, is mathematically rank deficient, and cannot
be inverted. Nonpositive definite covariance matrices were
made positive definite by smoothing. Ridge smoothing was
accomplished by adding 10% to the diagonal terms.80 Mul-
tivariate parameter distributions were generated with the
positive definite covariance matrix [Fig. (1A)].22,37,58 The
covariance of the resulting multivariate distributions were
asymptotic to empirically determined covariance with sam-
ple size. At small sample size, covariance of the model gen-
erated distribution did not match empirical covariance, but
as sample size approached infinity, the empirical covariance
was attained. At sample size of 1000, modeled and empir-
ical covariances were identical and any additional samples
did not increase agreement. Mean and variance of the gener-

ated distributions exactly matched summary statistics of the
empirical data. Equivalency of the generated distributions
and the empirical data were assessed with Komolgorov–
Smirnov goodness-of-fit tests and were always equivalent
(p > 0.05).

Since glenohumeral external rotation strength also ex-
hibits variability among subjects, measured torque was also
modeled as a random variate. Gamma probability distribu-
tions were constructed from summary statistics for strength
from sources described earlier [Fig. (1B)]. Gamma distri-
butions were chosen because, while exact distributions are
unknown, PCSA, moment arm, normalized muscle force,
and glenohumeral external rotation strength are all non-
negative. Two rotator cuff tear cases were simulated in this
study; supraspinatus tendon tear, and infraspinatus with
supraspinatus tendon tear. The mean strength losses were
51 and 64% for the two cases, respectively (Fig. 3). Cuff
tears were mathematically induced by setting PCSA for
the involved muscles equal to zero. The mean and variance
of constructed gamma strength distributions matched the
mean and variance of measured strengths (Fig. 3), and
Komolgorov–Smirnov goodness-of-fit tests failed to de-
tect differences between measured strength data and con-
structed strength distributions (p > 0.05).

A random number generator chose samples from the
distributions for musculoskeletal parameters and measured
torques. All simulations and data analysis were performed
with the statistics toolbox in Matlab 6.5 (Mathworks,
Natick, MA). The simulation was conducted for the healthy
normal case and the cuff tear cases. This modeling and
simulation was conducted in three phases: model tuning,
muscle specific tension prediction, and muscle force pre-
diction. Specific tension and muscle forces were predicted
in the manner of Chang et al.14 [Fig. (1D)], by first sampling
from the distributions and using a least-squares method to

TABLE 1. Musculoskeletal input parameters (mean and SD).

Healthy normal Supraspinatus tear
Infraspinatus–

supraspinatus tear

Moment arm (cm)
Normalized

muscle force PCSA (cm2)
PCSA
(cm2)

PCSA
(cm2)

Anterior-SSP −0.19 (0.15) 0.94 (0.07) 1.36 (0.40)
Middle-SSP 0.27 (0.24) 0.94 (0.08) 1.27 (0.34)
Posterior-SSP 0.76 (0.45) 0.94 (0.08) 0.97 (0.40)
Superior-INF 1.51 (0.27) 0.90 (0.10) 1.83 (0.66) 0.89 (0.77)
Sup.Mid.-INF 1.58 (0.27) 0.89 (0.08) 1.80 (0.73) 0.88 (0.84)
Inf.Mid.-INF 1.97 (0.27) 0.91 (0.08) 2.08 (0.92) 1.02 (1.07)
Inferior-INF 2.04 (0.40) 0.93 (0.06) 1.47 (0.51) 0.72 (0.59)
Teres minor 1.43 (0.39) 0.96 (0.06) 2.02 (0.80) 0.99 (0.93) 3.90 (2.41)

Note. Parameters for the healthy normal case were measured in our laboratory from 10 cadaver specimens. Moment arms
and normalized muscle force (from calculated muscle length–tension relationships) were for the position simulated with
this model. Covariance between moment arm, PCSA and normalized force was determined and used to model multivariate
gamma input distributions formed from the mean and standard deviation of measured parameters. PCSA for the tear
cases are the values for which the model was tuned to make measured and predicted torque distributions equivalent
(p > 0.05).
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FIGURE 3. Probability distribution of measured (dashed lines)
and predicted (solid lines) external rotation strength. Mea-
sured joint strength: Healthy normal (mean: 22.0, SD, 9.0 N m),
60 male, 60 female. Supraspinatus tear (mean: 10.8, SD,
8.5 N m). 16 male, 7 female. Infraspinatus–supraspinatus tear
(mean: 7.9, SD, 6.1 N m), 18 male, 5 female.

minimize the sum of squared errors between measured and
predicted strength in order to predict specific tension, and
then re-sampling from the distributions and using the pre-
dicted specific tension to predict muscle forces.

Specific Tension Prediction

Muscle-specific tension was determined for the healthy
normal case [Fig. (1D)]. In the manner described earlier,
samples were selected at random from input parameter dis-
tributions and used to predict muscle forces and external
rotation torques resulting in a distribution of 1000 samples
of predicted external rotation strength. Specific tension was
assumed equal for all muscles, and was the least-squares
solution to the problem of minimizing RMS error between
the predicted torque distribution and a distribution of 1000
torques sampled from the measured torque distribution.
Specific tension for the cuff tear cases was assumed equal to
healthy normal specific tension. Following specific tension
prediction a nonparametric two-sided Wilcoxon rank sum
test was performed to test if there was a difference between
median measured and predicted torques. Equivalency of the
predicted and measured torque distributions were tested
with a Komolgorov–Smirnov (K–S) goodness-of-fit test.
These tests were performed for each of the three cases.

Model Tuning

For the healthy normal cases no model tuning was neces-
sary or conducted since the confidence intervals constructed
included the target difference and ratio respectively. For the
cuff tear cases, the model was tuned by adjusting model in-
put parameters to match predicted torque to empirical mea-

surements of glenohumeral external rotation torque. These
techniques are commonly utilized in discrete event simula-
tion47 to equate a model and a real-world system. Muscle
architecture and moment arms were randomly chosen from
the distributions and input to the muscle force and joint
torque models to predict muscle forces and glenohumeral
external rotation torque. Because the model and the sys-
tem under consideration are inherently not the same,47 the
means of measured and predicted torques and their distri-
butions were evaluated for equivalency with a confidence
interval approach [Fig. (1E)]. One hundred distributions
for predicted and measured torque were constructed, each
distribution consisting of 1000 torque samples. Predicted
and measured torque distributions were compared by form-
ing 95% nonparametric confidence intervals (CI) for the
difference in means, and ratio of standard deviations for
the healthy normal and cuff tear cases, respectively. For the
supraspinatus tear case, mean and standard deviations for
PCSA of all remaining muscles were iteratively decreased
(mean), and increased (SD) until the CI for the difference in
means centered zero Newton-meters, and the CI for the ratio
of standard deviations centered unity, within the confidence
intervals. For the infraspinatus–supraspinatus tear case, the
teres minor mean and standard deviation of PCSA were both
iteratively increased. RMS error between the measured and
predicted torque distributions was also drastically reduced
via this tuning process.

Muscle Force Prediction

Following determination of a tuned model with known
specific tension which predicted joint torque distributions
equivalent to measured torque, the model was used to
predict muscle forces for another 1000 iterations of the
simulation for the healthy normal case and supraspina-
tus and infraspinatus–supraspinatus tear case, respectively
[Fig. (1F)]. To assess normality of muscle force distribu-
tions, K–S tests were used to compare each force distribu-
tion to a normal distribution with the same mean and vari-
ance. Sample size of each distribution was equal to avoid
inflating degrees of freedom for the test. Muscle forces
for the healthy normal and cuff tear cases were compared
by utilizing two-sided Wilcoxon rank sum tests to test for
differences in median muscle forces, and K–S tests were
applied to test for differences in muscle force distributions.

RESULTS

Following determination of specific tension, no input
parameter tuning was performed for the healthy normal
case because measured and predicted torque distributions,
as well as mean torques, were identical. For supraspinatus
tendon tear, mean PCSA in the remaining muscles was
decreased by 51%, and the standard deviation of PCSA
was increased by 16% to match predicted torque distri-
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bution to the measured distribution. With infraspinatus–
supraspinatus tendon tear, mean PCSA of the remaining
muscle, teres minor, was increased 93%, and the standard
deviation of teres minor PCSA was increased by a fac-
tor of 3 in order to predict the measured external rotation
distributions (Table 1). For the healthy normal case sum-
mary statistics for moment arms and the normalized force
from the length–tension relationship (Table 1) were equal to
measurements made in our lab. Confidence interval widths
for the difference in mean measured and predicted torques
were 0.12, 0.09, and 0.09 N m wide for the healthy normal,
supraspinatus, and infraspinatus–supraspinatus tear cases
respectively. The confidence interval widths for the ratio
of measured and predicted standard deviations were 0.13,
0.15, and 0.17 wide, respectively.

Muscle specific tension for the healthy normal case de-
termined with the least squares approach was 1.43 MPa,
and was assumed for the cuff tear cases. Equivalent dis-
tributions for predicted and measured torques were de-
termined with RMS error of 0.10 N m (Fig. 3) for the
healthy normal and cuff tear cases. The Wilcoxon rank sum
tests indicated that median predicted and measured torques
were not significantly different for the healthy normal
(p = 0.5), supraspinatus tear (p = 0.8), and infraspinatus–

supraspinatus tear (p = 0.7) cases. Furthermore, dis-
tributions of predicted and measured joint torque were
not significantly different for the healthy normal (p =
0.8), supraspinatus tear (p = 0.7), and infraspinatus–
supraspinatus tear (p = 0.4) cases.

With supraspinatus tear, muscle forces in all regions of
infraspinatus and teres minor were reduced as compared to
the healthy normal cases (Fig. 4). For the infraspinatus–
supraspinatus tear case, teres minor force was elevated
compared to healthy normal. Muscle forces for the healthy
normal case were normally distributed (p > 0.05), except
for posterior supraspinatus (p = 0.02). Conversely, force
distributions for both cuff tear cases were not normally
distributed (p < 0.001). Muscle force distributions were
significantly different (p < 0.001) between the healthy nor-
mal and rotator cuff tear cases (Fig. 4). Median forces
for all muscles were significantly different (p < 0.001)
between the healthy normal and rotator cuff tear cases
(Table 2).

Probabilities that muscle forces for the supraspinatus
tear case were less than the median muscle forces for the
healthy normal case are 0.88, 0.86, 0.83, 0.88, and 0.88
for superior infraspinatus, superior middle infraspinatus,
inferior middle infraspinatus, inferior infraspinatus

FIGURE 4. Probability distribution of muscle forces for the healthy normal, supraspinatus tendon tear, and infraspinatus–
supraspinatus tendon tear cases.
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TABLE 2. Predicted glenohumeral external rotation muscle forces (Newtons) (median and SD).

Healthy normal Supraspinatus tear Infraspinatus–supraspinatus tear

Anterior-SSP 177.3 (52.9)
Middle-SSP 168.2 (46.5)
Posterior-SSP 128.2 (59.8)
Superior-INF 228.9 (83.2) 96.8 (92.7)
Sup.Mid.-INF 222.4 (87.4) 98.5 (95.8)
Inf.Mid.-INF 260.0 (128.4) 110.8 (141.3)
Inferior-INF 191.1 (77.7) 80.2 (85.2)
Teres minor 271.8 (117.2) 119.1 (126.9) 503.9 (344.6)

and teres minor, respectively. For the infraspinatus–
supraspinatus tear case, the probability that teres minor
force is greater than the median healthy normal teres minor
force, (271.8 N) is 0.79 (Fig. 5).

DISCUSSION

In this study a probabilistic model was used to pre-
dict measured torque distributions with small error. For the
healthy normal case predicted torque distributions matched
measured distributions of torque with no tuning of input
parameters aside from determination of specific tension.
The strong agreement between measured and predicted
torque distributions illustrates how variability of muscle ar-
chitecture and moment arm can explain variability in gleno-
humeral external rotation strength as measured in healthy
normal subjects. This result demonstrates strong potential

FIGURE 5. The probability that teres minor muscle force for
the infraspinatus–supraspinatus tear case exceeds the median
force for the healthy normal case is 0.79, and is depicted graph-
ically as the area under the probability distribution greater than
271.8 N.

for utilizing probabilistic musculoskeletal models to predict
muscle forces for two different populations.

For rotator cuff tears, the model was tuned by adjusting
the distributions for muscle physiologic cross-sectional area
in order to predict torque distributions with small error. For
the supraspinatus tear case the PCSA was reduced by an
average of 51%. Such a decrease in PCSA explains reduced
ability of the infraspinatus and teres minor to generate force.
Reduced muscle force capacity of these muscles of course
translates to reduced external rotation strength and a disrup-
tion of the force balance necessary for maintaining static
equilibrium of the humeral head relative to the glenoid. For
the infraspinatus–supraspinatus tear case mean PCSA was
increased by 93%. The increase in teres minor PCSA re-
sults in increased force required for generation of measured
external rotation strength. Looking at the distributions of
predicted muscle forces one can see that with infraspinatus
tendon tear, the median muscle force in the remaining mus-
cles is reduced compared to healthy normals. Additionally,
the model in this study allows for the calculation of the
probabilities that muscle forces for tear cases are different
than muscle forces for healthy normals. The model pre-
dicts high probability that infraspinatus forces are reduced
compared to healthy normals in the case of supraspinatus
tendon tear. Likewise, for the infraspinatus-supraspinatus
tear case the model predicts high probability of greater
teres minor muscle force as compared to the healthy normal
force. Results or insights such as these are previously un-
elucidated utilizing deterministic models based on average
or subject specific parameters, and highlight some strengths
of stochastic modeling.

The parameter variability found via the tuning process
is not known to be exact, but presents intriguing questions
given the probabilistic nature of measured parameters. In
the future it would be interesting to measure these, and
other parameters, in healthy normal subjects and subjects
with pathological conditions in order to better understand
parameter variance. Measurement of parameters for esti-
mating muscle force and torque generating capacity, par-
ticularly the muscle length–tension relationship, has pri-
marily occurred in cadaveric models.51,61 However, in vivo
methods have recently been developed which approach the
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ability to measure the parameters for representing relation-
ships modeled here.5,67 This study is the first to quantify the
effects of muscle architecture and moment arm variability
on muscle strength. With advances in imaging techniques
it might one day be possible to measure these parameters
in vivo. The methodology utilized here can quantify the
effects of parameter variability when such data becomes
available. Additionally, it would be interesting to simulate
alterations in other parameters such as moment arm and
muscle length–tension relationships in a manner similar
to how muscle hypertrophy/atrophy was simulated here.
However, in this model we did not simulate these parame-
ter changes with cuff tear because there is not experimen-
tal or clinical evidence for these alterations at the present
time.

The result of this study that muscle PCSA for the
supraspinatus tear case was reduced agrees with clinical
findings following cuff tear with degradation of rotator cuff
muscles due to muscle atrophy via fatty infiltration.57,63,72

Of course, some period of time is necessary following
injury for the atrophy to appear. Clinically, infraspinatus
degradation can occur in supraspinatus tendon tear cases
even if the infraspinatus tendon is intact.25 This model
supports clinical observations. Additionally, the reduction
in infraspinatus PCSA and force is suggestive of reduced
ability of infraspinatus to generate inferiorly directed force
necessary to resist superior humeral head superior trans-
lation and impingement with the acromion in the case of
supraspinatus tendon tear.71

For the infraspinatus–supraspinatus tear case, the data
are more limited. However, the model developed here
supports clinical observations in some patients with
supraspinatus and infraspinatus tendon tear. Hypertrophy
of teres minor allows for retention of some external rota-
tion strength in patients with the dual tear case, and has
been linked to patients who are able to function in the pres-
ence of dual cuff tear.78 Biomechanically, in healthy normal
subjects, teres minor contributes about 50% to external ro-
tation strength.19 Hypertrophy of teres minor might allow
patients to present relatively normal or minimal reduction in
external rotation strength with infraspinatus–supraspinatus
tendon tear as was modeled here.

A strength of this model is the consideration of correla-
tions among muscle architecture and moment arm. In this
simulation correlation between PCSA, moment arms, and
the muscle length–tension relationship was incorporated
by utilizing multivariate distributions to model these pa-
rameters. Use of multivariate distributions requires original
empirical data for calculation of covariance, or access to
determined parameter covariance. During the model de-
velopment phase a univariate model, in which covariance
among input parameters was ignored, was constructed and
used to make predictions for the healthy normal case. The
univariate model predicted a joint torque distribution with
standard deviation of one-half the measured torque stan-

dard deviation, but with identical means for predicted and
measured torques. From this result it can be concluded that
covariance is important for realistically modeling input pa-
rameters in order to build a valid model which predicts
torque distributions matched to measured distributions for
the real-world system. This finding is in agreement with
others who found that multivariate distributions contain
important information, and therefore perform better than
univariate input distributions when attempting to predict
distributions of muscle forces and joint torques.32,58 Mea-
surements of muscle architecture and moment arms in vivo
and in cadavera have begun to address issues of parameter
covariance.30,62,79

Several limitations exist in this study. We assumed that
all contractions were conducted under conditions of 100%
muscle activation. It is possible there exists some variability
in muscle activation even under conditions of maximum ex-
ertion. Incorporation of an EMG-Activation model would
be a reasonable improvement given limited availability of
EMG data.70 However deterministic musculoskeletal mod-
els commonly assume 100% muscle activation when EMG
data were not recorded.38,64,76 For our isometric stochastic
model, the order of magnitude of errors associated with
this assumption is comparable. An additional limitation of
this simulation is that we did not model the effect of age, or
control for the effect of gender on external rotation strength.
Each of these variables could be controlled for using a nor-
malization procedure, or by incorporating age and gender
as multivariate model input parameters. Future models will
require larger datasets to ensure the multivariate nature of
these parameters can be effectively modeled. We did not
include the effect of cocontraction of the subscapularis or
other antagonist muscles. Incorporation of these muscles
would allow loading across the joint to be determined.

According to other sources, posterior deltoid accounts
for about 11% of the external rotation torque in the posi-
tion simulated here.43 However, posterior deltoid was not
included in this model for several reasons. First, we do not
have confidence in that data because there are no standard
deviations reported. Additionally, our method for measur-
ing muscle moment arms differed from the methods of
Kuechle et al. in a significant respect. In the other study,
muscles remained attached to the specimens and cords were
routed along the surface of the muscle bellies. Cord paths
were further from the joint center of rotation than phys-
iologic muscle and tendon centroids. Consequently, mo-
ment arms were overpredicted since a longer cord path
results in a greater excursion for a given rotation angle.
In our study, we dissected muscles from the specimens
and approximated the muscle-tendon paths with custom
made low friction nylon guides to route the cords.46 This
technique is a better model since the cord path is more
aligned with muscle and tendon centroids. In an early pi-
lot test specimen we measured the moment arm of poster
deltoid in one specimen for three trials and concluded that
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posterior deltoid does not play a significant role in rota-
tion strength for the position simulated here since moment
arm is less than 10% of moment arm for infraspinatus,
and posterior deltoid PCSA is equal to infraspinatus. Our
results, agree with conclusions made by others66 that pos-
terior deltoid does not play a significant role in external
rotation.

It is important to note that this model does not consider
that residual force generated in a cuff muscle tendon rupture
might contribute to joint strength via lateral force transmis-
sion through an adjacent muscle or tendon. This simulation
neglects these types of forces. Experimental models have
demonstrated lateral force transmission between adjacent
muscles.4,7,21,35,48,52 While the tools for modeling lateral
forces in muscle exist,81 the changes in the muscle moment
arm with cuff tear, and the analytical tools for modeling the
change, are not well understood.

Additionally, there is evidence that with rotator cuff tear
muscle activation could be altered due to pain or other fac-
tors not completely understood. Recently, a trend has been
found towards increased muscle activation in asymptomatic
and symptomatic rotator cuff tear patients compared to
healthy controls.40 This model neglects such alterations in
muscle activation.

The muscle specific tension determined in this simula-
tion, 1.43 MPa, is at the upper bound of values described in
the literature.8,16,23,36,65,68,76 Specific tension, like muscle
activation could be modeled as a random variable. How-
ever, in this study it was decided to model specific tension
deterministically, with the assumption that the probabilis-
tic aspects of the parameter would be captured by model-
ing PCSA stochastically. With a limited understanding of
specific tension differences among healthy normals,9 it is
reasonable to model specific tension as equal for all cases.
Specific tension was determined for the healthy normal case
using a common, simple mechanical model to ensure pre-
dicted joint torques match externally measured joint torques
with small errors.9,14,15,27,54 With reduced specific tension,
and consequently reduced muscle forces, the model would
not have predicted measured joint torques with small error.
However, others have found the same relative value for
specific tension of elbow and shoulder muscles determined
with similar modeling approaches,9,10 including a recent-
deterministic model which utilized 1.4 MPa for specific
tension in order to match predicted moments to measured
values.29

The muscle forces predicted here have not yet been val-
idated by direct measurement, or predicted by models us-
ing kinematic and muscle activation data collected in vivo
as inputs. Current models of the glenohumeral joint have
been used to make muscle force predictions for other mo-
tions.28,53,76 In the future it would be interesting to conduct
an experiment to obtain in vivo data for estimating muscle
forces during external rotation as has been done for other
joints and other motions.

Input parameters are not, most likely, Gamma dis-
tributed. However, owing to small sample size for the input
parameters in particular, we found it necessary to assume
Gamma distributions for these parameters. Gamma distri-
butions result in generation of non-negative random vari-
ates, which is favorable since PCSA, agonist moment arms,
and normalized muscle force are all non-negative. Ideally,
in the future it is possible that a larger data set will allow
for an easing of this assumption allowing parameters to be
modeled non-parametrically. By utilizing a Gamma distri-
bution of 1000 samples more information is added to the
simulation concerning the input distribution than is actu-
ally known. In fact, when distribution sample size exceeds
sample size of the empirical data, degrees of freedom are
artificially inflated, and assumed distributions become less
realistic.

Another method for simulating relationships between
input parameters and their effect on model output is a boot-
strap model.24,60 Bootstrap models are attractive because
the system under consideration is modeled directly from
empirical data in a nonparametric fashion. During the model
development phase of this study a bootstrap model was con-
structed in which input parameters were sampled at random
with replacement from the original empirical data describ-
ing muscle PCSA’s, moment arms and normalized force
from length–tension relationships. In this manner covari-
ance was modeled directly since parameters were sampled
as vectors corresponding to each specimen from which data
was collected. Means and distributions of predicted torques
matched measured torque means and distributions for the
healthy normal case determined by the confidence level
approach described earlier. This result demonstrates strong
potential for multivariate probabilistic models.

More work is needed to determine how to utilize proba-
bilitistic models to analyze differences in populations. For
example, a random component exists to physical perfor-
mance of labor and athletic tasks. If different people per-
form the same task many times, task performance will differ
both within a subject, and between subjects. Additionally,
it is possible that combinations of outlying parameters with
low probabilities of occurrence within a population (short
moment arm, large PCSA) may lead to pathological condi-
tions such as rotator cuff tear. Furthermore, there is increas-
ing evidence that mechanics of force generation at the sar-
comere level is probabilistic,42 rather than deterministic as
previously thought. Yet, little is understood concerning how
the probabilistic nature of these properties might contribute
to pathologies such as rotator cuff tear. Additionally, more
work is needed to understand how models can explain the
links between the degree of randomness and the likelihood
of pathological condition.

In conclusion, in this study we incorporated the ef-
fects of population variability into a musculoskeletal model
of glenohumeral external rotation strength. Muscle forces
were predicted with the model. Forces for healthy normal
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subjects and two rotator cuff tear cases were compared.
Differences in variability of measured torques for the three
cases analyzed here are explained by differences in means
and distributions of muscle cross-sectional area. This study
furthers our understanding of effects of parameter variabil-
ity on variability in muscle force and shoulder external
rotation strength. The stochastic method accounts for dif-
ferences in musculoskeletal parameters across a population
and has potential for modeling other joint systems, and
for increasing our understanding of differences between
populations.
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