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Production variability in manufacturing systems:
Bernoulli reliability case ∗

Jingshan Li and Semyon M. Meerkov ∗∗

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109-2122, USA

The problem of production variability in serial manufacturing lines with unreliable ma-
chines is addressed. Bernoulli statistics of machine reliability are assumed. Three problems
are considered: the problem of production variance, the problem of constant demand satis-
faction, and the problem of random demand satisfaction generated by another (unreliable)
production line. For all three problems, bounds on the respective variability measures are
derived. These bounds show that long lines smooth out the production and reduce the
variability. More precisely, these bounds state that the production variability of a line with
many machines is smaller than that of a single machine system with production volume
and reliability characteristics similar to those of the longer line. Since all the variability
measures for a single machine line can be calculated relatively easily, these bounds provide
analytical tools for analysis and design of serial production lines from the point of view of
the customer demand satisfaction.
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1. Introduction

1.1. Problems addressed

This paper is devoted to a study of production variability in manufacturing sys-
tems with unreliable machines. Due to machine breakdowns, the number of parts
produced by such systems during a fixed interval of time is a random variable. Its
expected value and variance characterize the production volume and the production
variability, respectively.

The production volume has been the subject of study in a plethora of publication
(see, for instance, review [3]). In contrast, the production variance has been addressed
in just a few recent articles (see, for instance, [4,6,12,13]); they are briefly reviewed
in subsection 1.3 below.
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Although the production variance is a useful performance measure, it gives only
a general, theoretical characterization of the production variability. Indeed, the knowl-
edge of the variance does not yet specify the probability with which a fixed ship-
ping schedule is satisfied, although a fixed shipping schedule is a standard “supplier–
customer” relation in most large volume industries (e.g., the automotive production).
Intuitively, the smaller the variance, the larger the chance to meet the shipping sched-
ule. However, a more direct measure, e.g., the probability to produce a fixed number of
parts during a given shipping period, referred to as “due time performance”, is required
in practice. For very long shipping periods, this probability can be estimated asymp-
totically based on the production volume and its variance (using the Central Limit
Theorem). However, in many practical situations the shipping intervals are short, and
the central limit approach does not apply. Therefore, a direct method for evaluating
the “due time performance” is necessary.

Another problem where the production variance does not directly quantify the
quality of the supplier is the problem of satisfying a random demand. Here the “cus-
tomer” is another production line connected to the “supplier” line by a material han-
dling system. Since the “customer” can be either up or down, the demand is random,
and the problem is to quantify how the random production of the “supplier” satisfies
the random demand of the “customer”.

In this paper, we address all three problems:

1. The production variance problem – a theoretical characterization of the production
variability;

2. The Due Time Performance problem – a characterization of the quality of the
“supplier” in a fixed demand environment;

3. The Random Demand Satisfaction problem – a characterization of the quality of
the “supplier” in a random demand environment.

The main result obtained is as follows: in each of the above problems, the vari-
ability measures can be quantified by simple bounds. These bounds are analytical in
nature and could be used as a tool for design and analysis of production lines from
the point of view of the customer demand satisfaction. In addition, these bounds char-
acterize the nature of the production variability in serial lines. Specifically, they show
that longer lines reduce production variability in the following sense: the production
variability in lines with many machines is smaller than the production variability of
a single machine system with production rate equal to that of the longer line and the
breakdown statistics analogous to those of the machines used in the longer line.

The remainder of this paper is structured as follows: the problem formulation and
a review of the available literature are given in subsections 1.2 and 1.3, respectively.
The production variance problem, the Due Time Performance problem and the Random
Demand Satisfaction problem are discussed in sections 2–4. The conclusions are
formulated in section 5. All the proofs are given in the appendix.
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Figure 1. Serial production line.

1.2. Problem formulations

In this paper, we study exclusively the simplest, but practical, production system
– the serial production line. The basic structure of this system is shown in figure 1,
where the circles represent the machines and the rectangles are the buffers. Two
variations of this structure, to accommodate problems 2 and 3, will be discussed in the
subsequent subsections. In order to introduce the production variance problem, only
the basic structure is required.

1.2.1. Production variance problem
The assumptions formulated below define the machines, the buffers, the interac-

tions between machines, and the demand.

Machines:

(i) Each machine requires a fixed unit of time to process a part. This unit is referred
to as the cycle time. All machines have identical cycle time. The time axis is
slotted with the slot duration equal to the cycle time.

(ii) During a cycle time, each machine can be in one of two states: “up” or “down”.
When up, the machine can process a part. When down, no processing can take
place.

(iii) The state of the machine in each cycle time is determined by the process of
Bernoulli trials. In other words, it is assumed that during each slot machine mi,
i = 1, . . . ,M , is up with probability pi and down with probability 1 − pi; the
state of the machine is determined at the beginning of each cycle, independent of
the state of this machine in the previous cycle.

Remark 1.1. Assumption (iii) defines the Bernoulli statistics of machine breakdowns.
In our experience, many assembly systems obey this reliability model. The reason is
that machine downtime in assembly operations is often of the duration comparable with
that of the cycle time (i.e., the time necessary to accomplish an operation). Physically,
this happens due to the fact that parts have to be assembled with the highest possible
quality and, to do this, operational conveyers are sometimes stopped for a short period
of time. Another frequent perturbation is pallets jam on the conveyors; to correct this
problem also a short period of time is required. In many assembly systems these are
predominant perturbation. These situations lead to the Bernoulli reliability model. In
contrast, the Markovian model (see, for instance, [1,5]) implies that the downtime is
due to a machine’s physical breakdowns which often require long, relative to the cycles,
time to repair. The Markovian model is more appropriate for machine operations.
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Figure 2. Epochs.

Buffers:

(iv) Each buffer, Bi, i = 1, . . . ,M − 1, is capable of storing Ni parts, 1 6 Ni <∞
Starvation rule:

(v) If Bi, i = 1, . . . ,M − 1, is empty at the beginning of the time slot, then mi+1,
i = 1, . . . ,M − 1, is starved during this time slot. The first machine is never
starved.

Blockage rule:

(vi) If Bi, i = 1, . . . ,M − 1, is full at the beginning of a time slot and mi+1, i =
1, . . . ,M − 1, does not take a part from Bi at the beginning of this slot, then mi,
i = 1, . . . ,M − 1, is blocked during this time slot.

Remark 1.2. As follows from assumptions (iii), (v) and (vi), a machine can be down
even if it is starved or blocked. This is referred to as the “time dependent failures”, in
contrast to the “operation dependent failures” considered in [5]. The time dependent
failures are assumed here to simplify the analysis.

Demand:

(vii) From the point of view of the demand, the time axis is divided into “epochs”,
each containing T time slots (figure 2).

(viii) At the end of each epoch, a shipment of D parts has to be available for the
customer. If pa = PR(p1, . . . , pM ,N1, . . . ,NM−1) is the production rate of the
system, i.e., the average number of parts produced by the last machine, mM ,
during a time slot, then

D 6 Tpa. (1.1)

Remark 1.3. A method for calculating the production rate in the system defined by
(i)–(vi) has been developed in [8]. Thus, the upper bound of D is readily available.

Demand satisfaction policy:

(ix) All parts produced per epoch are shipped to the customer, i.e., no backloging
takes place and no parts produced are stored.

Remark 1.4. Obviously, the above demand satisfaction policy is not practical. This is
exactly why the production variance problem does not have a direct industrial inter-
pretation. Assumption (ix) is introduced here only for the purpose of formulating this
problem.
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Figure 3. Variation in serial production system output.

Assumptions (i)–(ix) define the system under consideration. In the time scale of
the time slot, these assumptions define a stationary, ergodic Markov chain. Only the
steady state of this chain (i.e., the invariant measure or the stationary distribution) is
considered in this work. We refer to this steady state as the “normal system operation”.

Let t be the number of parts produced by the last machine, mM (and according
to assumption (ix), shipped to the customer), during the epoch in the normal system
operation. Obviously, E(t) = Tpa characterizes the production volume per epoch,
but only on the average; in each particular epoch either more or fewer parts may
be produced. Figure 3 gives a simulation result for a two-machine system where
pa = 0.65 and T = 40 (i.e., E(t) = 26). The production volume per epoch for 100
successive epochs in the normal system operation is shown. The volume varies from
18 to 35 parts, i.e., the variability is substantial. If D = 25 parts/epoch, then in only
about 80% of epochs the demand is met. A similar figure for the case of machines
with Markovian reliability characteristics can be found in [5].

The problem of evaluating this variability is formulated as follows:

Problem 1. Given the production system (i)–(ix), develop a method for evaluating the
variance of t as a function of the system parameters.

A solution of this problem is given in section 2 below.

1.2.2. Due time performance problem
Problem 1 is not practical mainly because no accumulation of parts produced per

epoch is allowed in order to satisfy the demand in the subsequent epochs. To enable
this possibility, we modify the structure of figure 1 by introducing the Finished Goods
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Figure 4. Serial production line with finished goods buffer.

Buffer (FGB) as shown in figure 4. The assumptions concerning this system are as
follows:

Machines:
Remain the same as in assumptions (i)–(iii).

Buffers:
A small modification is required:

(iv′) The system has M buffers, B1, . . . ,BM . Buffers B1, . . . ,BM−1 are the in-
process buffers, 1 6 Ni <∞, i = 1, . . . ,M−1; buffer BM is the finished goods
buffer (FGB), 0 6 NM <∞.

Starvation rule:
Remains the same as in assumption (v).

Blockage rule:
Again, a modification is required, due to the presence of the FGB.

(vi′) It is assumed that (vi) holds with one exception: the last machine, mM , can be
blocked during a time slot if the FGB is full at the beginning of this time slot.

Demand:
Remain the same as in assumptions (vii), (viii).

Demand satisfaction policy:

(ix′) At the beginning of epoch i, parts are removed from the FGB in the amount of
min(H(i − 1),D), where H(i − 1) is the number of parts that remained in the
FGB at the end of the (i−1)th epoch. If H(i−1) > D, the shipment is complete;
if H(i− 1) < D, the balance of the shipment, i.e., D −H(i− 1) parts, is to be
produced by mM . Parts produced are immediately removed from the FGB and
prepared for shipment, until the shipment is complete, i.e., D parts are available.
If the shipment is complete before the end of the epoch, the system continues
operating, but with the parts being accumulated in the FGB, either until the end
of the epoch or until the last machine, mM , is blocked, whichever occurs first.
If the shipment is not complete by the end of the epoch, an incomplete shipment
is sent to the customer. No backlog is allowed.

Remark 1.5. The values of D and NM are assumed to be two independent parameters.
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Figure 5. Due time performance of serial production line.

In an appropriately defined state space, the system specified by (i)–(iii), (iv′), (v),
(vi′), (vii), (viii), and (ix′) is again a stationary, ergodic Markov chain. Referring to
its steady state, let ti be the number of parts produced during the ith epoch. Introduce
the Due Time Performance measure (DTP) as follows:

DTP = Pr
(
ti +H(i− 1) > D

)
. (1.2)

Figure 5 illustrates the behavior of this performance measure for a two-machine
line in two cases, with and without the FGB. The DTP is shown as a function of the
capacity of the in-process buffer. If N2, the capacity of the finished goods buffer, is
zero (i.e., no finished goods buffer is present), the DTP is always below 0.8. With
N2 = 3, the DTP is 0.9 when N1 is 4 and goes up to 0.96 when N1 is 10. Obviously,
for any value of N1, the effect of FGB is substantial. In other words, FGB reduces
the production variability more effectively than the in-process buffers.

To analyze this and a number of related phenomena, we formulate

Problem 2. Given the production system, (i)–(iii), (iv′), (v), (vi′), (vii), (viii), and
(ix′), develop a method for evaluating DTP as a function of the system’s parameters.

A solution to the simplest case of this problem and a hypothesis concerning the
general case are given in section 3 below.

1.2.3. Meeting a random demand problem
In many industrial situations, one production line feeds another through a finished

goods buffer. A typical structure of this situation is shown in figure 6. Since the
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Figure 6. Serial production system with random demand.

“customer production line” could be either up or down, the problem of satisfaction of
random demand arises. To formulate this problem, the following is assumed:

Machines:
Remain the same as in assumptions (i)–(iii).

Buffers:
Remain the same as in assumption (iv’).

Starvation rule:
Remain the same as in assumption (v).

Blockage rule:
Remain the same as in assumption (vi’).

Demand:

(vii′) Demand, d, is a random variable which takes value 1 (“up”) with probability pc
and 0 (“down”) with probability 1− pc.

Demand satisfaction policy:

(viii′) If d(i) = 1, one part should be delivered to the customer at the beginning of
time slot i; if the FGB is empty at the beginning of this time slot, the demand is
not satisfied. If d(i) = 0, no parts are removed from the FGB at the beginning
of slot i and the demand is met.

The system defined by assumptions (i)–(iii), (iv′), (v), and (vi′)–(viii′) is again
a stationary, ergodic Markov chain. Let h(i) be the occupancy of the FGB at the
beginning of the slot i during the normal system operation. Introduce the Random
Demand Satisfaction measure (RDS) as follows:

RDS = Pr
(
h(i) > d(i)

)
. (1.3)

Figure 7 illustrates the behavior of this performance measure for a two-machine
system with and without the FGB. In both cases, the customers have the same random
demand rate. The RDS, obtained by simulations, is plotted against the capacity of the
in-process buffer. As follows from this figure, if N2, the capacity of the finished goods
buffer, is zero (i.e., no finished goods buffer is present), the RDS is always below 0.85.
With N2 = 2, the RDS is 0.87 if N1 = 1, 0.93 if N1 = 3 and up to 0.95 when N1

is 10. Obviously, for any value of N1, the effect of FGB is again substantial. In
other words, FGB improves the random demand satisfaction more effectively than the
in-process buffers.
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Figure 7. Random demand satisfaction of serial production system.

To investigate this phenomenon in more detail, we formulate

Problem 3. Given the production system (i)–(iii), (iv′), (v), and (vi′)–(viii′), develop
a method for calculating RDS as a function of the system’s parameters.

A solution of this problem is given in section 4 of this paper.

1.3. Literature review

As has been pointed out above, the number of publications on production vari-
ability due to machine breakdowns is very limited. Most of them address only the
problem of the production variance. Among those, paper [12] is perhaps the first one
in the area. It presents a numerical technique for production variance evaluation. Pa-
pers [6] and [7] developed an analytical technique and its numerical implementation.
Both approaches, however, are numerically intensive, which precludes the analysis
of systems with many machines and large buffers. The latest result in this line of
research, [13], overcomes this problem and provides a numerically efficient algorithm
for the production variance evaluation in a large class of two-machine lines with any
capacity of the intermediate storage. Paper [14] provides a closed form expression for
the variance rate of the output from multistation production lines with no interstation
buffers and time-dependent failures.

Another direction of research was initiated in [4]. Problem 1 of subsection 1.2
is motivated by this formulation. The approach of [4] is based on the exact calcu-
lation of the production variance for a single machine with the Markovian reliability
characteristics and a decomposition technique for longer lines. These ideas have been
extended in [2] and [9].
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The study of the Due Time Performance problem was initiated in [9]. The case of
a single machine with Markovian reliability statistics has been analyzed both exactly
and asymptotically (with respect to the length of the shipping period). The hypothesis
advanced in [4] concerning the normality of the number of parts produced during a
shipping period has been justified. Some properties of the DTP as a function of system
parameters have been analyzed. Paper [10] studies the distribution and the variance
of time to produce a fixed lot size with single unreliable machine. In addition, Due
Time Performance was analyzed in [15,16]. It should be pointed out that all studies
mentioned above do not consider a finished goods buffer. To the best of our knowledge,
the literature offers no results on DTP in systems with FGB.

There seem to be no publications available in the literature directly addressing
the Random Demand Satisfaction problem.

This brief review indicates that the production variability is a largely unexplored
area of research. Given its practical importance in the framework of the customer
demand satisfaction (or customer delight, as some Japanese companies refer to it),
variability of production can be viewed as an important topic for research, both from
the industrial and theoretical perspectives.

2. Production variance problem

Consider the M -machine line {p1, . . . , pM ,N1, . . . ,NM−1} (figure 8). Following
the procedure developed in [8], aggregate this line into a single machine defined by
pa = PR(p1, . . . , pM ,N1, . . . ,NM−1), where PR(·) is the production rate of the line
under consideration calculated using the technique developed in [8].

Let VarM (t) be the production variance of the M -machine line {p1, . . . , pM ,
N1, . . . ,NM−1} during the epoch of length T . Let Var1(t) be the production variance
of the one-machine system with p = pa. Obviously, due to the Bernoulli statistics of
the breakdowns,

Var1(t) = Tpa(1− pa). (2.1)

Theorem 2.1. Under assumptions (i)–(ix),

VarM (t) 6 Var1(t). (2.2)

Proof. See the appendix. �

Figure 8. M -machine serial production line.
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Figure 9. Upper bound of production variance.

The tightness of the bound of theorem 2.1 is illustrated in figure 9 for two-, three-,
four- and five-machine lines. Here VarM (t) is obtained by simulations and Var1(t) is
calculated according to (2.1).

Remark 2.1. All numerical simulations mentioned in this paper have been carried out
as follows: in each run of the discrete event model, zero initial conditions for all
buffers have been assumed and a 5000T time slots “warm up” period have been car-
ried out. The next 25000T slots have been used for the statistical analysis. The
confidence intervals have been calculated using the methodology of [17] with 50 runs.
The t distribution was used. It turns out that the confidence intervals obtained are too
small to be shown in the figures. For instance, for the system of figure 9, example 1,
the 95% confidence interval of

√
Var2 for T = 10 is [1.3975, 1.3997], for T = 20 is

[1.9471, 1.9505], and for T = 30 is [2.3718, 2.3769]. Similar numbers are obtained
for all other examples.

Along with the variance, it may be of interest to consider another measure of
variability – the coefficient of variation. In the case of t’s, the coefficient of variation,
v(t), is defined as

v(t) =

√
Var(t)
E(t)

=

√
Var(t)
Tpa

. (2.3)
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Figure 10. Upper bound of coefficients of variation.

Let vM (t) and v1(t) denote the coefficients of variation for the M - and one-
machine lines, respectively, i.e.,

vM (t) =

√
VarM (t)
Tpa

,

v1(t) =

√
Var1(t)
Tpa

=

√
1− pa

Tpa
.

Then, from theorem 2.1, follows

Corollary 2.1. Under assumptions (i)–(ix),

vM (t) 6 v1(t) =

√
1− pa

Tpa
. (2.4)

The tightness of bound (2.4) is illustrated in figure 10.
Concluding this section, it should be pointed out that the bounds obtained above

could be used for design of production lines from the point of view of the customer
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demand satisfaction. Indeed, if the system is designed so that the upper bounds meet
the requirements, then the variance and the coefficient of variation, observed during
the system operation, will also satisfy the specifications. Obviously, this approach may
result in system “over-design” (due to the relative lack of tightness of the bounds),
however, at least from the point of view of the coefficient of variation this over-design
may not be too excessive.

Finally, it should be pointed out that since this formulation contains no finished
goods buffer, the design of the system from the point of view of its variance amounts
to the design of the system from the point of view of its production rate: since the right
hand side of (2.2) is just the variance of the binomially distributed random variable,
a decrease of this variance is accomplished by the increase of the production rate,
provided that the production rate is greater than 0.5. In contrast, in the Due Time
Performance problem and in the Random Demand Satisfaction problem, the capacity
of the FGB is another design variable which affects the production variability in the
strongest manner.

3. Due Time Performance problem

Consider the M -machine line with finished goods buffer {p1, . . . , pM ,N1, . . . ,
NM−1,NM} (figure 11). The Due Time Performance measure, introduced in section 1,
is defined as

DTP = Pr
(
ti +H(i− 1) > D

)
,

where ti is the number of parts produced during the ith epoch, H(i− 1) is the number
of parts that remained in the FGB at the end of the (i− 1)th epoch.

Unlike the case of the production variance, the calculation of DTP even for a
one-machine system is a nontrivial problem. Therefore, before addressing the general
case, we study first a one-machine production system. The same approach is used in
the subsequent section for the Random Demand Satisfaction problem.

3.1. Due Time Performance measure of one-machine system

Consider a one-machine production system with the FGB of capacity N . Intro-
duce notations:

ti = number of parts produced during epoch i if no blockage occurs.

Figure 11. M -machine serial production line with FGB.
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zk = Pr
(
H(i− 1) = k

)
, k = 0, 1, . . . ,N.

rk,j = Pr(ti = D + k − j), k = 1, 2, . . . ,N − 1, j = 0, 1, . . . ,N.

rN ,j = Pr(ti > D +N − j), j = 0, 1, . . . ,N. (3.1)

Probabilities rk,j and rN ,j can be easily calculated since they refer to the system
without the FGB. Specifically,

rk,j =

(
T

D + k − j

)
pD+k−j(1− p)T−(D+k−j), (3.2)

rN ,j =
T∑

k=D+N−j

(
T

k

)
pk(1− p)T−k. (3.3)

Using the above notations, the DTP of a one-machine system with FGB can be
calculated as follows:

Theorem 3.1. Let Z = [z1, . . . , zN ]′ be a vector defined by

Z = −R−1Z0, (3.4)

where matrix R and vector Z0 are as follows:

R =


r1,1 − r1,0 − 1 r1,2 − r1,0 · · · r1,N−1 − r1,0 r1,N − r1,0

r2,1 − r2,0 r2,2 − r2,0 − 1 · · · r2,N−1 − r2,0 r2,N − r2,0

. . . . . . . . . . . . · · ·
rN−1,1 − rN−1,0 rN−1,2 − rN−1,0 · · · rN−1,N−1 − rN−1,0 − 1 rN−1,N − rN−1,0

rN ,1 − rN ,0 rN ,2 − rN ,0 · · · rN ,N−1 − rN ,0 rN ,N − rN ,0 − 1

 ,

(3.5)

Z0 =


r1,0

r2,0

· · ·
rN−1,0

rN ,0

 . (3.6)

Then, under assumptions, (i)–(iii), (iv′), (v), (vi′), (vii), (viii) and (ix′), the DTP of the
system with M = 1 is given by

DTP =
N∑
k=0

T∑
j=D−k

zk

(
T

j

)
pj(1− p)T−j . (3.7)

Proof. See appendix. �

An illustration of the behavior of DTP as a function of the FGB capacity is given
in figure 12. Obviously, DTP is a monotonically increasing function of N . However,
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Figure 12. DTP of one-machine system.

contrary to some practitioners’ belief, there is no reason to have very large FGBs: a
capacity of 10–15 results in practically the same DTP as N =∞.

3.2. DTP of M -machine system: a lower bound

Let DTPM be the DTP measure for an M -machine line with FGB of capacity NM ,
and let pa be the production rate of this line when no FGB is present. Let DTP1 be
the DTP measure of a one-machine line with p = pa and the FGB of capacity NM .

Hypothesis 3.1. Under assumptions (i)–(iii), (iv′), (v), (vi′), (vii), (viii) and (ix′), the
following inequality holds:

DTPM > DTP1.

Unfortunately, at present we do not have a formal proof of this statement. How-
ever, in every system that we studied numerically this relationship was true. In these
studies, the left hand side of the inequality was evaluated numerically and the right
hand side was calculated using (3.7). An illustration is given in figure 13 for three-,
four-, and five-machine systems.
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Figure 13. Lower bound of DTP.

Remark 3.1. In figure 13, example 1, the 95% confidence interval of DTP3 for
N3 = 2 is [0.9349, 0.9357], for N3 = 6 is [0.9855, 0.9861], and for N3 = 10 is
[0.9969, 0.9971]. Similar small confidence intervals have been obtained for the rest of
the cases of figure 13.

The bound of hypothesis 3.1 can be used for design of the finished goods buffers
in serial production lines. Indeed, since one is typically interested in having DTP as
high as possible, if the lower bound meets the requirement, then the real DTP does as
well. This, of course, is contingent on the validity of the hypothesis, which we believe
is true: in spite of our efforts, no single counter-example has been found. We also
believe that a proof of this hypothesis would be an important contribution to the area,
and the interested reader is encouraged to attempt such a proof.

4. Meeting a Random Demand problem

Consider the M -machine line with random demand and finished goods buffer
{p1, . . . , pM ,N1, . . . ,NM−1,NM} and pc (figure 14). The random demand satisfaction
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Figure 14. M -machine serial production line with random demand.

measure was defined in section 1 as

RDS = Pr
(
h(i) > d(i)

)
,

where h(i) is the number of parts in the finished goods buffer at the beginning of slot
i and d(i) is the demand in the ith slot, d(i) = 0 or 1.

4.1. Random Demand Satisfaction measure of one-machine system

Theorem 4.1. Under assumptions (i)–(vi), (vii′), and (viii′) and M = 1, the following
holds:

RDS =


1− 1− p

N + 1− ppc if p = pc,

1− (1− p)(1− α)
1− p

pc
αN

pc if p 6= pc,
(4.1)

where

α =
p(1− pc)
pc(1− p)

.

Proof. See the appendix. �

It follows from this expression that RDS is monotonically increasing as a function
of the FGB capacity and the machine’s reliability and monotonically decreasing as a
function of the demand, pc. This is illustrated in figure 15.

4.2. RDS of M -machine system: a lower bound

Let RDSM be the RDS measure for an M -machine line with FGB of capacity
NM , and let pa be the production rate of this line when no FGB is present. Let RDS1

be the RDS measure of a one-machine system with production rate pa and FGB of
capacity NM . In both systems, the demand rate, pc, is assumed to be the same.

Theorem 4.2. Under assumptions (i)–(iii), (iv′), (v), and (vi′)–(viii′),

RDSM > RDS1. (4.2)

Proof. See the appendix. �
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Figure 15. RDS of one-machine system.

The tightness of the bound (4.2) is illustrated in figure 16 for two-, three-, four-,
and five-machine lines. In this figure, RDSM has been obtained by simulations and
RDS1 was calculated according to theorem 4.1.

Remark 4.1. In figure 16, example 1, the 95% confidence interval of RDS2 for
N2 = 2 is [0.9526, 0.9534], for N2 = 6 is [0.9903, 0.9909], and for N2 = 10 is
[0.9969, 0.9971]. Similar small confidence intervals have been obtained for the rest of
the cases of figure 16.

Theorem 4.2 may also be useful for design of production systems: if the system
is structured so that the lower bound meets the RDS requirement, then RDSM surely
meets this demand.

5. Conclusions

This paper addresses the problem of production variability in serial production
lines. The measures of variability discussed are the production variance, the Due Time
Performance, and the Random Demand Satisfaction. Even in the simplest case of
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Figure 16. Lower bound of RDS.

machines with Bernoulli reliability statistics, considered here, the exact calculation of
these variability measures for production systems with many machines is a formidable
problem. Fortunately, however, these measures could be bounded relatively easily
and in the desired direction, so that the bounds obtained could be used for design
of finished goods buffers in a number of manufacturing situations. This provides a
practical significance of the work.

The theoretical contribution is that, as the bounds show, longer lines smooth out
the production and result in a variability lower than that of one-machine systems with
similar production rates and machine reliability characteristics. This could be viewed
as an argument for distributing the material processing among several stations and
against using a single machine capable of performing numerous operations.

Appendix

Due to space limitations, we provide here only sketches of most proofs. The
complete proofs can be found in [11].
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Proof of theorem 2.1. We begin with the two-machine system and then extend the
result to the M -machine case.

Introduce the following notations:

x(i) =

{
1, machine mM produces a part at time slot i, i = 1, 2, . . . ,T ,
0, machine mM fails to produce a part at time slot i, i = 1, 2, . . . ,T .

t =
∑T

i=1 x(i) the number of parts produced by machine mM during an epoch in

the steady state operation.

h(i) is the occupancy of the last buffer BM−1 at the beginning of slot i.

The proof of theorem 2.1 consists of the following steps:
Step 1. Express the variance of the number of parts produced per epoch in the

steady state of the system’s operation in terms of appropriate conditional probabilities:

VarM (t) = 2
T−1∑
i=1

T∑
j=i+1

Pr
(
x(j) = 1 | x(i) = 1

)
Pr
(
x(i) = 1

)
+

T∑
i=1

E
(
[x(i)]2)− T 2p2

a. (A.1)

Step 2. Show that in a two-machine system the probability of the buffer being
non-empty at the beginning of slot i+1, given that a part was produced by machine m2

at slot i, is less than or equal to the probability of the buffer being non-empty at the
beginning of slot i+ 1, given that a part was not produced by machine m2 at slot i:

Pr
(
h(i+1) > 0 | x(i) = 1

)
6 Pr

(
h(i+1) > 0

)
6 Pr

(
h(i+1) > 0 | x(i) = 0

)
. (A.2)

Step 3. Show that in a two-machine system the probability of the buffer being
non-empty at the beginning of slot i + k, k = 1, 2, . . . ,T − i, given that a part was
produced by machine m2 at slot i, is less than or equal to the probability of the buffer
being non-empty at the beginning of slot i+ k, given that a part was not produced by
machine m2 at slot i:

Pr
(
h(j) > 0 | x(i) = 1

)
6 Pr

(
h(j) > 0

)
6 Pr

(
h(j) > 0 | x(i) = 0

)
,

j = i+ 1, i+ 2, . . . ,T. (A.3)

Step 4. Show that in an M -machine system, the probability of the last buffer
BM−1 being non-empty at the beginning of slot i+ k, k = 1, 2, . . . ,T − i, given that
a part was produced by the last machine mM at slot i, is less than or equal to the
probability of the last buffer BM−1 being non-empty at the beginning of slot i + k,
given that a part was not produced by the last machine mM at slot i:

Pr
(
h(j) > 0 | x(i) = 1

)
6 Pr

(
h(j) > 0

)
6 Pr

(
h(j) > 0 | x(i) = 0

)
,

j = i+ 1, i+ 2, . . . ,T. (A.4)
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Step 5. Shows that in an M -machine system, the probability that the last machine
mM produces a part at slot i+ k, k = 1, 2, . . . ,T − i, given that a part was produced
by the last machine mM at slot i, is less than or equal to the unconditional probability
that the last machine mM produces a part at slot i+ k:

Pr
(
x(j) = 1 | x(i) = 1

)
6 Pr

(
x(j) = 1

)
, j = i+ 1, i+ 2, . . . ,T. (A.5)

Step 6. Use steps 1 and 5 to prove the statement of the theorem: for a single
machine system with the isolation production rate Pr(x(i) = 1) = pa, due to the
Bernoulli reliability statistics,

Var1(t) = 2
T−1∑
i=1

T∑
j=i+1

Pr
(
x(j) = 1

)
Pr
(
x(i) = 1

)
+

T∑
i=1

E
(
[x(i)]2)− T 2p2

a. (A.6)

Therefore,

VarM (t)− Var1(t) =
T∑
i=1

T∑
j=1, j 6=i

[
Pr(x(j) = 1 | x(i) = 1)− Pr(x(j) = 1)

]
× Pr(x(i) = 1) 6 0. (A.7)

Thus,

VarM (t) 6 Var1(t). �

Proof of theorem 3.1. The logic of this proof is as follows:
Step 1. Express the due time performance in terms of the probability of the

finished goods buffer occupancy at the end of the epoch (equation (A.8)):

DTP =
N∑
k=0

Pr
(
ti > D − k

)
Pr
(
H(i− 1) = k

)
. (A.8)

Step 2. Derive the characterization of the probability mass function, Pr(H(i) = k),
for k = 1, 2, . . . ,N − 1, where H(i) is the number of parts in the Finished Goods
Buffer (FGB) at the end of the ith epoch:

Pr
(
H(i) = k

)
=

N∑
j=0

Pr
(
ti = D + k − j

)
Pr
(
H(i) = j

)
, k = 1, . . . ,N − 1, (A.9)

i.e.,

zk =
N∑
j=0

rk,jzj , k = 1, . . . ,N − 1. (A.10)
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Step 3. Same as step 2 but for k = N :

Pr(H(i) = N ) =
N∑
j=0

Pr
(
ti > N +D − j

)
Pr
(
H(i− 1) = j

)
, (A.11)

i.e.,

zN =
N∑
j=0

rN ,jzj. (A.12)

Step 4. Same as step 2 but for k = 0:

Pr
(
H(i) = 0

)
= 1−

N∑
k=1

Pr
(
H(i) = k

)
, (A.13)

i.e.,

z0 = 1−
N∑
k=1

zj . (A.14)

Step 5. Combine the results of steps 2–4 into matrix–vector form and solve for
the probability mass function, Pr(H(i) = k), k = 0, 1, . . . ,N :

(r1,1 − r1,0 − 1)z1 + (r1,2 − r1,0)z2 + · · ·+ (r1,N − r1,0)zN = −r1,0,

(r2,1 − r2,0)z1 + (r2,2 − r2,0 − 1)z2 + · · ·+ (r2,N − r2,0)zN = −r2,0,

· · · · · · · · ·
(rN−1,1 − rN−1,0)z1 + (rN−1,1 − rN−1,0)z2 + · · ·

+ (rN−1,N−1 − rN−1,0 − 1)zN−1 + zN = −rN−1,0,(
rN ,1 − rN ,0

)
z1 +

(
rN ,2 − rN ,0

)
z2 + · · ·+ (rN ,N − rN ,0 − 1)zN = −rN ,N ,

(A.15)

or,

RZ = −Z0. (A.16)

Thus,

Z = −R−1Z0. (A.17)

Step 6. From the above calculation, obtain the claim of the theorem:

DTP =
N∑
k=0

zkPr
(
ti > D − k

)
=

N∑
k=0

T∑
j=D−k

zk

(
T

j

)
pj(1− p)T−j. �
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Proof of theorem 4.1. By definition of RDS, we have

RDS = Pr
(
h(i) > d(i)

)
= 1− Pr

(
h(i) < d(i)

)
= 1− Pr

(
d(i) = 1,h(i) = 0

)
= 1− Pr

(
d(i) = 1

)
· Pr
(
h(i) = 0

)
= 1− pc · Pr

(
h(i) = 0

)
. (A.18)

By considering the system as a two-machine line, from [8] we obtain

Pr
(
h(i) = 0

)
=


1− p

N + 1− p if p = pc,

(1− p)(1− α)
1− p

pc
αN

if p 6= pc,
(A.19)

where α = p(1−pc)
pc(1−p) . Therefore,

RDS =


1− 1− p

N + 1− ppc if p = pc,

1− (1− p)(1− α)
1− p

pc
αN

pc if p 6= pc.
�

Proof of theorem 4.2. Consider two systems: system 1 with parameters {p1, p2, . . . ,
pM , pc,N1,N2, . . . ,NM−1,NM}, and system 2 with parameters {pa, pc,NM} where
pa = PR(p1, p2, . . . , pM ,N1,N2, . . . ,NM−1). Introduce the following notations:

sa = probability that machine mM is starved in a system where no blockage of mM

takes place.

sM = probability that machine mM is starved in the system defined by assumptions

(i)–(iii), (iv′), and (vi′)–(viii′).

hM = occupancy of the Finished Goods Buffer in system 1 at the beginning of the

time slot.

ha = occupancy of the Finished Goods Buffer in system 2 at the beginning of the

time slot.

From (A.18), we have,

RDSM = 1− pc · Pr(hM = 0),

RDS1 = 1− pc · Pr(ha = 0). (A.20)

Since

Pr(hM = 0) = Pr(hM = 0)(1− pM + pMsM ) + Pr(hM = 1)pc(1− pM + pMsM ),

then

Pr(hM = 1) =
pM (1− sM )

pc(1− pM (1− sM ))
Pr(hM = 0).
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As in [8],

Pr(hM = k) =
pkM (1− sM )k(1− pc)k−1

pkc (1− pM (1− sM ))k
Pr(hM = 0).

Then

NM∑
k=0

Pr(hM = k) = Pr(hM = 0)

[
1 +

pM (1− sM )
pc(1− pM (1− sM ))

+
p2
M (1− sM )2(1− pc)
p2
c(1− pM (1− sM ))2

+ · · ·+ pNMM (1− sM )NM (1− pc)NM−1

pNMc (1− pM (1− sM ))NM

]
= Pr(hM = 0)AM = 1,

where

AM = 1 +
pM (1− sM )

pc(1− pM (1− sM ))
+
p2
M (1− sM )2(1− pc)
p2
c(1− pM (1− sM ))2 + · · ·

+
pNMM (1− sM )NM (1− pc)NM−1

pNMc (1− pM (1− sM ))NM
. (A.21)

Analogously, we write

NM∑
k=0

Pr(ha = k)

= Pr(ha = 0)

[
1 +

pa
pc(1− pa)

+
p2
a(1− pc)

p2
c(1− pa)2 + · · · + pNMa (1− pc)NM−1

pNMc (1− pa)NM

]
= Pr(ha = 0)Aa = 1,

where

Aa = 1 +
pa

pc(1− pa)
+

p2
a(1− pc)

p2
c(1− pa)2 + · · · + pNMa (1− pc)NM−1

pNMc (1− pa)NM
. (A.22)

Therefore, we obtain

AMPr(hM = 0) = AaPr(ha = 0). (A.23)

Since

sa > sM ,

then

pM (1− sM ) > pM (1− sa) = pa,
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which implies

pM (1− sM )
1− pM (1− sM )

>
pa

1− pa
.

Substituting this into (A.21) and (A.22), we have

AM > Aa.

From (A.23), it follows that

Pr(hM = 0) < Pr(ha = 0).

Substituting this into (A.20), we finally obtain

RDSM > RDS1. �
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