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Abstract. We present an iterative cutting plane method for minimizing staffing costs in a service system
subject to satisfying acceptable service level requirements over multiple time periods. We assume that the
service level cannot be easily computed, and instead is evaluated using simulation. The simulation uses the
method of common random numbers, so that the same sequence of random phenomena is observed when
evaluating different staffing plans. In other words, we solve a sample average approximation problem. We
establish convergence of the cutting plane method on a given sample average approximation. We also es-
tablish both convergence, and the rate of convergence, of the solutions to the sample average approximation
to solutions of the original problem as the sample size increases. The cutting plane method relies on the
service level functions being concave in the number of servers. We show how to verify this requirement as
our algorithm proceeds. A numerical example showcases the properties of our method, and sheds light on
when the concavity requirement can be expected to hold.
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1. Introduction

In this paper we present the theoretical properties of a cutting plane method for mini-
mizing staffing costs in a service system subject to satisfying acceptable service level
requirements over multiple time periods. This method was proposed by Henderson and
Mason (1998) and combines simulation and integer programming in an iterative cutting
plane algorithm. Simulation is a powerful method for analyzing complex systems, but
optimization with simulation can be difficult. Linear integer programming problems,
along with many other mathematical programming models, are well studied and many
algorithms have been developed for solving problems in this form, but a simplification
of the system is often required for modelling. Our iterative cutting-plane algorithm com-
bines simulation and linear (integer) programming to solve resource allocation problems
where the objective function, or constraints, or both, are evaluated via simulation. The
algorithm relies on the concavity of the problem constraints, but in our algorithm we
have a built-in robustness, so that nonconcavity can be detected.
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The method of combining simulation and optimization in this way has potential
applications in various service systems, such as call center staffing (which will be the
focus of this paper) and emergency vehicle dispatching (which we are currently investi-
gating). In fact, the method could potentially, with appropriate modifications, be utilized
in many other areas where simulation is an appropriate modelling tool.

The problem of determining optimal staffing levels in a call center (see, e.g.,
Thompson (1997)) is a motivating example for our work. The decision maker faces
the task of creating a collection of tours (work schedules) for the call center of low cost
that together ensure a satisfactory service level. A tour is comprised of several shifts
and has to observe several restrictions related to labor contracts, management policies,
etc. We divide the planning horizon (typically a day or a week) into small periods
(15–60 minutes) and focus on the service level in each period. We define the service
level in a given period as the fraction of calls received in that period answered within
a specified time limit. In this paper we focus on the problem of minimizing cost while
satisfying the service level and scheduling constraints.

The traditional method for solving this problem involves two steps. First, the re-
quired staffing level in each period is estimated, independently period by period, often
using i.e. queueing theory. Second, an integer program is solved to determine how many
workers should be assigned to each of the tours in order to “cover” the previously as-
signed staffing levels. Our method combines these two steps and allows for dependence
between periods. There are examples in the literature (Green, Kolesar, and Soares, 2001;
Ingolfsson, Haque, and Umnikov, 2002; Jennings et al., 1996) that show that significant
cost savings can be obtained by doing so, or that a staffing level obtained by assuming
independence does not meet performance criteria when there is, in fact, dependence be-
tween periods. Indeed, we present an example at the end of the paper showing that the
staffing level in one period can have a considerable effect on the service level in another
period. Green, Kolesar, and Soares (2001) and Jennings et al. (1996) suggest a relatively
simple method for determining the required staffing levels that accounts for such depen-
dence. Their method is based on infinite server queuing models, but requires that the
call center can be accurately modelled as a G(t)/G(t)/s(t) queuing system.

The cost function is usually relatively straightforward to calculate. We can calcu-
late the cost of each tour (salary costs, appeal to employees, etc.), and multiply by the
number of employees working each tour to get the overall cost. The service level, on the
other hand, can be very difficult to obtain. Queuing models can be used for simple prob-
lems, but simulation must be used to accurately model complex systems. The difficulty
with using simulation is the large number of possible solutions since it is impractical
to evaluate all of them. By using integer programming, we hope that we only need to
simulate a small portion of the solution set.

Simulation has been widely used to analyze the impact of different staffing lev-
els on service levels and commercial simulation packages, specially designed for call
centers, are available. Integer programming has also been used, in which case the staff
requirements in each period are usually needed as an input in the model (see Mehrotra,
Murphy, and Trick (2000)).
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We present a cutting plane method based on the one developed by Kelley, Jr.
(1960). The method solves a linear (integer) program to obtain the staffing levels, and
the solution is used as an input for a simulation to calculate the service level. If the
service level is unsatisfactory, we add a constraint to the linear program and go to the
next iteration.

Kelley’s cutting plane method applies to minimization problems where both the
objective function and feasible region (of the continuous relaxation of the integer prob-
lem) need to be convex. The costs in the call center problem are linear and we will
assume that the service level function is concave, so that (see equation (1)), the feasi-
ble region, relaxing the integer restriction, is convex. Since the service level function
is unknown beforehand, we need to incorporate a mechanism into the method to verify
that the concavity assumption holds. In section 5 we present a numerical method for
checking concavity of a function, when the function values and possibly gradients are
only known at a finite number of points.

Morito et al. (1999) use simulation in a cutting-plane algorithm to solve a logis-
tic system design problem at the Japanese Postal Service. Their problem is to decide
where to sort mail provided that some post offices have automatic sorting machines but
an increase in transportation cost and handling is expected when the sorting is more cen-
tralized. The algorithm proved to be effective for this particular problem and found an
optimal solution in only 3 iterations where the number of possible patterns (where to
sort mail for each office) was 230. Their discussion of the algorithm is ad hoc, and they
do not discuss its convergence properties.

Ingolfsson, Haque, and Umnikov (2002) present an algorithm for solving a call
center staffing problem that uses a genetic algorithm for the optimization component
and numerical solution of differential equations for evaluating the service level. Ingolf-
sson and Cabral (2002) have developed a cutting plane algorithm for this problem using
queuing models instead of simulation to calculate the service levels. The cuts are gen-
erated using a heuristic, based on approximating the service level in each period as a
function of the staffing level in that period, and may not be valid, although examples
suggest good performance.

Cutting plane methods have been successfully used to solve two stage stochastic
linear programs. In many applications the sample space becomes so large that one must
revert to sampling to get a solution (Birge and Louveaux, 1997; Infanger, 1994). The
general cutting plane algorithm for two stage stochastic programming is known as the
L-shaped method (van Slyke and Wets, 1969) and is based on Benders decomposition
(Benders, 1962). Stochastic decomposition (Higle and Sen, 1991) for solving the two
stage stochastic linear program starts with a small sample size, which is increased as the
algorithm progresses and gets closer to a good solution. Stochastic decomposition could
also be applied in our setting, but that is not within the scope of this paper.

The random nature of our problem and the absence of an algebraic form for the
service level function makes the optimization challenging. We use sampling to get an
estimate of the service level function, and optimize the sample average approximation.
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An important question is whether the solution to the sample average approximation con-
verges to a solution to the original problem, and if so, how fast.

We apply the strong law of large numbers to prove conditions for almost sure con-
vergence and apply a result due to Dai, Chen, and Birge (2000) to prove an exponential
rate of convergence of the optimal solutions as the sample size increases. Vogel (1994)
proved almost sure convergence in a similar setting, but we include proofs for reasons
listed in section 4.1. Shapiro and Homem-de-Mello (2000) established conditions for an
exponential rate of convergence of the probability that the solution to the sample aver-
age approximation is exactly the solution to the original problem in the case of a discrete
distribution and Vogel (1988) proved a polynomial rate of convergence in a similar set-
ting, but under weaker conditions than we require. The optimization of sample average
approximations has also been studied in the simulation context (Chen and Schmeiser,
2001; Healy and Schruben, 1991; Robinson, 1996; Rubenstein and Shapiro, 1993).

The main contribution of this paper is to demonstrate the potential of bringing
simulation and traditional optimization methods together. We establish the properties
of a new method for solving call center staffing problems. The method is carefully
developed because we believe that the same idea can be applied to resource allocation
problems other than staffing problems, as previously mentioned. In addition, we present
a numerical method for checking the concavity of a function when the function value
and possibly gradient is only known at a finite number of points.

The computing requirements of the algorithm presented here, as applied to
realistically-sized problems, are rather large. Indeed, it is often the case that the cov-
ering integer programs alluded to earlier (with predetermined staffing levels in each pe-
riod) are difficult to solve, so that iterating such a step with simulation appears to be a
rather formidable computational task. We view this work as a first step in the process of
integrating the steps of determining work requirements and covering the work require-
ments with tours. Subsequent work will focus on exploring methods for making the
approach computationally feasible. We have many ideas for how this could be achieved;
see section 7 for more comments on this issue.

The paper is organized as follows. We formulate the call center staffing problem
in section 2. We present the cutting plane algorithm and its convergence properties in
section 3. The convergence and the rate of convergence of the solutions of the sample
average approximation to solutions of the original problem are proved in section 4. The
numerical method for checking concavity is described in section 5 and an implementa-
tion of the overall method is described in section 6. Conclusions and considerations for
future research are given in section 7.

2. Call center staffing

In this section we formulate and discuss in more detail the call center staffing problem
of minimizing cost subject to service level constraints.
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2.1. Formulation and notation

The management of a call center needs some criteria to follow when they decide on a
set of staffing levels. It is not unusual in practice to determine the staffing levels from a
service level perspective. In an emergency call center, for example, it might be required
that 90% of received calls should be answered within 10 seconds.

We introduce terminology and notation before we formulate the problem. The
set of permissible tours (predefined work schedules over the planning horizon) can be
conveniently set up in a matrix (see Dantzig (1954)). More specifically we have

Aij =
{

1, if period i is included in tour j ,

0, otherwise.

From the above we see that a column in A represents a feasible tour and a row in A

represents a specific period. We let p be the total number of periods and m be the number
of feasible tours. If we let x ∈ R

m be a vector where the j th component represents the
number of employees that work tour j , then Ax = y ∈ R

p is a vector where the ith
component of y corresponds to the number of employees that are working in period i.
We let c be the cost vector, where cj is the cost per employee working tour j .

Next we define the service level constraints. We let l ∈ R
p be the vector whose ith

component is the minimum acceptable service level in period i, for example, 90%. Since,
for example, the arrival and service times of customers are not known but are random, the
service level in each period will be a random variable. Let ξ , a random vector, denote all
the random quantities in the problem and let ξ 1, . . . , ξ n denote independent realizations
of ξ . Let Ni(ξ) be the number of calls received in period i and let Si(y, ξ) be the number
of those calls answered within a pre-specified time limit, for example, 10 seconds, based
on the staffing level y. The fraction of customers receiving adequate service in period i

in the long run is then

lim
n→∞

∑n
d=1 S

i(y, ξ d)∑n
d=1 N

i(ξd)
= limn→∞ n−1

∑n
d=1 S

i(y, ξ d)

limn→∞ n−1
∑n

d=1 N
i(ξd)

.

If E[Ni(ξ)] < ∞ then the strong law of large numbers can be applied separately to
both the numerator and denominator of this expression, and then the desired long-
run ratio is E[Si(y, ξ)]/E[Ni(ξ)]. Thus, E[Si(y, ξ)]/E[Ni(ξ)]� li is a natural
representation of the service level constraint (excluding the pathological case
E[Ni(ξ)] = 0) in period i. If we define Gi(y, ξ) := Si(y, ξ) − liNi(ξ) then
we can conveniently write the service level constraint as E[Gi(y, ξ)] � 0. Define
gi(y) := E[Gi(y, ξ)] as the expected service level in period i as a function of the
server allocation vector y and let g : R

p → R
p be a function whose ith component

is gi .
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We are now ready to formulate the problem of minimizing staffing costs subject to
satisfying a minimum service level in each period. It is

min cTx

subject to Ax � y,

g(y) � 0,
x ∈ X,

x, y � 0 and integer,

(1)

where X is a compact set. The compactness of X can be easily justified in practice. It is,
for example, impossible to hire an infinite number of employees, and there are usually
budget constraints which impose an upper bound on x since c is generally positive. We
also define, for future reference,

Y := {y � 0 and integer: ∃ 0 � x ∈ X and integer with Ax � y}.
Note that Y is a finite set since X is compact and the entries in A are either 0 or 1.

The functions gi(y) are expected values, and the underlying model might be so
complex that an algebraic expression for g(y) can not be easily obtained. Therefore,
simulation could be the only viable method for estimating g(y). In the next subsection
we formulate (1) as an approximate problem, where the expected values are replaced by
sample averages.

2.2. Sample average approximation of the call center problem

In this paper we assume that the algebraic form of the service level function g(y)

is not available, and that its value is evaluated using simulation. Suppose we run
a simulation with sample size n, where we independently generate the realizations
{ξd}nd=1 from the distribution of ξ , to get an estimate of the expected values g(y). Let
ḡn(y) = (1/n)

∑n
d=1 G(y, ξd) be the resulting estimates and let ḡi

n(y) denote the ith
component of ḡn(y). We use this notation to formulate the sample average approxima-
tion

min cTx

subject to Ax � y,

ḡn(y) � 0,
x ∈ X,

x, y � 0 and integer.

(2)

The problem above is linear except for the service level function ḡn(y). We assume that
each of the component functions ḡi

n(y) are concave so that we can approximate them
with piecewise linear concave functions and solve the sample average approximation by
using cutting plane methods. In the next subsection we discuss the concavity assumption
in more detail.
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2.3. Concave service levels

Intuitively, we would expect that the service level increases if we increase the number of
employees in any given period. We also conjecture that the marginal increase in service
level decreases as we add more employees. If these speculations are true then gi(y) is
increasing and concave in each component of y for all i. We will make the stronger
assumption that gi(y) and ḡi

n(y) are increasing componentwise and jointly concave in y,
for all i. Our initial computational results suggest that this is a reasonable assumption,
at least within a region containing practical values of y (see section 6). Others have
also studied the convexity of performance measures of queuing systems. Akşin and
Harker (2001) show that the throughput of a call center is stochastically increasing and
directional concave in the sample path sense as a function of the allocation vector y in
a similar setting. Analysis of the steady state waiting time of customers in an M/M/s

queue shows that its expected value is a convex and decreasing function of the number
of servers s (Dyer and Proll, 1977), its expected value is convex and increasing as a
function of the arrival rate (Chen and Henderson, 2001) and its distribution function
evaluated at any fixed value, is concave and decreasing as a function of the arrival rate
(Chen and Henderson, 2001). See other references in Chen and Henderson (2001) for
further studies in this direction. Koole and van der Sluis (2003) developed a local search
algorithm for a call center staffing problem with a global service level constraint. When
the service level constraint satisfies a property called multimodularity their algorithm is
guaranteed to terminate with a global optimal solution. There are, however, examples
where the service level constraint, as defined in this paper, is not multimodular even for
nondecreasing and concave service level functions.

If the concavity assumption holds, then we can approximate the service level func-
tion with piecewise linear concave functions, which can be generated as described below.
The following definition is useful.

Definition 1 (Rockafellar, 1970, p. 308). Let yk ∈ R
p be given. If h : R

p → R is
a concave function and q(yk) ∈ R

p is such that

h(y) � h
(
yk

)+ q(yk)T
(
y − yk

) ∀y ∈ R
p (3)

then q(yk) is a subgradient of h at yk .

The term “supergradient” might be more appropriate since the hyperplane
{h(yk) + q(yk)T (y − yk)} lies above the function h, but we use “subgradient” to con-
form with the literature. A concave function has at least one subgradient at every point
(see theorem 3.5.2 in Bazaraa, Sherali, and Shetty (1993)). The notion of concavity and
subgradients is defined for functions of continuous variables, but we are dealing with
functions of integer variables. We say that such a function h is concave if no points of
the form (x, h(x)) ∈ R

p+1 (with x ∈ Z
p) lie in the interior of the convex hull of the

set {(y, h(y)): y ∈ Z
p} ⊆ R

p+1. We replace R
p with Z

p in definition 1 to define the
subgradient of a function with integer domain.
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Let qi(yk) and q̄i
n(y

k) be subgradients at yk of gi and ḡi
n, respectively. There are

many potential methods one might consider to obtain the subgradients. Finite differ-
ences using differences of length 1 appear reasonable since we are working with integer
variables. There are, however, examples where that fails to produce a subgradient, even
for a concave nondecreasing function. Still, we used finite differences in our numerical
study and converged to an optimal solution of the sample average approximation. Gra-
dients might also be obtained using infinitesimal perturbation analysis (IPA) (see, e.g.,
Glasserman (1991)). Before using IPA we would have to extend the service level func-
tion to a differentiable function defined over a continuous domain, since IPA is applied
in settings where the underlying function is differentiable.

The subgradients are used to approximate the service level constraints. Let yk be
a given server allocation vector, and suppose that ḡi

n(y
k) and q̄i

n(y
k) are obtained via

simulation. If our assumptions about concavity hold then by definition 1 we must have
ḡi
n(y) � ḡi

n(y
k) + q̄i

n(y
k)T (y − yk) for all allocation vectors y, and all i. We want y to

satisfy ḡn(y) � 0 and therefore it is necessary that

0 � ḡi
n

(
yk

)+ q̄i
n

(
yk

)T (
y − yk

)
, (4)

for all i.
In the next section we show how to use the subgradients in a cutting plane algorithm

to solve the sample average approximation (2).

3. The cutting plane method

In this section we present a cutting plane algorithm for solving the sample average ap-
proximation (2). We select a fixed sample size at the beginning of the algorithm and use
the same sample (common random numbers) in each iteration. This minimizes the effect
of sampling in that we only work with one function ḡn instead of getting a new ḡn func-
tion in each iteration, which could, for example, invalidate the concavity assumption.

The typical cutting plane algorithm for (2) works as follows. We relax the nonlinear
service level constraints to convert the call center staffing problem into a linear integer
problem. We solve the linear integer problem and run a simulation with the staffing
levels obtained from the solution. If the service levels meet the service level constraints
as approximated by the sample average then we stop with an optimal solution to (2). If a
service level constraint is violated then we add a linear constraint to the relaxed problem
that eliminates the current solution but does not eliminate any feasible solutions to the
sample average approximation.

Our algorithm fits the framework of Kelley’s cutting plane method (Kelley, Jr.,
1960). It differs from the traditional description of the algorithm only in that we use a
stimulation to generate the cuts and evaluate the function values instead of having an
algebraic form for the function and using analytically determined gradients to generate
the cuts. Nevertheless, we include a proof of convergence of our cutting plane method,
since its statement is specific to our algorithm and it makes the results clearer.
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The relaxed problem for (2) that we solve in each iteration is

min cTx

subject to Ax � y,

Dky � dk,

x ∈ X,

x, y � 0 and integer.

(5)

We replaced the constraints ḡn(y) � 0 with linear constraints Dky � dk. The sub-
script k indicates the iteration number in the cutting plane algorithm. The constraint set
Dky � dk is initially empty but we add more constraints to it as the algorithm evolves.

At iteration k we solve an instance of (5) to obtain the solution pair (xk, yk). For
the server allocation vector yk we run a simulation to calculate ḡn(y

k). If we find that the
service level is unacceptable, i.e., if ḡi

n(y
k) < 0 for some i, then we add the constraint (4)

to the set Dky � dk, i.e., we add the component −ḡi
n(y

k)+ q̄i
n(y

k)T yk to dk and the row
vector q̄i

n(y
k)T to Dk. We add a constraint for all periods i where the service level is un-

acceptable. Otherwise, if the service level is acceptable in all periods then we terminate
the algorithm with an optimal solution to the sample average approximation (2).

Algorithm 1.

Initialization. Generate n independent realizations from the distribution of ξ . Let
k← 1, D1 and d1 be empty.

Step 1. Solve (5) and let (xk, yk) be an optimal solution.
Step 1a. Stop with an error if (5) was infeasible.
Step 2. Run a simulation to obtain ḡn(y

k).
Step 2a. If ḡn(yk) � 0 then stop. Return (xk, yk) as an optimal solution.
Step 3. Compute, by simulation, q̄i

n(y
k) for all i for which ḡin(y

k) < 0, and add the
cuts (4) to Dk and dk.

Step 4. Let dk+1 ← dk and Dk+1 ← Dk. Let k← k + 1. Go to step 1.

It is usually not necessary to store the n independent realizations referred to in the
initialization phase. Instead, we only need to store a few numbers, called seeds, and reset
the random number generators (streams) in the simulation with the seeds at the beginning
of each iteration. See Law and Kelton (2000) for more details on this approach to using
common random numbers. To speed up the algorithm it is possible to start with D1 and
d1 nonempty. Ingolfsson and Cabral (2002) developed, for example, lower bounds on y.
They point out that if there is an infinite number of servers in all periods except period i

and if ỹi is the minimum number of employees required in period i in this setting so that
the service level in period i is acceptable, then yi � ỹi for all y satisfying g(y) � 0. We
could select D1 and d1 to reflect such lower bounds.

If the algorithm terminates in step 1a then the sample average approximation is
infeasible. That could be due to either a sampling error, i.e., the sample average approx-
imation does not have any feasible points even though the original problem is feasible,
or that the original problem is infeasible. As a remedy, either the sample size should be
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increased, or the original problem should be reformulated, e.g., the acceptable service
level should be lowered, or more employees should be allocated (expand X).

In the algorithm above we solve an integer linear program and add constraints to it
in each iteration until we terminate. The integer linear problem always has a larger fea-
sible region than the sample average approximation (2), so cT xk � cT xk+1 � cT x∗n ,
where (x∗n, y∗n) is an optimal solution for (2). An important question is whether
limk→∞ cT xk = cT x∗n . The following theorem answers this question in the positive.

Theorem 1.
1. The algorithm terminates in a finite number of iterations.
2. Suppose that each component of ḡn is concave in y. Then the algorithm terminates

with an optimal solution to (2) if and only if (2) has a feasible solution.

Proof. 1. Y is a finite set and it is therefore sufficient to show that no point in Y

is visited more than once. Suppose that the algorithm did not terminate after visiting
point yt . That means that ḡn(yt ) �� 0 and we added one or more cuts of the form

0 � ḡi
n

(
yt

)+ q̄ i
n

(
yt

)T (
y − yt

)
, i ∈ {1, . . . , p}

to (5). Suppose that yk = yt , for some k > t . Since yk is the solution for (5) at step k it
must satisfy the cuts added at iteration t , i.e., 0 � ḡi

n(y
t )+ q̄i

n(y
t )T (yk − yt ) = ḡi

n(y
t ),

which is a contradiction because this constraint was added since ḡi
n(y

t ) < 0. Hence,
we visit a new point in the set Y in each iteration and thus the algorithm terminates in a
finite number of iterations.

2. Suppose first that (2) does not have a feasible solution. Then no y ∈ Y satisfies
ḡn(y) � 0. The algorithm only visits points in Y , so the optimality condition in step 2a
is never satisfied. Since the algorithm terminates in a finite number of iterations it must
terminate with the relaxed problem being infeasible. Suppose now that (2) is feasible.
The problem (5) solved in step 1 is a relaxed version of (2) since ḡn is concave, so (5)
is feasible in every iteration. Therefore, the algorithm terminates in step 2a with (xk, yk)

as the solution. But ḡn(yk) � 0 by the termination criteria, so it is an optimal solution
to (2). �

The theorem above states that we terminate with an optimal solution to the sample
average approximation so long as one exists. In the next section, we discuss the conver-
gence of that solution to an optimal solution to the original problem (1) as the sample
size n increases.

4. Convergence of solutions of the sample average approximation to solutions of
the original problem

We have established that the cutting plane algorithm will identify an optimal solution of
the problem (2). The problem (2) was formed by approximating the expected service
level constraints of problem (1), and we will next investigate if solutions of the sample
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average approximation converge to a solution of the original problem. We show, by
using the strong law of large numbers (SLLN), that the set of optimal solutions of the
sample average approximation is a subset of the set of optimal solutions for the original
problem w.p. 1 as the sample size gets large. Furthermore, we show that the probability
of this event approaches 1 exponentially fast when we increase the sample size. These
results require the existence of at least one optimal solution for the original problem
to satisfy the expected service level constraints with strict inequality, but this regularity
condition can be easily justified for practical purposes as will be discussed later.

4.1. Almost sure convergence of optimal solutions of the sample average
approximation

The results in this section may be established by specializing the results in Vogel (1994).
We choose to provide direct proofs in this section for 3 main reasons:

1. The additional structure in our setting allows a clearer statement and proof of the
results.

2. The proofs add important insight into why solving the sample average approximation
is a sensible approach.

3. The proofs serve as an excellent foundation to develop an understanding of the “rate
of convergence” results that follow in section 4.2.

The effect of the sampling on the optimization problem is to change the shape of
the feasible region. It directly affects the service level constraint, so we will rewrite the
problems (1) and (2) to make the effect more transparent and to make the proofs easier
to read. First define

f (y) := min
{x� 0 and integer: x∈X, Ax�y}

cT x,

where f (y) = +∞ if the set {x � 0 and integer: x ∈ X, Ax � y} is empty. Now
we can rewrite problem (1) as

min f (y)

subject to y ∈ Y,

g(y) � 0
(6)

and its sample average approximation, which is equivalent to (2), as

min f (y)

subject to y ∈ Y ,

ḡn(y) � 0.
(7)

We are interested in the properties of the optimal solutions of (7) as the sample size
n gets large. It turns out, by an application of the SLLN, that any optimal solution of
(6) that satisfies g(y) > 0, i.e., gi(y) > 0 for all i, is an optimal solution of (7) with
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probability 1 (w.p. 1) as n goes to infinity. We make a few more definitions before we
prove this. Let

ḡ∞(y) := lim
n→∞ ḡn(y),

F ∗ := the optimal value of (6)

and define the sets

Y ∗ := the set of optimal solutions to (6),

Y ∗0 :=
{
y ∈ Y ∗: g(y) > 0

}
,

Y1 :=
{
y ∈ Y : f (y) � F ∗, g(y) �� 0

}
,

Y ∗n := the set of optimal solutions to (7).

Note that Y1 is the set of solutions to (6) that have the same or lower cost than an optimal
solution, and satisfy all constraints except the service level constraints. We are concerned
with solutions in this set since they could be feasible (optimal) to the sample average
approximation (7) if the difference between the sample average, ḡn, and g is sufficiently
large. We show that when Y ∗0 is not empty, Y ∗0 ⊆ Y ∗n ⊆ Y ∗ for all n large enough
w.p. 1. We say that property E(n) holds for all n large enough w.p. 1 if and only if
P [∃N < ∞: E(n) holds ∀n � N] = 1. (Here N should be viewed as a random
variable.) Sometimes such statements are communicated by saying that E(n) holds
eventually.

We start with two lemmas. The first one establishes properties of ḡ∞(y) by repeat-
edly applying the SLLN. The second shows that solutions to (6) satisfying g(y) > 0,
and infeasible solutions, will be feasible and infeasible, respectively, w.p. 1 for problem
(7) when n gets large. The only condition g(y) has to satisfy is that it has to be finite for
all y ∈ Y . That assumption is easily justified by noting that the absolute value of each
component of g(y) is bounded by the expected number of arrivals in that period, which
would invariably be finite in practice.

Even though we restrict attention to optimal solutions, the overall approach would
not change if we wanted to prove that all “interior” feasible solutions for (6) are eventu-
ally feasible for (7) w.p. 1 and that all infeasible solutions for (6) are eventually infeasible
for (7). This may lend some intuition, since it will then almost invariably be the case that
the feasible region of the sample average approximation converges to the feasible region
of the original problem and therefore the set of optimal solutions converges. Define

‖g‖ = max
y∈Y

∥∥g(y)∥∥∞ = max
y∈Y

max
i=1,...,p

∣∣gi(y)
∣∣.

Lemma 2.

1. Suppose that ‖g(y)‖∞ < ∞ for some fixed y ∈ Z
p, y � 0. Then ḡ∞(y) = g(y)

w.p. 1.

2. Suppose that ‖g‖ <∞ and & ⊆ Y . Then ḡ∞(y) = g(y) ∀y ∈ & w.p. 1.
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Proof. 1. The SLLN (see theorem 6.1 in Billingsley (1995)) gives ḡi∞(y) = gi(y)

w.p. 1. So

P
[
ḡ∞(y) = g(y)

]
� 1−

p∑
i=1

P
[
ḡi∞(y) �= gi(y)

] = 1.

2. Note that

P
[
ḡ∞(y) = g(y) ∀y ∈ &

]
� 1−

∑
y∈&

P
[
ḡ∞(y) �= g(y)

] = 1

since & is finite. �

Lemma 3. Suppose that ‖g‖ <∞. Then

1. ḡn(y) � 0 ∀y ∈ Y ∗0 for all n large enough w.p. 1.
2. All y ∈ Y1 are infeasible for the sample average approximation (7) for all n large

enough w.p. 1.

Proof. 1. The result is trivial if Y ∗0 is empty, so suppose it is not. Let

ε = min
y∈Y ∗0

min
i∈{1,...,p}

{gi(y)}.
Then ε > 0 by the definition of Y ∗0 . Let

N0 = inf
{
n0: max

y∈Y ∗0
‖ḡn(y)− g(y)‖∞ < ε ∀n � n0

}
,

with the infimum defined as +∞ if the set is empty, and then ḡn � 0 ∀y ∈ Y ∗0 ∀n � N0.
Now, the set Y ∗0 is a subset of Y , so limn→∞ ḡn(y) = g(y) ∀y ∈ Y ∗0 w.p. 1 by part 2 of
lemma 2. Therefore, N0 <∞ w.p. 1.

2. The result is trivial if Y1 is empty, so suppose it is not. Let

ε = min
y∈Y1

max
i∈{1,...,p}

{−gi(y)
}
.

Then ε > 0, since gi(y)< 0, for at least one i ∈ {1, . . . , p} ∀y ∈ Y1. Let

N1 = inf
{
n1:

∥∥g(y)− ḡn(y)
∥∥∞ < ε ∀n � n1

}
and then all y ∈ Y1 are infeasible for (7) for all n � N1. Now, the set Y1 is a subset of Y ,
so limn→∞ ḡn(y) = g(y) ∀y ∈ Y1 w.p. 1 by part 2 of lemma 2. Therefore, N1 <∞
w.p. 1. �

Lemma 3 shows that all the “interior” optimal solutions for the original problem
are eventually feasible for the sample average approximation and remain so as the sam-
ple size increases. Furthermore, all solutions that satisfy the constraints that are common
for both problems, but not the service level constraints, and have at most the same cost
as an optimal solution, eventually become infeasible for the sample average approxi-
mation. Hence, we have the important result that for a large enough sample size an
optimal solution for the sample average approximation is indeed optimal for the original
problem.
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Theorem 4. Suppose that ‖g‖ < ∞. Then Y ∗0 ⊆ Y ∗n for all n large enough w.p. 1.
Furthermore, if Y ∗0 is nonempty then Y ∗0 ⊆ Y ∗n ⊆ Y ∗ for all n large enough w.p. 1.

Proof. The first inclusion holds trivially if Y ∗0 is empty, so assume that Y ∗0 is not
empty. On each sample path let N = sup{N0, N1}, where N0 and N1 are the same
as in lemma 3. When n � N we know that all y ∈ Y ∗0 are feasible for (7) and that all
y ∈ Y1 are infeasible for (7). Hence, all y ∈ Y ∗0 are optimal for (7) and no y /∈ Y ∗
is optimal for (7) whenever n � N . Thus, Y ∗0 ⊆ Y ∗n ⊆ Y ∗ for all n � N . Finally,
P [N <∞] = P [N0 <∞, N1 <∞] � P [N0 <∞]+ P [N1 <∞]− 1 = 1. �

Corollary 5. Suppose that ‖g‖ <∞ and that (1) has a unique optimal solution, y∗, such
that g(y∗) > 0. Then y∗ is the unique optimal solution for (2) for all n large enough
w.p. 1.

Proof. In this case Y ∗0 = Y ∗ = {y∗} and the result follows from the previous theo-
rem. �

The conclusion of theorem 4 relies on existence of an “interior” optimal solution
for the original problem. A simple example illustrates how the conclusion can fail if
this requirement is not satisfied. Let ξ be a uniform random variable on [−0.5, 0.5] and
consider the following problem:

min y

subject to y �
∣∣E[ξ ]∣∣,

y � 0 and integer.

Then y∗ = 0 for this problem since E[ξ ] = 0. We form the sample average approxima-
tion by replacing E[ξ ] with ξ̄n, the sample average of n independent realizations of ξ .
Then 0.5 > |ξ̄n| > 0 w.p. 1 for all n > 0 and thus we get that y∗n = 1 w.p. 1.

We mentioned earlier that the existence of an “interior” optimal solution is merely
a regularity condition. In reality it is basically impossible to satisfy the service level con-
straints in any period exactly, since the feasible region is discrete. Even if this occurred,
we could subtract an arbitrarily small positive number, say ε, from the right-hand side of
each service level constraint and solve the resulting ε-perturbed problem. Then all solu-
tions with gi(y) = 0 for some i satisfy gi(y) > −ε and it is sufficient for the problem
to have an optimal solution (not necessarily satisfying g(y) > 0) for theorem 4 to hold.
This rationale also applies to the next subsection where we prove an exponential rate of
convergence as the sample size increases.

4.2. Exponential rate of convergence of optimal solutions of the sampled problems

In the previous subsection, we showed that we can expect to get an optimal solution for
the original problem (1) by solving the sample average approximation (2) if we choose
a large sample size. In this section we show that the probability of getting an optimal
solution this way approaches 1 exponentially fast as we increase the sample size. We use
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large deviations theory and a result due to Dai, Chen, and Birge (2000) to prove our state-
ment. Vogel (1988) shows, under weaker conditions, that the feasible region of a sample
average approximation for a chance constraint problem approaches the true feasible re-
gion at a polynomial rate and conjectures, without giving a proof, that an exponential
rate of convergence is attainable under similar conditions to those we impose.

The following theorem is an intermediate result from theorem 3.1 in Dai, Chen,
and Birge (2000).

Theorem 6. Let H : R
p × Z → R and assume that there exist γ > 0, θ0 > 0 and

η : Z→ R such that ∣∣H(y, ξ)
∣∣ � γ η(ξ), E

[
eθη(ξ)

]
<∞,

for all y ∈ R
p and for all 0 � θ � θ0, where ξ is an integer valued random variable.

Then for any δ > 0, there are a > 0, b > 0, such that for any y ∈ R
p

P
[∣∣h(y)− h̄n(y)

∣∣ � δ
]

� ae−bn,

for all n > 0, where h(y) = E[H(y, ξ)], and h̄n(y) is a sample mean of n independent
and identically distributed realizations of H(y, ξ).

In our setting take H(y, ξ) = Gi(y, ξ) and note that |Gi(y, ξ)| � Ni(ξ), where Ni

is the number of calls received in period i. If the arrival process is, for example, a (non-
homogeneous or homogeneous) Poisson process, which is commonly used to model
incoming calls at a call center, then Ni satisfies the condition of theorem 6 since it is a
Poisson random variable, which has a finite moment generating function.

Before we prove the exponential rate we prove a lemma that shows that for any n,
Y ∗0 ⊆ Y ∗n ⊆ Y ∗, precisely when all the solutions in Y ∗0 are feasible for the sample average
approximation, and all infeasible solutions for (6) that are equally good or better, i.e.,
are in the set Y1, are also infeasible for (7).

Lemma 7. Let n > 0 be an arbitrary integer. The properties

1. ḡn(y) � 0 ∀y ∈ Y ∗0 , and

2. ḡn(y) �� 0 ∀y ∈ Y1

hold if and only if Y ∗0 ⊆ Y ∗n ⊆ Y ∗.

Proof. Suppose properties 1 and 2 hold. Then by property 1 all y ∈ Y ∗0 are feasible
for (7) and the optimal value of (7) is at most F ∗. By property 2 there are no solutions
with a lower objective that are feasible for (7), so Y ∗0 ⊆ Y ∗n . By property 2, no solutions
outside Y ∗ with objective value equal to F ∗ are feasible for (7). Hence, Y ∗0 ⊆ Y ∗n ⊆ Y ∗.

Suppose Y ∗0 ⊆ Y ∗n ⊆ Y ∗. Then F ∗ is the optimal value for (7). Now, since all
y ∈ Y ∗0 are optimal for (7) they are also feasible for (7) and property 1 holds. All y ∈ Y1

are infeasible for (7) since Y ∗n ⊆ Y ∗ and therefore property 2 holds. �
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Theorem 8. Suppose Gi(y, ξ) satisfies the assumptions of theorem 6 for all i ∈
{1, . . . , p} and that Y ∗0 is nonempty. Then there exist α > 0, β > 0 such that

P
[
Y ∗0 ⊆ Y ∗n ⊆ Y ∗

]
� 1− αe−βn.

Proof. Define

δ1 :=min
y∈Y ∗0

min
i∈{1,...,p}

{
gi(y)

}
,

i(y) := arg max
i∈{1,...,p}

{−gi(y)
}
,

δ2 :=min
y∈Y1

{−gi(y)(y)
}
, and

δ :=min{δ1, δ2}.
Here δ1 > 0 is the minimal amount of slack in the constraints “g(y) � 0” for any
solution y ∈ Y ∗0 . Similarly δ2 > 0 is the minimal violation in the constraints “g(y) � 0”
induced by any solution y ∈ Y1 . Thus,

P
[
Y ∗0 ⊆ Y ∗n ⊆ Y ∗

]
= P

[
ḡn(y) � 0 ∀y ∈ Y ∗0 , ḡn(y) �� 0 ∀y ∈ Y1

]
(8)

= 1− P
[
ḡn(y) �� 0 for some y ∈Y ∗0 or ḡn(y)� 0 for some y ∈Y1

]

� 1−
∑
y∈Y ∗0

p∑
i=1

P
[
ḡi
n(y) < 0

]−∑
y∈Y1

P
[
ḡn(y) � 0

]
(9)

� 1−
∑
y∈Y ∗0

p∑
i=1

P
[∣∣ḡi

n(y)− gi(y)
∣∣ � δ

]

−
∑
y∈Y1

P
[∣∣ḡi(y)

n (y)− gi(y)(y)
∣∣ � δ

]
(10)

� 1−
∑
y∈Y ∗0

p∑
i=1

aie
−bin −

∑
y∈Y1

ai(y)e
−bi(y)n (11)

� 1− αe−βn.

Here

α = |Y ∗0 |
p∑

i=1

ai +
∑
y∈Y1

ai(y) and β = min
i∈{1,...,p}

bi,

where |Y ∗0 | is the cardinality of the set Y ∗0 . Equation (8) follows by lemma 7. Equation (9)
is Boole’s inequality. Equation (10) follows since P [ḡn(y) � 0] � P [ḡi(y)

n (y) � 0]
and gi(y) � δ1 � δ for y ∈ Y ∗0 and gi(y)(y) � δ2 � δ for y ∈ Y1. Equation (11) follows
from theorem 6. �
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The case where Y ∗0 is empty but Y ∗ is not would almost certainly never arise in
practice. But in such a case one can solve an ε-perturbation of (2) as described at the
end of section 4.1, and the results of theorem 8 hold for 0 < ε < δ.

5. Numerically checking the concavity of a function

The success of the cutting plane algorithm relies on concavity of each component of
the service level function ḡn. If a component of ḡn is not concave, then the algorithm
may “cut off” a portion of the feasible set and terminate with a nonoptimal solution.
In each iteration of the algorithm we obtain new information about ḡn. To improve the
robustness of the algorithm, we would like to ensure that the information we receive is
consistent with the notion that each component of ḡn is concave.

There are 2 cases to consider. The first is where the vectors q̄ i
n(y) as returned by

the simulation are guaranteed to be subgradients of ḡi
n if ḡi

n is concave. For example,
this would occur if the vectors were exact gradients of the function ḡi

n at y (assuming
that it had a differentiable extension to R

p from Z
p). In this case there is an easy test

for nonconcavity, as we will see. The second case, that appears more likely to occur in
practice, is where the vectors q̄ i

n(y) are obtained using some heuristic, and are therefore
not guaranteed to be subgradients, even if ḡin is indeed concave. In this case, we may
decide to disregard some of the potentially-unreliable “subgradient” information and
focus only on the function values themselves. (This setting may also be useful if one does
not have “subgradient” information at all points, as arises using the finite-differencing
heuristic mentioned earlier. When evaluating the “subgradient” at y, we also compute the
function value, but not gradient information, at points of the form y + ei where ei is the
usual ith basis vector.) If the function values themselves are consistent with the notion
that the function is concave, then we may view our heuristically-derived “subgradients”
with some suspicion, and even drop some of them from the optimization. An alternative
would be to attempt to restrict the feasible region to a region where the functions are
concave. We view the analysis of the cutting plane algorithm under these conditions as
beyond the scope of this paper, partly because it is then possible that we then need to
deal with the usual difficulties of nonconvex optimization. If the function values alone
suggest nonconcavity, then the algorithm results should be viewed with some caution.
Indeed, values reported as optimal by the algorithm could, in this case, be nonoptimal.
The ability to detect when the key assumption of the cutting plane algorithm may not
apply is, we believe, a strength of our approach.

Of course, one may either implement a check for nonconcavity either inline on
each iteration of the cutting plane algorithm, or after the algorithm halts, or not at all.
The choice depends on how conservative one wishes to be, and is therefore application
dependent, and so we do not enter into a discussion of which approach to take here.

To simplify the presentation, let us consider the concavity of a real-valued
function f : R

p → R instead of ḡi
n. Hopefully no confusion will arise since the

previously-defined function f plays no role in this section. We assume that we are
given a set of points y1, y2, . . . , yk ∈ R

p and their corresponding function values
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f (y1), f (y2), . . . , f (yk). The tests below allow one to conclude that either f is non-
concave, or that there exists a concave function that matches the given function values.
Of course, the tests cannot conclude that f is concave unless they examine all points
in its domain, so that the conclusions that these tests reach are the best possible in that
sense.

5.1. Concavity check with function values and “subgradients”

Suppose that we know the vectors q(y1), q(y2), . . . , q(yk) in addition to the set of points
and their function values. Here q(yv) should have the property that if f is concave,
then q(yv) is a subgradient at yv (v = 1, . . . , k). If they are in fact subgradients then
they need to satisfy (3), i.e., all k points must lie below the k hyperplanes defined by
the q(yv)’s and the corresponding function values. This means that for each point yv ,
v ∈ {1, . . . , k}, we must check that

f
(
yw

)
� f

(
yv

)+ q
(
yv

)T (
yw − yv

) ∀w ∈ {1, . . . , k}. (12)

If this inequality is violated by some v and w, then we conclude that f is not concave
in y. Otherwise, the known values of f do not contradict the concavity assumption and

h(y) := inf
v∈{1,...,k}

f (y)+ q
(
yv

)T (
y − yv

)

is a concave function (see theorem 5.5 in Rockafellar (1970)), such that h(yw) = f (yw)

∀w ∈ {1, . . . , k}. In other words if (12) holds ∀v ∈ {1, . . . , k} then a concave func-
tion exists that agrees with the observed function values and “subgradients” q(yv),
v = 1, . . . , k.

When this test is implemented in the framework of algorithm 1, where in each
iteration k we obtain yk+1, ḡi

n(y
k+1) and q̄ i

n(y
k+1), we need only check that (for each

period i) the new point lies below all the previously defined hyperplanes and that all
previous points lie below the hyperplane defined by the new “subgradient.”

5.2. Concavity check with function values only

Now consider the case when only f is known at a finite number of points.
We want to know whether or not there is a concave function, say h, which passes

through f at all the given points. If such a function does not exist then we conclude that
f is not concave. (This problem appeared in Murty (1988, p. 539).)

We present a method where we solve a linear program (LP) and draw our con-
clusions based on the results of the LP. The idea behind this method is that if a one-
dimensional function is concave then it is possible to set a ruler above each point and
rotate it until the function lies completely below the ruler. This can also be done when
dealing with functions of higher dimensions, and then the ruler takes the form of a plane
(p = 2) or a hyperplane (p > 2).

The LP changes the given function values so that a supporting hyperplane for the
convex hull of the points can be fitted through each point. The objective of this LP is to
minimize the change in the function values that needs to be made to accomplish this goal.
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If the changes are measured in the L1- or L∞-norm then the objective function is linear.
The LP also gives an idea of how far, in some sense, the function is from being concave
if a concave function cannot be fitted through the given points. If a concave function can
be fitted then the LP will return such a function, namely the pointwise minimum of the
hyperplanes computed by the LP.

It is most straightforward to use the L1-norm to measure the changes in the function
values. Then the LP can be formulated as follows:

min
k∑

v=1

|bv|
subject to

a0v +
(
av

)T
yv = f

(
yv

)+ bv ∀v ∈ {1, . . . , k},
a0v +

(
av

)T
yw � f

(
yw

)+ bw ∀v ∈ {1, . . . , k} ∀w ∈ {1, . . . , k}, w �= v.

(13)

To linearize the objective function we adopt the standard trick of writing bv = b+v − b−v
and replace |bv| with b+v +b−v , where b+v and b−v are nonnegative. The decision variables
are:

a0v ∈ R, v ∈ {1, . . . , k}: intercepts of the hyperplanes,

av ∈ R
p, v ∈ {1, . . . , k}: slopes of the hyperplanes and

b+v , b−v ∈ R, v ∈ {1, . . . , k}: change in the function values.

The number of variables in this LP is k(p + 1) + 2k = k(p + 3) and the number
of constraints is k + k(k − 1) = k2. We could split the LP up into k separate linear
programs if that would speed up the computations, as might occur if we could run them
on multiple processors in parallel, or if the LP solver was unable to detect the separable
structure in this problem and exploit it. Here, the vth separate linear program tries to fit
a hyperplane through the point (yv, f (yv)) that lies above all other points.

The LP is always feasible, since a feasible solution is given by av = 0, a0v = 0 and
bv = −f (yv) for all v ∈ {1, . . . , k}. It is also bounded below by 0, since the objective
function is a sum of absolute values. Therefore, this problem has a finite minimum. If
the minimum value is 0, then the function defined by

h(y) := inf
v=1,...,k

a0v +
(
av

)T
y

is concave and f (yv) = h(yv) for all v ∈ {1, . . ., k}. On the other hand, if f is in-
deed concave, then there exists a subgradient at every point of f (see theorem 3.2.5 in
Bazaraa, Sherali, and Shetty (1993)) and hence the constraints of the LP can be satisfied
with bv = 0 for all v ∈ {1, . . . , k}. We have proved the following result.

Theorem 9. Consider the LP (13).

1. If the optimal objective value of the LP is 0 then there exists a concave function h(y)

such that h(yv) = f (yv) for all v ∈ {1, . . . , k}.
2. If f is concave then the optimal objective value of the LP is 0.
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So we see that a necessary condition for f to be concave is that the optimal objec-
tive value of the LP (13) is zero. Thus we have the following corollary.

Corollary 10. If the optimal objective value of the LP (13) is positive, then f is not
concave.

Note that the hyperplanes obtained from the LP are generally not subgradients
of f , so we cannot use them in algorithm 1 as such. Hence, we have to solve this LP
after step 2 in each iteration, or as a check after the algorithm terminates. Given the
computational demands of the cutting plane algorithm, repeatedly solving this LP in
each iteration does not represent a significant increase in computational effort.

6. Computational study

In this section we present a small numerical example that showcases the properties of
our method. The example is far from being a realistic representation of a call center, but
captures many issues in setting call center staffing levels. We will study 3 aspects of the
problem in the context of the example:

1. Convergence of the cutting plane algorithm and the quality of the resulting solution.

2. Dependence of the service level in one period on staffing levels in other periods.
This is of particular practical interest since traditional methods assume independence
between periods.

3. Concavity of ḡn(y).

Our implementation creates the integer programs (5) in AMPL and uses the
CPLEX solver to solve them in step 1 of the algorithm, and a simulation model built
in ProModel to perform steps 2 and 3. We used Microsoft Excel to pass data between
the simulation and optimization components and to run the iterations of the algorithm.
The implementation was exactly as described in algorithm 1 except for the initialization,
where we started with y1 at the lower bounds described in section 3 instead of starting
with D1 and d1 empty.

6.1. Example

We consider an M(t)/M/s(t) queue with p = 5 periods of equal length of 30 minutes.
We let the service rate be µ = 4 customers/hour. The arrival process is a nonhomoge-
neous Poisson process with the arrival rate a function of the time t in minutes equal to
λ(t) = λ(1 − |t/150 − 0.65|), i.e., the arrival rate is relatively low at the beginning of
the first period, then increases linearly at rate λ until it peaks partway through the fourth
period and decreases at rate λ after that. We set λ = 120 customers/hour, which makes
the average arrival rate over the 5 periods equal 87.3 customers/hour.
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Table 1
The iterates of the algorithm and the resulting service level function values and their 95% confidence inter-

vals (CI). f (yk) is the objective value at yk .

ḡ100(y
k)± 95% CI half width

k yk (% of calls received that are answered in less than 90 sec.) f (yk)

1 11 19 27 30 29 0.4± 1.0 −1.1 ± 2.2 −1.8± 3.1 −3.5± 3.2 −2.1± 2.3 125.0
(81.5%) (77.2%) (76.6%) (73.8%) (75.5%)

2 11 21 27 33 29 0.5± 0.9 3.4± 1.5 0.2± 2.6 4.1± 2.2 −0.3± 2.7 127.5
(81.9%) (88.5%) (80.5%) (87.4%) (79.4%)

3 11 21 27 34 29 0.5± 0.9 3.4± 1.5 0.4± 2.6 5.8± 1.8 0.0± 2.6 128.0
(81.9%) (88.5%) (80.7%) (90.4%) (80.0%)

The goal is to answer 80% of received calls in each period in less than 90 seconds.
The customers form a single queue and are served on a first come first serve basis. If
a server is still in service at the end of a period it finishes that service before becoming
unavailable. For example, if there are 8 busy servers at the end of period 3 and period 4
only has 6 servers then the 8 servers will continue to serve the customers already in
service, but the next customer in the queue will not get service until 3 customers have
finished service.

There are 6 permissible tours, including 4 tours that cover 2 adjacent periods, i.e.,
periods 1 and 2, 2 and 3, 3 and 4, and finally 4 and 5. The remaining 2 tours cover only
one period, namely the first and the last. The cost of the tours covering 2 periods is $2
and the single period tours cost $1.50.

6.2. Results

We selected a sample size of n = 100 for running the algorithm. The lower bounds on
y are depicted in the row k = 1 in table 1. Note that the staffing levels at the lower
bounds result in an unacceptable level of service and thus a method which would treat
the periods independently, would give an infeasible solution, since the service level is
as low as 73.8% in period 4. The algorithm terminates after only 3 iterations with an
optimal solution to the sample average approximation. To verify that this is indeed an
optimal solution we ran a simulation for all staffing levels that have lower costs than
the optimal solution and satisfy the initial lower bounds. None of these staffing levels
satisfied ḡ100(y) � 0, so the solution returned by the algorithm is the optimal solution
for the sample average approximation. By including the 95% confidence interval we get
information about the quality of the solution as a solution of the original problem. In the
example, the confidence intervals in periods 1, 3 and 5 cover zero, which is a concern
since we cannot say with conviction that our service level is acceptable in those periods.
To get a better idea of whether the current solution is feasible for the original problem
we calculated ḡ999(y

3) = (0.5± 0.3, 3.0± 0.5, 2.3± 0.7, 5.1± 0.7, 0.0± 0.8)T , so we
are more confident that the service levels in periods 1 and 3 are acceptable. The service
level in period 5 is close to being on the boundary, hence our difficulty in determining
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Figure 1. Dependence of staffing levels on the service level in period 3 of the example in section 6.1.

whether the solution is feasible or not. From a practical standpoint, if we are infeasible,
then we are so close to being feasible that it probably is of little consequence.

We already noted that there is dependence between periods. To investigate the
dependence further we calculated r̄3

n(y), the percentage of calls received in period 3
answered in less than 90 seconds, i.e., r̄3

n(y) :=
∑n

d=1 S
3(y, ξ d )/

∑n
d=1 N

3(y, ξ d). We
chose period 3 to demonstrate how the service level depends on staffing level in both the
period before and after. Figure 1 illustrates this point. The graphs show the service level
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Table 2
Concavity study. Low, medium and high staffing levels in each period and the

optimal values of (13).

Period 1 2 3 4 5

Low 10 18 26 29 29
Medium 12 20 28 31 31
High 14 22 30 33 33
Optimal value 0.0 0.0 4.0 · 10−3 1.5 · 10−2 5.7 · 10−4

in period 3 as a function of the staffing level in period 3 (1.a), period 2 (1.b) and period 4
(1.c) when the staffing levels in other periods are fixed. The service level depends more
on the staffing level in the period before than the period after as could be expected. That
is because a low staffing level in an earlier period results in a queue buildup, which
increases waiting in the next period. The reason why the staffing level in a later period
affects the service level in an earlier period is that customers that called in the earlier
period may still be waiting at the beginning of the next period and thus receive service
earlier if there are more servers in that period. We noted dependence between periods
as far apart as from the first period to the last. Figure 1 also supports the concavity
assumption of the service level function when y is within a region of reasonable values,
i.e., at least satisfies some lower bounds. It is, however, clear that the service level
function looks like an s-shaped function over a broader range of y’s as pointed out by
Ingolfsson and Cabral (2002). That would not be problematic if one were to include the
aforementioned lower bounds on y and if the concavity assumption holds for all y above
the lower bounds.

We also performed a separate concavity check based on the method in section 5.2.
In an effort to demonstrate these ideas as clearly as possible we performed the concav-
ity check outside the scope of the cutting plane algorithm itself, using a selection of
points that appear reasonable from a performance standpoint. We used a sample size of
300 and calculated ḡ300(y) at 3 different staffing levels (labelled low, medium and high
in table 2) for each period, i.e., at 35 = 243 points. We solved the linear program (13)
for each ḡi

300(y), i ∈ {1, . . . , 5}, and obtained the results in table 2. We see that the
service level functions in periods 1 and do not violate the concavity assumption at
the observed points. The other functions violate the concavity condition. The values
of the bv’s, i.e., the changes needed to satisfy the concavity assumption are all small,
as can be seen by the objective value. We examined the points at which nonconcavity
was detected, and noted that they occurred when a change in staffing level in a different
period was made. (It is a strength of the LP-based concavity check that we were able to
discover a region where the nonconcavity was exhibited.) The service level in period 3
increased, for example, more when the staffing level in period 1 was increased from 12
to 14 than when it was increased from 10 to 12 at staffing levels 22 and 30 in periods 2
and 3, respectively. The reason for this violation of the concavity assumption is not
obvious.
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One possible explanation is that our measure of service quality is binary for each
customer, so that “rounding” may contribute to the nonconcavity. To elaborate, in the
above example it is possible that unusually many customers exceed the waiting time limit
of 90 seconds by very little when there are 12 servers in period 1, so that the effect of
adding servers at this staffing level is more than when servers are added at a lower level.
We would expect such a “rounding” effect to be averaged out in a longer simulation.
In fact, we increased the sample size to 999 (the maximum number of replications in
ProModel 4.2) and calculated the service level at the problematic points. We discovered
that the nonconcavity vanished. Therefore, we make the following conjecture.

Conjecture 11. For M(t)/M/s(t) queues of the form considered here there exists a
finite y0 � 0 such that the service level function g is nondecreasing and concave in y

in the region y � y0. Furthermore, ḡn is nondecreasing and concave in y in the region
y0 � y � y1 for all n large enough w.p. 1, for any fixed y1 � y0.

7. Conclusions

In this paper we have shown that combining simulation and cutting plane methods is a
promising approach for solving optimization problems in which some of the constraints
can only be assessed through simulation. As a motivating example we studied the prob-
lem of minimizing staffing costs in call centers when traditional methods fail, either
because of the characteristics of the problem, or if a detailed model of the call center
dynamics are desired. We performed a computational study, which supports the use of
the cutting plane method and demonstrates how it can be implemented.

There are several interesting directions for future research. We established the
theoretical foundation of the method, but an obvious drawback of the method is the large
computational effort required to solve realistic problems. More research (in progress) is
needed to make this a practical method. In relation to the integer programs one should
investigate integer programming algorithms that can utilize the special structure of the
relaxed problems solved in each iteration and consider allowing approximate solutions
of the IPs, especially in early stages of the algorithm. One might consider Lagrangian
relaxation techniques for solving these problems, still in the context of simulation and
optimization, since we are approximating the constraints.

Other areas of interest include coming up with methods for obtaining subgradients
or improving the current heuristic of using finite differences. It would add to the robust-
ness of the method to study the properties of the solutions when some of the conditions
set forth in this paper, e.g., the concavity of the service levels, are violated.

We only tested our algorithm on one simple example. It would be informative to
run the algorithm on more complicated problems and include in the simulation model
factors such as absenteeism and skill-based routing, not to mention implementing the
algorithm in other types of service systems than call center staffing. We are currently
pursuing many of these issues.
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