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Many practical decision problems involve both nonlinear relationships and uncertain- 
ties. The resulting stochastic nonlinear programs become quite difficult to solve as the 
number of possible scenarios increases. In this paper, we provide a decomposition 
method for problems in which nonlinear constraints appear within periods. We also show 
how the method extends to lower bounding refinements of the set of scenarios when the 
random data are independent from period to period. We then apply the method to a 
stochastic model of the U.S. economy based on the Global 2100 method developed by 
Manne and Richels. 
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1 Introduction 

Nonl inea r i ty  re la t ionships  and uncer ta in t ies  appea r  in m o s t  mode l s  for  dec is ion  

making .  These  compl ica t ions  can often void  the use  of  methods  based  on l inear izat ion 

and de terminis t ic  data. S tandard  nonl inear  p r o g r a m m i n g  approaches  do not  genera l ly  

take into cons idera t ion  specia l  s tructures that a l low for  eff icient  computa t ion .  In this 

paper,  we  show that s tochast ic  p rograms  with special  nonl inear  structure can be solved 

eff ic ient ly  with decompos i t ion  and paral lel  computa t ion .  
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Our primary motivation for this analysis is to solve problems for economic 
decision making in which many nonlinearities constrain current resources and deci- 
sions but where interperiod constraints can be adequately approximated with a linear 
relationship. In section 2, we show that a nested decomposition method allows this 
problem to be divided into separate subproblems that correspond to each individual 
combination of decisions within a time period and under a given scenario. 

In general, stochastic programming models of this type approximate a more com- 
plete model by incorporating some form of discretization of a model with a full random 
variable distribution. If this is the case, then the approximations are gradually refined 
to obtain increasingly accurate approximations. We show in section 4 that, if the 
model has a serial independence property, then the result of the decomposition method 
is generally a lower bound on the complete distribution value. Moreover, we show 
that all previous subproblems constructed in the algorithm can be maintained when 
further refinements are included. 

The specific example we consider is a generalization of the Global 2100 Model 
in Manne and Richels [9, 16]. This model fits into the conditions of intraperiod non- 
linearities and only linear relationships between periods. We show how our methods 
perform on this Stochastic Global 2100 model in sections 5 and 6, in particular, show- 
ing the results of employing parallel computation. 

2 Nested decomposition algorithm for stochastic nonlinear programming 

Efficient computation of an approximate solution in a timely fashion is key to the 
practical implementation of stochastic programming. Efficient solution often depends 
on taking advantage of the special structure in stochastic programs in which models 
within a given time period appear quite similar for varying random parameters. Many 
decomposition methods use this characteristic by operating on a single subproblem 
for each random outcome. Dantzig and Madansky [6] and Benders [1] originated this 
idea by treating each stage of the dual formulation of a two-stage linear programming 
problem separately. Using the dual solutions from the second stage problem, they 
progressively built up an inner linearization approximation of the recourse function 
associated with the second stage costs which they then included in the first stage 
problem to solve the original problem. Van Slyke and Wets [15], working with the 
primal version of a finite scenario two-stage stochastic linear program, used similar 
ideas to construct an outer linearization approximation of the expected second stage 
recourse costs. O'Neill [ 12] used these outer linearization approximation concepts to 
solve a deterministic multi-stage nonlinear programming problem, while Birge [2] 
extended the results of Van Slyke and Wets to the multi-stage stochastic linear pro- 
gramming case. 

Noel and Smeers [11] treated the case of the dual formulation of a convex multi- 
stage stochastic nonlinear program. Pereira and Pinto [ 13] worked with a multi-stage 
stochastic programming problem with nonlinear objective function, linear constraints, 
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and complete recourse. They then advanced the previous work by using sampling to 
reduce the magnitude of computation required to construct the outer linearization 
approximation. Our method builds on these approaches by using the outer linear- 
ization idea to approximate the recourse function (along with its effective domain) in the 
primal stochastic nonlinear case with nonlinearities within a period, and linear linking 
constraints with special random structure. We differ from the preceding methods in 
our treatment of incomplete recourse. In particular, when we encounter infeasibility, 
our algorithm solves a series of subproblems of ever greater complexity to ensure a 
consistent solution across all stages and scenarios of the model. We show that this 
potentially expensive procedure turns out, in our numerical example, to be quite rea- 
sonable. 

The general bounded convex nonlinear stochastic program we consider has the 
following form: 

minimize fl(x1) 4- E ~ 2 ( f 2 ( x 2 )  ) 4- . . .  4- E~2 ..... ~ r ( f r ( x r )  ) 

subject to AlX 1 ~ b 1, 

gl(Xl) ~ O, 

BIX l + A 2 x  2 ~ (C2(~2))Xl, 

g2(x2) ~ 0, (CNSP) 

Br_ txr -1  + A r x r  < (Cr (~r ) )x r -1 ,  

gT(XT ) > O, 

X 1 , . . . , X  T >--- O, 

where A t is m t x n  t, B t is mt+l xn t ,  xt is n tx  1, Ct(~t) is a random m t x n t _  I array 
defined on the probability space ('~t, Ft, Ft) and all constraints hold almost surely. 

The following key assumptions are made regarding the structure of the mathemati- 
cal program: 

• The functionft  : R 1÷ ---) R is convex. 

• The function gt " Rn~+ ~ R (nt << nt) is concave. 

• For any (42 ..... ~r) ~ (E2 ..... Er )  (a particular scenario), there exists an (xl ..... Xr) 
which is a strictly interior point. 

• The random vectors, ~t, are mutually stochastically independent. 

Note that the nonlinear objective and constraints in CNSP only appear within a 
single period. This general stochastic programming formulation with random right- 
hand sides and transition matrices (Ct(~t)) allows for a wide range of applications. In 
our example (see also Birge and Rosa [3]), this transition corresponds to a return on 
investment in new technology. 
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The problem is as follows when we model it as a dynamic program with stages 
1 ..... T and states xt for t = 1 ..... T -  1. We can find an optimal solution by using back- 
ward recursion as follows: 

Zt (X t - l )  = E ¢ , [ Z t ( X t - l ,  ~t)],  
where 

Zt(x t -1 ,  ~t) = minimize f t ( x t )  + Zt+l(Xt)  

subject to gt (x,)  > O, (DP) 

Bt_lXt_  1 4" A tx  t <_ (Ct (~ t ) )X t_ l ,  

xt >0,  
for t > 2 and Zr+ 1(*) = 0 and 

Z! = minimize fl (xl)  + z2 (xl)  

subject to gl (Xl) > 0, 

AIX 1 <_ bl,  

X 1 ~ 0 .  

Note that this characterization uses xt alone as the state vector, so that future realiza- 
tions of  ~t are independent of the past. 

To solve this dynamic programming form, we assume that the random variables 
~t have finite support. In general, this may not be true, but a finite approximation may 
yield a bounding approximation. In our example, we will in fact show that this is 
possible and that a refinement approach can use all algorithm information from one 
period to the next. 

Program CNSP then becomes the deterministic equivalent as follows: 

s(2) 
minimize fl  (xl)  + ~ p~ * Pl (f2 (x~)) + . . .  + 

i=1 
s(T) 
Z P~ * P~(i-)l * " " *  P l ( f T ( X T  )) 
i=1 

subject to Alxl < bl, 

gl (Xl) > 0, 

BlXl + A2x~ < (C2(~ig))Xl, Vi = 1,.. . ,s(2), 

g2 (x~) > O, Vi = 1,..., s(2), 

+ <_ V i  = 

gT(xr )  > O, Vi = 1 ... . .  s(T), 

x l ,{x~,  i = 1 . . . . .  s(2)} . . . . .  {x~, i = 1 . . . . .  s(T)} > 0. 
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The matrix A t is m t x  nt, Bt is rot+ 1 × nt, x/ is n t x  1, Ct(~it) is the value that 
Ct(~t) takes in the ith scenario of the tth period. The function ft with domain = R l+ is 
convex. The function gt with domain = R 4 .  (n 7 << nt) is concave. The number of sce- 
narios in period t is s(t). The conditional probability that scenario i in period t will 
occur given that scenario a(i) (the predecessor node of node i in period t) in period 
t -  1 has occurred is p/, and Pl = 1.0. The set of descendant nodes of node i is D/. 

We can then rewrite the problem in dynamic programming format. Solve: 

where 

and 

Z1 minimize f l ( x l )  + ~ d d = P2 Z2 (Xl)  
dE D 1 

subject to gl (Xl)  >-- 0, 
Alxl < bl, 

x I > O, 

Zi ( x'~(_i? ) minirrfize ft  ( x~ ) + ~., a d i = Pt+lZt+l (x t )  
deDj 

subject to gt (x~) >__ 0, 

Bt_lXgi? + atx~ < (Ct(~i ~a-a(i) - -  ] ] ~ ' l  - -  l ' 

>_o 

Z~. (x~.U~ -- minimize f r  (x~) 

subject to g r  (x~) > 0, 

• i a ( i )  BT_,x~.(i_{ + ArgO. < (CT(¢T))XT_,, 

>_o. 

d i As with the continuously distributed random variable case, Zt+l(xt ) is convex, which 

Pt+lZt+l implies that ~,d~o~ d a (x~) is convex. 
Our general approach is to use an outer linearization of Zt+l(Xt) within each 

period. This outer linearization is progressively refined by adding cuts or linear sup- 
ports found by solutions of  future period subproblems. The basis for the approach is 
that the cuts are valid lower bounds on the value function zt and that the algorithm 
eventually refines the linearization to any degree of accuracy. 

To show that the algorithm solves CNSP, we first establish some fundamental  
properties of the subproblems in the following lemmas. 

Lemma 1 

Zt(xt-1, ~t) is convex in ~t for any Xt_ 1. 
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Proof 
Consider 

Z r ( x r - i ,  Ljr) = minimize f r ( x r )  

subject to gr (Xr ) > O, 

Br- lxr -1  + Arxr  < (Cr(,~r))Xr-l, 

xr >0. 

Let xr  ~ be optimal when ~ r =  ~ and x~- be optimal when ~ r =  ~2. Clearly, 

BT-lXT-1 + arx~- < (Cr(~ l ) )xr - i  and Br- lXr- I  + arx2r <- (Cr(~2))Xr-I 

imply that 

BT-lXT-I + a r (Z  * xlr + ( 1 -  ~) * x 2) < (Cr(Z * ~1 r + (1 - ~) */~2)xr_ 1 

for all 0 < & < 1. Also, 
g r ( x l  ) >0  and gr(x2 ) >0  

imply that 
gr(A*x~.  + ( 1 - A . ) * x  2 ) > 0  

for all 0 < A < 1 as gr(')  is concave. Then 

ZT(XT_I, ~ * ~ .  + (1 - -  ~ ) ,  ~2) < f r ( 2  * X~. +(1 - -  Z )*  x 2 

< Z * fT(x  1) + (1 -- &) * fr(x~.) 

< A * Zr fXr- l , /~ . )  + (1 - X)* ZT(XT_I,~2). 

Thus, ZT(XT-1, ~r) is convex in ~r  for any given XT_ I. 

Zr(XT-1) = f Zr(xr-l ,~r)dF(~jr)dl~r 

GREET 

is convex as it is a convex combination of convex functions. 

ZT-I(XT-2, ~T-1 )  ---- minimize f r - l ( X r - 1 )  + ZT(Xr-I) 

subject to g r _ l ( X r _ l )  > O, 

BT-2XT-2 + AT-lXT-1 < (Cr-l( '~r-1))xr-2,  

XT- 1 ~ O, 

is convex in ~r- I  as already established since f r - l ( X r - l ) +  Zr(Xr_l) is convex, the 
sum of  two convex functions. This implies that ZT-I(XT-2) is convex as before. This 
continues recursively until we see that Zt(xt_ i, ~t) is convex in ~t for all t and for all 
Xt_ 1 . It is easy to show that Z t ( X t _ I ,  ~ t )  is also convex in xt-i for any ~t. [ ]  
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L e m m a  2 

The mathematical program for which Z] (x~C_i~) is the optimal value is equivalent to: 

minimize f t ( x ~ ) +  Z Pd+lzff+l(x~) 
deDj 

subject to gt (x~) > O, 

Bt_lXt(_i~ + atx ~ <_ (Ct(¢[))xt(_i~, 

D[ 'i x[ + d[ d >0 ,  l= l ..... L~, 

x~ >0 .  

Proof  
In solving the dynamic program (DP), it is clear that a solution exists only if a feasi- 
ble solution exists• Clearly this means that at optimality and for any node i, xt/, the 
solution to Z[ (x~(_'l)), must be feasible d ~ D[. That is, Zd+l (x~) > -- ,~ for all d ~ D[. 
This of course implies that ~,d~D~ .Pt+lZt+l(Xt ) d  d i > _ ~ .  Since we have shown that 

d d i in x], the set of xit for which this function has a finite ~d~D[ Pt+IZt+l (xt ) is c o n v e x  

value must be convex. As a result, an explicit constraint describing this region that 
we add to the program will not alter the problem. How will this region be described? 
Suppose that for a particular value of x] = ~[ there exists d ~D[  such that ztd+l(2[) 
= - ~ .  This implies that the constraints 

g,+l(Xf+ 1) >__ o, 

Bt~[ + At+lxat+l < (Ct+l~f+l)x[,  

x:+l > 0  

are inconsistent. This in turn implies that 

Gf+ 1 (~]) = maximize - v + - e tv  - 

subject to 

• d - i  #ta+l Br2it + at+lX(+l - I v -  < (Ct+l~t+l)xt ,  

,~l,d+ 1 • g,+l(Xd+l)  + V + >-- O, 

X d + l  , 1~- E R m'+t , •+ E R 1 > 0, 

has a strictly negative op t imum objective value solution. Thus, the expression 
Gtd+l (x~) _> 0, where G dt+l~ :xitj ~ is a concave function of x[, defines the convex region 
from which x~ may be chosen. Clearly, a finite subset of the supporting hyperplanes 
of  a convex region defines a region of which the convex region is a subset. 

A supporting hyperplane is guaranteed to exist at every point x~ by our assump- 
tion about the existence of a feasible interior point and the well known Slater condition 
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given our assumption of  a strict interior point. Proceeding in the usual manner, we 
denote a finite number of  supports as: 

D[ "i x~ + d~ 'i >_0, l = l . . . . .  L~, 
where 

D/,i  d I = ~ + ~  [ (c ,+~ (~f+~))  - B, ] 
and 

d I d t d t d ! 
d[  'i = - tg+t - e t l ) - t  - ~tt+l * ( A t + l X t + l  - l v - t  ) +/]'t +1 * (g t+ l  (X t+ l )  + D+t ). 

The program can, thus, be written: 

Zl(xt¢_'l') = minimize f t  (x~) + Oi 

subject to 

0"~: gt (X~) > 

8t_lX C_']  + Atx  <_ 

ol <- 

Lit, l: Dl  'i X] + d[  'i >_ 

xl >_ 

P t + l Z t + l  ( x  t )  is c o n v e x  in xt .  We have already established that ~,a~ol  d d i i Since it is 
convex, it is clear that we can develop a lower bound on the function with a set of  

P t + l Z t + l  supporting hyperplanes. With a lower bound on Y~aEDI a a (x~) for all t = 2  .. . . .  T 
and i = 1 ..... s(t),  we have obtained a lower bound for Z I. []  

, 

( c , (¢ i  

P t + l Z t + l  Za~ot a d (xl), 

O, l = l  . . . . .  Lit, 

O. 

Lemma 3 
A lower bound can be obtained for Z~ (Xt(_i~) by solving the following program: 

z-, icx2? -- minimize ft (x~) + 0~ 

subject to 

of: g,(x~) >_ o, 

z~: B t_ i x t ! ' i  ) + A t x  ~ < (Ct(~))x~¢_i?, 

]2~" ~l , i  i e~,i i i P-"t Xt -F <-- 0 t , l = 1 . . . . .  K t , 

~it, l. ~ l , i  i d[,i u t  xt  + > O, 1 = 1 . . . . .  Lit, 

x~ > 0 ,  

where Kt and L~ are finite numbers. 
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P r o o f  
Consider 

z-L, (4% 

o-i • T - l "  

/l:~- _ 1" 

)t.~t_l: 

i minimize f r_ l (x~._ l )  + Or_ 1 

subject to 
g r - I  (XT-1) -> O, 

BT_2X~.(i_) 2 + A T . _ , x ; _  1 < (CT_l(~_l))x~(i_)2 , 

Dt,i i " r _ l X r _ l  + d~*_ 1 > O, l = 1 . . . .  , L~T_I, 

XlT_I >--0. 

This program will give a lower bound on the value o f  Z~_l(X~.( / )  2)  since 0: is un- 
bounded below. Clearly, a better bound exists for ~ d  e o~ Zr  a (x~- 1) than 0: = - ~ .  
Consider d i ZT ( x r -  l ) for some d E D}.. 

ZTd(x~._I ) = m i n i m i z e  f T ( x ~ )  

subject to 

crrd: 

~rd: 

g r  (xr  d) > 0, 

i ATXdT < ( C T ( ~ d ) ) x ~ _ , ,  BT_lXT_ 1 + 

xr  d > 0 .  

Proceeding just as we did in the previous lemma, we can develop the dual of this program 
and from this and strong duality, a lower supporting hyperplane of Zr  d (x~_ 1 ). This 
has the following form: 

0 ~ _ >  E d d  i I - P r Z r  ( X r - l  ) 

>- E 
d ~ Dir_ l 

d* d* d* d* fr(xar*)  + trr ( g r ( x r  ) ) -  ~r r ( A r x r  )} 

K~-l'i i K~ i,i 
= E T _  1 X r - l  + er_-  1 . 

This same argument proceeds recursively so that we can easily construct a lower 

Pt+lZt+l  bound on ~deDj  d --d (x~) as before. 

o >E d d , 
- Pt+lZ~+l(x t )  

d~Oi 
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>_ E _d t--d* (~/+I)))X] Pt+l t J~ t+l ( -  Bt + (Ct+i 
d~Dj 

Yt+l ( X / ; l  ) + O'/;l (gt+l(xtd~-l )) - ~ / ;1  (a t+lXt+l  

+Z 
/=1 

+Z 
/=1 

r,X],i i Kit,i 
= P--'t Xt + et 

[2d*, lr , - , l ,d  d* l,d 
t+l [l~t+IXt+l + et+l] 

'~d*,l r r~l,d d* l,d 
A,t+itUt+lXt+ 1 + de+i]} 

The lemma is proven. []  

Thus, we have shown that a new DP formulation can be constructed from the old 
one that will return a lower bound on the optimal solution. 

3 Solution procedure 

In practice, rather than constructing cuts for each node problem ahead of time and 
then solving the modified DP to obtain the lower bound, we will use Birge's [2] 
NDSPA algorithm (modified for the nonlinear case as in [12]) to construct the cuts 
dynamically and solve the DP at the same time. We show that any level of precision 
can be obtained. 

The problem constructed for every node in the stochastic tree is the following: 

Z--t i (xt_%) ) = minimize ft (x~) + 0[ ( l .1)  

subject to 
cry: >_ o, (1.2) 

~ :  nt_lXt(_i~ + Atx~ < (Ct(~l))xt(_i?, (1.3) 

~2~,1 , '~l , i i  e[,i i 
• t~t xt + < O r ,  l = 1  .. . . .  K~, (1.4) 

~it, l : ~l , i  i d[,i LI t X t + ~ O, l = 1 . . . . .  L~, (1.5) 

x~ > O, (1.6) 

where the problem describing Z-~(x~ (i)) includes no 0~-and the K~ optimality cuts 
and L~ feasibility cuts are added during the course of the algorithm. 

Nested Decomposition for Stochastic Nonlinear Programming Algorithm (NDSNPA) 
Choose e > 0 (the optimality cut stopping criterion) and 6 > 0 (the feasibility cut stop- 
ping criterion). 
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Step 1 

Step 2 

Solve (1) for t = 1 where 01 = 0, Kl = 0, L 1 = 0 ,  and (1.3) is replaced by 

A l X  1 < b 1. (2) 

(The scenario index i has been dropped for the period 1 problem.) Set O] = 0 

and Kt / = L~ = 0 in problem (1) for all t and scenarios i at t. (The K]  and L[ 
indices are updated whenever a constraint (1.4) or (1.5) is added to (1).) 
kl = k21 . . . . .  kj(2) . . . . .  k 1 _ _ , . s ( r ) _  r~ t , .  !. l ,.s(2) !. l . . . . .  a. T - -  v .  k a . l , r , . 2 , . . . , r , .  2 , . . . , r ~ T , . . .  , 
k~(r) 1 s12)  1 s(T) are iterated whenever x l  , x 2 . . . . .  x 2 . . . . .  x r . . . . .  x r are updated.) 

If the period 1 problem (1) is infeasible, STOP. The problem is infeasible. 

Otherwise, kl = kl + 1 and let x/k~ be the current optimal solution of (1) for 
t = 1. Use Xl k' as an input in (1.3) for t = 2 and all ~ ,  i = 1 ..... s(2). 

If any period 2 problem is infeasible and 

0.0 > D[ (xl)k' + d[ + •, (3) 

then add a feasibility constraint (1.5) to (1) for t = 1, set t = 1, and return to 
step 1. Else if any period 2 problem is infeasible and 

0.0 > O~ (x I ) kl "t- d[ (4) 

then solve the following program and, if it is feasible, obtain a consistent 
(xl,  x l , . . . ,  x~ (2)) vector, let t = 2 and go to step 3. If it is infeasible, STOP. 
The problem is infeasible. 

minimize f l  ( X l )  + 01 

subject to gl (xl)  -> O, 

A I X  1 <<. b l ,  

E [ x l  + e[ < 01,  

DIXl + d[ >_ O, 

X 1 >_ O, 

g2 >_ O, 

B l x l  + A 2 x ~  < ( C 2 ( ~ ) ) x l ,  

El, i  i e l i  " 
2 x2  + <--02' 

x 2 + >_0, 

>_0, 

l = 1 ..... K1, 

l=  1 ..... L1, 

Vi EDI ,  

Vi E D  l, 

Vi EDI ,  l =  1 ..... K~, 

V i  ~ D ~ ,  1 = 1 . . . . .  L~ ,  

(5) 

Otherwise, let t = 2 and go to step 3. 
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Step 3 (a) Let the current period t optimal solutions be (x] )  kj for i = 1 . . . . .  s(t). 
Solve (1) for t + 1 and a l l j  = 1 ..... s(t + 1) using the appropriate ances- 
tor solution (x]) kl in (1.3). 

(b) If any period t + I problem is infeasible and 

0.0 > D[ d (x])k[ + dl,i + 8, ( 6 )  

add a feasibility constraint to the corresponding ancestor period t prob- 
lem and let t = t -  1. 

If t = 1, go to step 1. 
Otherwise, return to step 3(a). 

Otherwise, if any period t + 1 problem is infeasible and 

0.0 > D[ d (x l )k l  + d[,i,  (7) 

then iteratively solve a finite sequence of  subproblems (8) for 
n = 1 ..... t until one is feasible. If a problem is feasible, then one has a 
new set of  values for each stage that ensure all periods from period I 
through the (t + 1)st period are feasible (in particular, ({x] i ,X t+ l } iaD 1 , 
Ix  2 i ,Xt+l}i~D2 . . . . .  { x : ( t ) ,  i xt+l }ieosc,) ) are consistent). 

minimize 

p a n - l ( i )  
t ~r :~an-I(i) i~an-l(i) 

t _ ( n _ l ) k J t - ( n - 1 ) k ~ t _ ( n _ l ) )  + v t _ ( n _ l ) )  + 

a d 0 f_ (n_2)  ) + + p t _ ( n _ 2 ) ( f t - ( n - 2 ) ( X t _ ( n _ 2 ) )  + ... 

P] (ft (x])  + O[ ) 
i ~ S(a n-I ,t) 

subject to 

an " A ~an-l(i) 
• -'t-n"t-nl~ ~. O) + "~t-(n-1)'~t-(n -1) 

El_( n . : an - I ( i )  l 
_ l ) - ~ t _ ( n _ l )  + et_(n_l)  

Dl  ,:an-l(i) l 
t - ( n - l ) " t - ( n - l )  + d t - ( n - I )  

g 
:~an_X(i ) 

t_(n_l)k .~t_(n_l))  >_ O, 

, .  a ( )  _ (, t :a"-I (i) " i 
< ( C t _ ( n _ l ) ~ t _ ( n _ l ) ) ) X t _ n  , 

< ~an-l(i) l = 1 . . . . .  /Kan-l(i) 
-- v t - ( n - 1 ) ,  " ~ t - ( n - l ) '  

?an-l(i) 
> O, l = 1 . . . . .  " - ' t - ( n - l ) '  

x an-t (i) 
t - ( n - I )  >- O, 
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g,+l(xa,+l) >_ O, 

Btx~ + At+,xf+ 1 <- (Ct+l(¢d+l))X~, 

El,d d l,d < 0 d + l  ' t+lXt+l +et+ 1 - 

Dl,d d ,~t,d > O, 
t+lXt+l +'~t+l --  

x ,x/+l >_ o, 

Vd  E D[, i E S(a n - l ,  t), 

Vd  E D~, i E S(a~ -1, t), 

Vd E O~, l =  I . . . . .  g t d + l  , 

Vd ~ O~, l =  1 . . . . .  Lta+l, 

~'d E D[, i E S(a 7-1,  t), (8) 

S t e p  4 

where a~ -1 is the (n - 1)st ancestor of node i (a ° = i) and S(a.~ -1, t) is 
the set of  successors of node at-1 in the tth period. 

If t < T -  2, let t = t + 1 and return to step 3(a). 
Otherwise (t = T -  1), remove any remaining 0 / =  0 restrictions for all 
period t and scenarios i at t and, for each of these, let the current value 
of (0~)kj = oo. Go  to step 4. 

Otherwise, if all the subproblems (8) are infeasible, STOP. The entire 
problem is infeasible. 

(a) Find Et t'i and e~ 'i for a new constraint (1.4) at each scenario t problem (1) 
using the current period t + 1 solutions. 

(b) If some i satisfies 

--l,i. i.k~ e~,i (o~)kJ <t~ t t x t )  -- + e / ( T - 1 ) ,  (9) 

then add the new constraint (1.4) for which the above equation holds. 
Solve each period t problem (1). If a problem is infeasible,, let t = t - 1 
and return to step 3(a). Otherwise, use the resulting ((x~)kl, (0~)kj ) to 
form (1.3) for the corresponding descendant period t + 1 problems (1) 
and re-solve each period t + 1 problem (1). 

If t < T -  1, let t = t + 1 and go to step 3(a). 
Otherwise, return to step 4(a). 

Otherwise, 

(e l )  kj > e['i(x~) kj + e~ 'i + e / ( T  - 1) (10) 

for all scenarios i at t. 
If  t > 1, let  t = t - 1 and return to step 4(a) .  

Otherwise, STOP. The current solutions (x~)kJ, t = 1 ..... T form an e 

lower bound of (1). 

We briefly discuss the issue of feasibility before proceeding to a discussion of  the 
convergence behavior of our algorithm. We ensure that when moving from step 3 to 
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step 4 of  our algorithm we always have a feasible solution. We do this iteratively 
using feasibility cuts and subproblem (8). We use feasibility cuts to construct an outer 
linearization approximation of our feasible region. This gives us 5 feasibility. Then, 
if a period t = z problem is 5 feasible but not feasible to within zero tolerance 
(typically much smaller .than 5), then we solve a sequence of subproblems (8). 

These subproblems extend backwards (as n increases from 1 to z -  1) towards the 
root of  our tree and spread outwards to encompass the subtree containing the current 
root node and all its descendent nodes through period ~. The first feasible solution we 
find ensures that we have a consistent solution from the root of  the tree up through 
period t = ~. 

We note that, in general, it may be necessary to solve all problems n = 1 ..... z -  1 
in order to find a consistent solution. It might be better to simply solve subproblem 
(8) once for n = "r- 1. This would give us a consistent solution up through period t = "r 
after having solved only one subproblem [11]. We choose not to do this because we 
may find a consistent solution long before having to solve all "r- 1 problems. 

Solving several of  the subproblems (8) when n is small is preferable to solving 
even one larger problem when n = z -  1. In fact, while experimenting with the class 
of stochastic energy economic models that we investigated for this paper, we never 
solved subproblem (8) more than once (i.e., n = 1). This indicates that we reaped 
significant savings by following the strategy that we did. 

Finally, we note that in practice, since feasibility cuts can give any desired level 
of  feasibility, one may want to skip entirely the step we have included to ensure certain 
feasibility. By doing this, subproblems will always be small (i.e., no bigger than one 
period) and, thus, will not grow unmanageable as the overall problem size increases. 

We now wish to show that our algorithm terminates finitely with an approximate 
solution for any e > 0 and 5 > 0. We first establish four more lemmas about the 
progress of the algorithm. Lemma 4 shows that whenever an optimality cut is added 
to the program, the approximate optimal value will increase• We note that this is true 
also for feasibility cuts. Lemmas 5 and 6 establish two properties of the algorithm at 
the point at which the algorithm proceeds from step 3 to step 4. Finally, lemma 7 
derives an expression for (0~)kl that holds throughout the algorithm. After all of  these 
lemmas have been introduced and proven, a general proof of convergence of  the 
algorithm will be presented• 

Lemma 4 
. "  Fi, t,i ( . _ i x k j  e~, i If, for any t, i, (0~)kl < ~ t  ~xt ) + -- e / ( T  - 1), then the algorithm adds the con- 

" ~ l i  i " straint, O~ >_ r~ t' xt + e~", to program (1). If program (1) has a unique optimum, this 
• , a ( i )  row becomes active in Zt / (xt~'~) and the optimal value of Z i ' ( x , _ l ) i n c r e a s e s .  

P r o o f  
• . - - .  i a i  • i • i . . . I kt ( )  I k t I kl The optimal solution of ( Z t )  (x t_ l ) ,  ( ( x t )  , (Or) ), Is not feasible after the addi- 

tion of this constraint. Since Z/(x~t_i~) is a convex program which obeys the Slater 
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condition, this constraint must be active. If (Z--[)kJ (x~(j~) does not have alternate 
• . _ _ .  , 

optima, then (Zz/) kl +l(xt_('l)) > (Z]) kl (xt(_i~). 
A similar proof shows an identical result for the addition of a feasibility cut. [] 

Lemma 5 
Each time, the algorithm proceeds from steo 3 o,t° step 4, the decision vector 
(Xlk~, (xl)k~ :,,s(2) ~k~ ~ t,,l ~k~r t,.sO'))kF r) ) is a feasible solution to the 

' " " "  ' ~ , ~ 2  J - -  , " " "  ' ~ , ' ~ T  J ' " • "  ' K ' ~ T  

multistage stochastic convex program. 

Proof 
At this point in the algorithm, for all t, i, 

g, ((xj)kt ) >_ O, 

Bt_,(xt(i~)k:cJ~' + At(x~) kl <_ (Ct(~]))(x'~(i~)~':c-] ,, 

>_ o. 

Thus, each (x~)kJ is feasible. [] 

Lemma 6 
At each point at which the algorithm proceeds from step 3 to step 4, the following 
inequalities hold: 

T s(t) 

Z ZP~  * Pt(-i? * Pt(-a2 (i)) * ' " *  P l*  ft((x~)kJ)>Z1 >ZI. 
t = l  i = 1  

(11) 

Proof 
As already established in the preceding lemma, (Xl tq ,(xl)l'~ ,(xS(2)) k~c~, 

, " "  2 " " '  

(x~.) k~r ..... (x~-(r))k~ tr) ) is feasible at this point in the algorithm. As a result, the 
objective function value corresponding to it is greater than or equal to the optimal 
solution to the problem. Also, as we have shown already, the expression Z1 is always 
less than or equal to the optimal objective value solution to the problem. [] 

Lemma 7 
For t = 1,..., T -  1 and for all i, there exist dual multipliers, (/.t~ '/)k~, such that 

r~ 
(oj) = + d"1. 

I=I 
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P r o o f  
The result follows directly from the sufficient optimality condition in (1) and noting 
that some cut I must  be active to achieve a finite op.timum. As an alternative, consider 
the following LP which returns the value of (0~)kl for a given value of (x~)kj : 

minimize 0[ 

subjectto /z/'i: E/ ' i (x~)  k/ + e[ 'i <_ 0~, l =  1 . . . . .  K[.  

(0~)kl is the optimal solution to the above problem with the dual variables r tt i,l "~kit kP~t ] • 

Duality implies that 
Kl 

(Of) kj = y_.,(l.ti") k/ lEft" (xti)kj + el,i]. 
1=1 

Recall that the convex stochastic nonlinear program that we are bounding below 
is itself a bounded program. That is, each variable in the problem can be considered 
to lie within a compact  set: 

x l  s l , x  I . . . . .  . . . . .  

Also recall that the stochastic ETA-MACRO model has a feasible interior point solu- 
tion. []  

Theorem 1 
Under the assumptions given above, for any choice of e > 0 and ~ > 0, the NDSNPA 
algorithm terminates in a finite number of iterations. 

P r o o f  
For the algorithm not to terminate, there must exist some stage and scenario for which 
the condition 

Dkl,i (xj)kl + dtkJ,i > _ t~ (12) 

never holds (i.e., the forward pass does not terminate in a finite number  of iterations) 
or there exist some stage and scenario for which the condition 

(0~) kj >_. Etki ' i(x])  kf -ekt  i'i + e l ( T -  1) (13) 

never  holds (i.e., the backward pass does not terminate finitely) or both. We first 
assume that the algorithm does not terminate finitely because the forward pass never 
terminates for some node i in stage t. Suppose for some d E D[ ,we have 

Gta+l ((x~)k ) = maximize - v + - et v - 
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~f+l" 

0":+  1 • 

/.t f ~.ll : 

d,l . 
J~t+l 

subject to 

nt (x~)  k + At+lX:÷l - I v -  <_ (Ct.l . l(~:+l))(x~) k, 

gt+l(X:+l)  + I) + > O, 

El,d d l,d < 0:+1, t+lXt+l +et+ 1 -- 

Dl,d d l,d 
t+lXt+l q-dt+ 1 >_ O, 

X:+l ,V-  E Rrnt+l,v + E R 1 > O, 

I = 1 . . . . .  Ktd+l , 

d l = 1 . . . . .  Lt+l, 

and Gtd+l ((x~)k) < 0 for the kth value of x~ derived in the node i and stage t optimi- 
zation problem and sent to the node d problem in stage t + 1. k - 1 feasibility cuts 
have already been sent from node d in stage t + 1 to node i in stage t. We assume that 
this process never stops. 

The algorithm proceeds choosing points (x~)k and (Xd+l)k from the compact sets 
S~ and sf+1. Let ((x~)k,(xdt+l) k) = (x k) ~ S~ x S:+1. Note that S: x Sd+I is also 
compact as the product of two compact sets. 

Since S: x Sf+ 1 is compact, (x k) must have a cluster point. From the continuity 
, , [ 2 d , l  "~k of problem functions and the Slater conditions, ( ~zf+ 1 )k ( crd+ l )k (#at ~_tl )k ' ~'~t + l ~ 

are contained in compact sets and have cluster points. Let these cluster points be x**, 
( 2 d ,l "~ ** ", ,--,+i, • 

We know from a previous lemma that 

+ k , , k )[2d'l = 0 

since (D~)k x~ + (d~)k > 0 is the last feasibility constraint to have been added to the 
Z~ i program. Since Gff+l((x~ )k) < 0, this implies that 

O = ( D : ) k ( x ~ )  k +(d~)  k >_ G : + l ( ( x ~ ) k ) = ( D ~ ) k + l ( x ~ )  k + ( d : )  k+l, 

which implies that 

0 >- G:+I((X~) k)  = ( (D:)k+l(x~)  k + (d:) k+l) - ( (D: )k (x~)  k + (d:)  k)  

= ((D~) k+l - ( D [ ) k ) ( x l )  k + ((d~) k+l - ( d i t ) k ) .  

Passing to the limit on k, the term on the right-hand side vanishes, implying that x** 
is feasible for node d. This also implies that there exists some finite k such that 
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( ( D [ ) k + l ( x l )  k + (d : )  k+l)  - ( (D~)k(x~)  k + (dit ) k)  >_ -¢~, 

( (o i t ) k+ l ( x~ )  k + (d / )  k+l)  > -t~,  

t~ + ( ( D : ) k + l ( x ~ )  k + (d : )  k+l)  > 0. 

Thus, we have shown that, in fact, this condition is met after a finite number of itera- 
tions. Hence, our assumption that this never occurs is contradicted. Thus, the forward 
pass of the algorithm will terminate in a finite number of iterations. 

We must now show that the backward pass of this algorithm, likewise, terminates 
in a finite number of iterations. Assume first that for some node i in stage T -  1, the 
condition for termination, 

(0~-_1)k/ _> ,.,T_lXZT_l)l::l'i r " i  xk~-I -- e~i_l + e/(T - 1 ) ,  

is never met in the Z-~_I(x~)2) problem for any x~.~)2 . 
We know from a previous theorem that 

T s(t) 
~,  ~., p~ , pgi~ , p•(a2(i)) , . . . ,  Pl * ft(fx~) k~ ) -> Z1 -> ~rl, (14) 
t=l i=1 

and thus, that 

fT- l ( (X~_l)  k~'-' ) + E pdfT ((xdT)k:) > 7i :,.a(i) -- ~T_ 1 ~.~.T_2) 
d ~ D~-_ l 

>_ 

As before, since the iteration points 
1-IdEo i Sr d, compact set, {x k} has a cluster point. 

Th~-~ontinuity of the problem functions and Slater conditions imply that 

{(O'~_1)k}, {(/17~_i)k }, {(/2~Li)k}, {(Z~/_l)k}, 

i { ( # : ) k  d i {(Crrd)k,d ~ Dr_l},  , DT_  1 }, 

{ ( ]2d ' l ) k ,d  E D~_l},  {(~,dT'l)k,d E D / _ l }  

are contained in compact sets and have cluster points. Let these cluster points be 

i ** i,l ** 
( a ~ - I ) ° * '  (~T-1)  ' (~LT-1) ' ( '~/-1)°* '  

i d ** D~_I ' (cr:)~O,d ~ Dr_ l} ,  (Trr) , d  

(~I/:'l)**,d E D~_ 1, (,~,d'l)**,d E D I _ I  . 

= fr-i ((x~_~)k~_, ) + (O~_l)k~-', 

{x k} = {(X~_I) k, {(X:) k, dEDT_I} }i EST_ li X 
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We then have 

k) + y .  >_ 

dED~._ 1 

>_ fr_x((Q._~) k) + (o~._1) k 

- -  " ' ' 

) t~T_l tXr_ l  + e~'_ 11 
l = l  

= f r - z ( ( x ~ - l )  k) + ~., ,t.r-xJt"i" ~krr:t.it...r_l(X~_l) k + e~i-1] 

= f r _ n ( ( x ~ _ l )  k) + [ E ~ i l ( x ~ _ l )  k + e~i_,] 

= f r _ s ( ( x ~ _ , )  k) +[E~'i_l(X~_l) k + e~'i_,] 

(since the last cut added must be active by the previous lemma) 

r ~ k , i  . i )k  = f r _ , ( ( x ~ _ , ) k ) +  ~., p a r f r ( ( x a r ) k ) + t t ~ r _ , t X r _  , +e~"_,] 
d~D~._ z 

[ 1 7 k + l , i ( X ~ _ l ) k  .~ k+l , i  
- -  t , ~ T _  1 e T _ l  ] 

= fT_t((x~_,) k) + ~_~ PaTfT((XaT)k) 
d ~D~_t 

+ [(ETk,i_l , ~ k + l , i . .  i -k  ' - ~ r - i  ) t x r - 1 )  +(ekr"-n _ er-lk+l'i)]" 

Passing to the limit on k, the last two terms vanish, implying that x** is optimal for 
Z/r_1 (x~.(_/) 2 ). This also implies that after a finite number  of  iterations, 

_k,i ~ . ~ k + , , i  . i . k  . k+l , i  [E~'i_l(X~_l) k + e r _ l l  - tsar_ 1 tXr_ l) ÷ e r_  1 ] > - ~ / ( T  - 1) ---> 

(0~-1)  k - ,-- 'r- 1 r r'k +1'i (X~-l)k + eT-lk+l"i'J _> _ e / ( T  - 1) ---> 

_ I - ~ k + l , i . "  i ~k k+l , i  
(0~_1) k > ~t~r_ 1 t X r _ l )  + eT_ 1 ] -- e / ( T -  1). 

As a result, our assumption about not meeting the condition for termination is false. 
This portion of the algorithm will terminate finitely. Proceeding recursively as be- 
fore, we can see that for all i in each stage t < T -  1 the algorithm reaches a point 
where ---k+l,i, i .k  ek+l,i] (O])k > [jz t txt  ) + - e / ( T  - 1) 

in a finite number  of  iterations for all x~(_i~. 
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Thus, both the forward and backward portions of the algorithm terminate in a 
finite number of iterations implying that the entire algorithm terminates finitely. [] 

4 A lower bounding approximation 

In section 3, we gave an algorithm for a finite realization version of CNSP that yields 
a solution with given e and 6 within a finite number of iterations. In general, the finite 
realization is checked for accuracy in comparison to an upper bounding approxima- 
tion (see Birge and Wets [4]). When the gap between the two approximations is too 
large, the lower bounding approximation is improved and the solution process is re- 
peated. 

Since the cuts generated in one iteration of NDSNPA are all valid lower bounds 
on the value functions, these cuts are lower bounds on any further refining approxi- 
mation as long as the refinements are nested (e.g., zt k < zt k+~ from refinement k 
to k + 1). In fact, this is generally the case. With this, we can simply start with all 
previous subproblem cuts when progressing from one refinement to the next. 

In the following theorem, we show that a particular lower bounding scheme of 
taking conditional expectations over regions of a continuous random vector does 
indeed yield a lower bound in this example. We then achieve the proper nested bound- 
ing results by simply ensuring that all current regions for conditional expectations are 
maintained in the next refinement. 

Theorem 2 
A discretization of the distribution over the conditional means of a partition of 
~t where each conditional mean is weighted by the conditional probability of each 
partition results in a lower bound on the optimal value of CNSP. 

Proof 
For all t, 

[. 
Zt(X'-1) = I Zt(Xt-l '  ¢,)dF( 

K 

i=1 ~,~.~ 

where E t is partitioned into {E~, "',~t'~K }, 

= f f f 
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K 
> 

as Zt(xt_l, ~t) is convex in ~t 

K 

i = l  

Pt+lZt+l The result follows if ~d~D i d d (x~)<Zt+l(xj)forallt ,  iandx~wherep~is 
the conditional probability that scenario i in period t will occur given that scenario 
a(i) (the predecessor node of  node i in period t) in period t - 1 has occurred and D/ 
is the set of  descendant nodes of node i. The result holds for t = T -  1 as in lemma 1. 
Using induction on t, assume the result for t > t '  - 1. To show the result for t ' ,  note 
that Y.a~oj pt ,+lZt ,+l (Xt  d i ) < Zt,+l(Xt ), which is independent of  i by assumption. 

With this result and an upper bound [17, 14], we then have a procedure to achieve 
any desired accuracy in finite time even for continuous random variables. []  

5 ETA-MACRO decomposition 

Our motivation for this study is an extension of the Manne-Riche l s  Global 2100 
model. This model builds on the energy-economic model developed by Manne [8] 
called ETA-MACRO. The key stochastic parameter that we introduced into this model 
was a stochastic return on investment in various energy technologies and resources. 
The model with our changes highlighted as dashed lines appears in figure 1. 

Energy Technology Development 
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i 

Energy Conversion tech. 

Energy Sector 

Elec.. uonelec, energy~ I 

_ Energy costs I 
I 

Labor . .  - E ffic~ency 12 np~w_ _ t" i J 
T 

[ Consumpdo% 

I--E~Y x~v~_ .  
Nonenergy Sector [ 

Nonlinear I-'-7"1/ 
Production I f I1 Investment 
Function [, ]/ 

hnponed Oil Capital 
& 

Don'gstic Nat. Res. Imported 
CO2Emissions < Q u o t a  + Carbon 

I Credits 
,_ . . . . . . . . . . .  _R. _~Y~_~_ _P L°_~_~ _° n_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 1. Stochastic Global 2100 model. 
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Notice in figure 1 that this model fits into the framework of CNSP because all the 
nonlinearity occurs within each time step and does not directly connect decision vari- 
ables in one period with results in the next. Because of this, the decomposition of the 
problem follows directly from what was derived in the previous section. 

We should note that the addition of stochasticity to the Global 2100 model did 
result in fundamental ctianges to the predicted path of economic development over 
the next century in the modeled region. We have chosen not to include any of those 
results in this paper, though, in order to devote more space to the description of the 
algorithm. A forthcoming paper [3] contains a more lengthy description of the model 
and added stochasticity, and an analysis of the results from the study. 

In the next section we will explore some of the computational results we obtained 
when we implemented our decomposition algorithm in parallel on a network of work- 
stations. 

6 Parallel lower bounding 

Parallelization of decomposition algorithms allows modelers to solve problems whose 
size made them previously unsolvable. In this section, we first investigate how the 
parallel lower bounding NDSNPA algorithm is implemented. We then present results 
comparing solution time requirements for four differently sized versions of the 
stochastic economic model when solved by the parallel cutting plane algorithm and 
the projected augmented Lagrangian algorithm (the solution algorithm used by 
MINOS [10]). This will give an indication of the value of the algorithm and when it 
should be used. 

6.1 Parallel implementation 

The original Global 2100 deterministic model is a large nonlinear program with a total 
of 493 variables (99 nonlinear) and 390 constraints (23 nonlinear) spread out over the 
eleven periods of the study horizon. The original model was provided by the Electric 
Power Research Institute. The model is written in GAMS [5] and runs in conjunction 
with the solver MINOS. Because AMPL [7] is the modeling language available on 
the University of Michigan Computer Aided Engineering Network (CAEN), we trans- 
lated the GAMS file into AMPL. The translation was validated by ensuring that out- 
put from both the GAMS and AMPL models was identical. 

To make the model stochastic, we introduced three new types of investment whose 
return affects the period just subsequent to the period of expenditure. The rates of 
return on these investment expenditures are uncertain. The energy technology invest- 
ment expenditures affect the growth in availability of the two generic electrical tech- 
nologies (ADV-HC, ADV-LC) and the three nonelectrical technologies (Renewable 
and Synthetic fuels and the nonelectric backstop fuel). The resource exploration 
expenditures add to the stock of two types of fuels (oil and gas), each having two 
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grades (high cost and low cost). Finally, energy efficiency investment expenditures 
contribute to increasing the overall efficiency with which energy resources are 
converted from input to output in the Cobb-Douglas  production function. The rates 
of  return for each scenario of  the four scenario case of the model are included in 
table 1. 3) 

Table 1 

Returns on investment. 

Technology name Scen 1 Scen 2 Seen 3 Seen 4 

ADV-HC 0.094 0.33 3.3 10.328 
ADV-LC 0. I 15 0.4 4.0 12.6492 
OIL-LC 7 10 25 48 
GAS-LC 7 10 25 48 
OIL-HC 7 10 25 48 
GAS-HC 7 10 25 48 
RNEW 0.89 3.1 30.9 97.98 
SYNF 2.36 8.17 81.7 258.2 
NE-BAK 0.632 2.2 21.9 69.3 
EFFICIENCY 0.06 0.12 0.15 0.17 

After having developed the model, we developed the computer code and data 
structures necessary to run the decomposition algorithm. To ensure flexibility in the 
model, we decided to use AMPL as a modeling language wherever possible. AMPL 
is not only flexible but, like GAMS, has the benefit of modeling nonlinearity so that 
less programming effort is required (i.e., writing special FORTRAN code for the calcu- 
lation of gradient and Hessian information). 

From the AMPL model file that describes the original deterministic problem with 
multiple periods, we developed a generic single period AMPL model file. A C shell 
program uses this generic AMPL model file as a template to create a model file for 
every node in the stochastic tree. These model files for each node are used by the 
decomposition code. 

We wrote the decomposition algorithm itself in C. We used the package of  C sub- 
routines, PVM, to run the algorithm in parallel on a network of  IBM RISC 6000 
workstations. We designed the decomposition algorithm so that each processor solves 
a subtree of  the entire stochastic tree as in the four scenario case illustrated in figure 2. 
The PVM subroutines make the passing of  data between subtrees on separate proces- 

sors possible. 

12 3) Nonelectrical technologies: EXAJ/1012 $. Electrical technologies: TKWH/10 $. Efficiency: (Percent- 
age reduction in energy intensity)/1012 $. 
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4-SCENARIO PROBLEM 

1990 2000 2010 2020 2030 2040 ........... 21(}0 

I_ 

• PROC. I I 

• PROC. 3 I 

• PROC. 4 I 

• PROC. 2 [ 

Figure 2. Processor assignment of nodes. 

Each subtree processor maintains an array of strings containing the entire model 
file of each node problem in its subtree. It reads these in at the beginning of the 
algorithm. Also at the beginning of the algorithm as each subtree processor begins, 
the C program starts AMPL as a forked child process and then creates communication 
pipes between the parent process and AMPL. In this way, the parent process can 
send AMPL the appropriate node model (in the form of a large string) to send to a 
solver. AMPL is then able to pass back the resulting variable and cut information to 
the parent process. The parent process can then pass this on to which ever node or 
nodes have need of it at this particular place in the algorithm and pass a message back 
to AMPL resetting it for the next model. Results of the implementation follow in the 
next section. 

6.2 Parallel computational results 

In the original continuous problem, each return on investment, starting with 2030, is 
modeled as a uniformly distributed random variable between the upper and lower 
bounds of the first and fourth scenarios from the discretized problem. That is, the 
values of the payoffs from these two scenarios provide lower and upper bounds for 
each payoff. We chose the uniform distribution to reflect the great uncertainty regard- 
ing investment returns in the future. 

Using the parallel implementation of the lower bounding decomposition method, 
we solved the stochastic program for varying numbers of scenarios. The results of 
these experiments are listed in table 24) 

a) Stopping criterion: e = 0.01. 
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Table 2 

Parallel performance. 

32 scenarios 16 scenarios 8 scenarios 4 scenados 

Nodes 161 97 57 33 

Rows 54946 27474 13738 6870 

Nonlinear 
1409 705 353 177 constraints 

Columns 23809 11905 5953 2977 

Nonlinear 
4224 2112 1056 528 variables 

Matrix 
112714 54250 26010 12386 elements 

Projected 

Augmented 21219 see 5521 1436 423 see 
Lagrangian 
Algorithm 

Parallel 11314 see 6180 3526 2726 sec computation 

Number of 
8 8 8 4 processors 

Solution 58744.38 58744.934 58745.100 58745.605 

We analyzed four problems with 4, 8, 16 and 32 scenarios respectively. This corre- 
sponds to 33, 57, 97 and 161 nodes in the stochastic tree. With regard to the relative 
sizes of the problems, each doubling in the number of scenarios is accompanied by an 
approximate doubling in most of the key characteristics of the problems (e.g., number 
of rows, matrix elements). 

The quality of the bound varies little between the different problems. In fact, the 
largest lower bound differs from the smallest lower bound by only 0.002%. This seems 
to be due to the fact that, as we increased the number of scenarios, we did not sub- 
stantially increase the coverage of the random space. We only added detail to regions 
of the space that were already well approximated by the existing scenarios. 

Although for the first three problems the Projected Augmented Lagrangian Algo- 
rithm (MINOS) solves the problem more quickly than the parallel implementation of 
the NDSNPA algorithm, the rate at which the solution times increase for the parallel 
method is slower than that for MINOS. Once the number of scenarios is increased to 
32, MINOS solves the problem more slowly than the parallel code. For nonlinear 
convex problems of this size and larger, it appears that the NDSNPA algorithm, pref- 
erably implemented in parallel, is the method of choice. 
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The computational results from this section indicate that parallel algorithms based 
on decomposition techniques hold great promise as a means for solving previously 
unsolvable models in a timely fashion. Continued work with specialized parallel 
systems having faster network speed than the network linking the RISC 6000 proces- 
sors used in this study should make this even more apparent. 

7 Conclusion 

This paper developed a decomposition method for a stochastic nonlinear program in 
which nonlinearities appear within a period only and in which the random variables 
affect period to period transitions linearly. We showed how this method achieves any 
desired level of accuracy in a finite number of steps. We then showed how increas- 
ingly accurate refinements of the random variables could be efficiently incorporated 
into the method without complete restart of the optimization. 

Our application to a practical economic modeling problem demonstrated signifi- 
cant savings over general purpose methods. Parallel computation also yields high 
efficiencies due to the separation among all subproblems. The method appears quite 
applicable to numerous other applications. More general nonlinear forms would, how- 
ever, require additional consideration to achieve the lower supporting cuts that form 
the basis of this method. 
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