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This paper models and analyzes multi-stage transfer lines with unreliable machines and
finite buffers. The machines have exponential operation, failure, and repair processes. First,
a mixed vector–scalar Markov process model is presented based on some notations of mixed
vector–scalar operations. Then, several steady-state system properties are deduced from this
model. These include the reversibility and duality of transfer lines, conservation of flow, and
the flow rate–idle time relationship. Finally, a four-stage transfer line case is used to compare
and evaluate the accuracy of some approximation methods presented in the literature with
the exact numerical solutions this model can provide. The properties and their proofs in
this paper lay the theoretic foundation for some widely held assumptions in decomposition
techniques of long transfer lines in the area of manufacturing systems engineering.

1. Introduction

The transfer line is one of the major forms of a production system widely used
in high volume industries such as automobile manufacturing and consumer electronics
production. It consists of a series of machines separated by buffers. Figure 1 depicts
a generic multi-stage transfer line TL, where there are k machines (M1,M2, . . . ,Mk)
separated by k − 1 buffers (B1,B2, . . . ,Bk−1). The squares represent machines and
the circles represent buffers. Parts flow from outside to machine M1, then to buffer
B1, then to machine M2, and so forth until they reach machine Mk, after which they
exit the system. Each part has to be processed on each machine with some positive
processing time. Other terms for a transfer line include flow line, tandem queueing
system and production line.

The performance of a transfer line is often impaired by randomness occurring
in the system such as random failure/repair events and processing time fluctuations.
Hence, buffers are used between machines to mitigate the effects of these variations. By
holding in-process parts temporarily, a buffer may enable work to continue elsewhere
while some machines in the system are under repair or taking an unusually long time
to process a part, and thus increase the system production rate (throughput). One of
the disadvantages of buffers is that they increase the work-in-process (WIP) level in
the system and may result in a longer processing cycle time. Therefore a tradeoff
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Figure 1. k-stage transfer line TL with k machines and k − 1 buffers.

should be made between an appropriate throughput and a suitable WIP level when
transfer lines are designed.

A great deal of literature has been devoted to the modeling and analysis of
transfer and production lines using analytical methods since the early 1950’s because
of their economic importance as well as academic interest. A comprehensive survey
by Dallery and Gershwin [9] provides extensive and elaborate reviews up to that time
in this area. Current textbooks covering topics in this field include Altiok [1], Buzacott
and Shanthikumar [5], Papadapoulos et al. [19], Helber [16], as well as Gershwin [9],
which gives a detailed introduction on how to model and analyze transfer lines.

Two types of failures have been considered in the literature: operation depen-
dent failures (ODF) and time dependent failures (TDF) (for example, see Dallery and
Gershwin [9] and Gershwin [12]). An ODF can occur only when the machine is
working. On the other hand, a TDF can occur even when the machine is idle (either
starved or blocked). As noticed in Buzacott and Hanifin [6], “most failures of transfer
lines are ODFs rather than TDFs. Thus an ODF model is more appropriate than a TDF
model in the modeling of automated manufacturing systems.” The usual assumptions
of ODF models are that both the time between failures and the time until repairs are
exponentially distributed. This paper assumes ODF models in transfer lines.

As a simplification of reality, three major classes of Markov models have been
considered in the literature for the analysis of transfer lines to reflect the variety and
characteristics of different kinds of systems. A discrete synchronous model is one
type of discrete-state-discrete-time (DSDT) Markov process. In this model, parts are
processed individually and their operation times on all machines are deterministic and
equal. Machines change states (operation, failure, repair and idleness) at some dis-
cretized time instant. Buzacott and Hanifin [6], Gershwin and Schick [15], Yeralan and
Muth [22], and Gershwin [11] deal with this model. A discrete asynchronous model
is a discrete-state-continuous-time (DSCT) Markov process. It assumes discrete parts
but independent random operation times such as exponential or phase-type probability
distribution. Gershwin and Berman [13], Berman [3], Choong and Gershwin [7], and
Jeong and Kim [17] take this type of model. A continuous model is a continuous
time, discrete-and-continuous mixed state (MSCT) Markov model. In this model, the
processing speed of machines may be independent and deterministic, but the material
is treated as continuous flow rather than discrete parts. The quantity of material in a
buffer is a real number ranging from zero to the capacity of the buffer. Dallery et al.
[8], Burman [4], and Helber [16] study this model.

For all of these Markov models, the exact analytical solutions of system perfor-
mance such as the system production rate and average WIP levels are only available
in the case of two-machine transfer lines. For example, see Buzacott and Hanifin [6]
for DSDT solutions, Gershwin and Berman [13] for DSCT solutions, and Gershwin
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and Schick [14] for MSCT solutions. Gershwin and Schick [15] attempt to extend
their analytic solution to three machines. Gershwin [12] gives a thorough introduction
to these solutions. However, it is very difficult (if not hopeless) to obtain exact an-
alytical solutions of transfer lines with more than three machines. The major reason
is that the system states increase exponentially with the increase of machines. The
curse of dimensionality makes such problems intractable even when more powerful
computers are available. As a result, two main approximate techniques have been
proposed: decomposition methods and aggregation methods. The idea of the decom-
position technique is to decompose the analysis of a multi-stage line into the analysis of
a set of two-machine lines, which are much easier to analyze. The set of two-machine
lines is assumed to have equivalent or similar behaviors to the original system. An
approximate decomposition method is presented by Gershwin [11] for DSDT models.
Choong and Gershwin [7] give the decomposition method for DSCT models. Dallery
et al. [8] propose a DDX decomposition method for continuous models. Burman [4]
then improves this DDX method. On the other hand, the basic idea of the aggregation
technique is to reduce the system dimension by replacing a two-machine-one-buffer
sub-line by one single equivalent machine in the system. De Koster [10] and Terracol
and David [20] use aggregation techniques. Numerical and simulation experience indi-
cates that the DDX decomposition method is usually fast and reliable with satisfactory
accuracy, while the errors of aggregation methods may sometimes be large.

While there has been a great deal of literature on transfer line analysis, there
is still much work to be done. For example, although the exact analytical solutions
of generic multi-stage transfer lines are not available, their exact numerical solutions
do exist. Up to now few people provide comparisons between the exact numerical
solutions and the approximation solutions. Most of the comparisons are done between
approximation methods and simulation. Therefore designing some model to provide
these exact numerical solutions is meaningful in that they may be used to compare the
accuracy of different approximate methods in small-size transfer line case studies. This
paper presents a mixed vector–scalar Markov process model for multi-stage transfer
lines with exponential operation, failure, and repair processes. This model is a natural
extension of the scalar DSCT Markov model of two-machine-one-buffer transfer lines
proposed by Gershwin and Berman [13]. Several system properties are proven based
on this model, including the reversibility and duality of transfer lines, conservation
of flow, and the flow rate–idle time relationship. A four-stage transfer line is used to
compare and evaluate the accuracy of two decomposition algorithms with the exact
numerical solutions this model can provide.

The major contribution of this paper is that for the first time the exact numerical
solutions for small-size multi-stage transfer lines can be obtained and can be used to
compare and evaluate the accuracy of some other approximation methods presented in
the literature. The proofs in this paper also help verify the validity of Markov process
models on analyzing manufacturing systems.
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2. Notations for mixed vector–scalar operations

In this paper vectors are denoted by bold-faced letters and scalars by normal
letters. For example, 0 is a null vector and 0 is integer zero. Ik = (1, 1, . . . , 1)
denotes a k-dimension vector with all its elements equal to 1.

Given a vector x = (x1,x2, . . . ,xn), a scalar a, and an integer i, we have the
following mixed vector–scalar operation notations:

1. Addition of vector x and scalar a with index i:

x+ ai is defined as

{
(x1,x2, . . . ,xi−1,xi + a,xi+1, . . . , xn), if 1 6 i 6 n,
x, else.

2. Replacement of vector x’s ith element by scalar a:

(x|xi = a) is defined as

{
(x1,x2, . . . ,xi−1, a,xi+1, . . . ,xn), if 1 6 i 6 n,
x, else.

3. Reduction of vector x’s ith element:

x/xi is defined as

{
(x1,x2, . . . ,xi−1,xi+1, . . . ,xn), if 1 6 i 6 n,
x, else.

The above mixed vector–scalar operations can be extended to one-vector–multiple-
scalar operations by recursive definitions. For example, given scalar a and b, integer
i and j, we define x + ai + bj as (x + ai) + bj , define x|(xi = a,xj = b) as
((x|xi = a)|xj = b), and define x/(xi,xj) as ((x/x)/xj).

In addition, the following vector operation notations are used:

4. The join of an n-dimension vector x = (x1,x2, . . . ,xn) and an m-dimension vector
y = (y1, y2, . . . , ym) is an (n+m)-dimension vector (x1,x2, . . . ,xn, y1, y2, . . . , ym),
denoted by (x,y).

5. Given vector x = (x1,x2, . . . ,xn), its reverse vector xr = (xn,xn−1, . . . ,x1).

6. Given vectors J = (j1, j2, . . . , jn), A = (a1, a2, . . . , an), and B = (b1, b2, . . . , bn),
symbol

∑B
J=A is used to denote a series of sums

∑b1
j1=a1

∑b2
j2=a2

· · ·
∑bn

jn=an
, and

is called the vector sum of vector J from A to B. Obviously for two vector sums
of vector J1 and J2, we have

∑B1
J1=A1

∑B2
J2=A2

=
∑(B1,B2)

(J1,J2)=(A1,B2).

3. Model assumptions and system description

For the convenience of modeling and analyzing the k-stage transfer line depicted
in figure 1, we assume the following: all the random variables (processing times,
uptimes, and downtimes) are independent. The transfer of parts through the buffers
takes no time. Machine failures are ODFs. When a failure occurs, the part stays on
the machine; it can be reworked like a new part when the machine is up again (i.e., no
scrapping of parts). Even if a machine Mi in the system is up, it cannot process parts
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if no parts are available in the upstream buffer Bi−1 (Bi−1 is empty) or if no room
is left in the downstream buffer Bi for the to-be-processed part (Bi is full). In the
former condition, the machine is said to be starved; in the latter is blocked (Dallery
and Gershwin [9]) refers to this type of blocking as blocking-before-service (BBS)).
A machine either starved or blocked is idle and cannot fail. Whenever a machine is
up and neither blocked nor starved, it is used for processing. The first machine M1

is never starved and the last machine Mk is never blocked. The system properties
and performance measures studied in this paper are all concerned with steady-state
(average long-term) behaviors of the system.

Machine Mi can be in two possible states in the system: up (operational) or
down (under repair). The binary random variable αi is defined to be 1 when Mi is
up and 0 when Mi is down. When Mi fails, αi goes from state 1 to state 0. When
Mi is fixed, the transition from αi = 0 to αi = 1 occurs; i = 1, . . . , k. Let vector
α = (α1,α2, . . . ,αk) denote the machine state vector.

Processing, failure and repair times for machine Mi are assumed to be exponential
random variables with parameters µi, pi and ri; i = 1, . . . , k, respectively. These
quantities are the processing rate, failure rate and repair rate of Mi, respectively. The
isolated efficiency (availability) ei of machine Mi is the average fraction of the time
that Mi would be operational if it were operated in isolation, that is, never starved
nor blocked. We have ei = ri/(ri + pi) (see Dallery and Gershwin [9] and Gershwin
[12] for explanation). The isolated production rate of machine Mi, ρi, is given by
ρi = µiei. This is the rate at which machine Mi would process parts in isolation.

The total space for parts in buffer Bi is finite and it is convenient to define
the capacity Ni of buffer Bi to be the total number of parts that can be stored in
Bi plus the space for one part on machine Mi+1; i = 1, . . . , k − 1. Let vector
N = (N1,N2, . . . ,Nk−1) denote the buffer capacity vector. We also define the buffer
level ni to be the random variable that indicates the number of parts in buffer Bi
at any time, including the part on machine Mi+1, if any. It satisfies 0 6 ni 6 Ni;
i = 1, . . . , k− 1. Let vector n = (n1,n2, . . . ,nk−1) denote the buffer level vector, we
have 0 6 n 6N .

The condition that machine Mi is neither starved nor blocked is that ni−1 > 1 and
ni 6 Ni − 1. Hence we define a binary function of ni−1 and ni, Li(ni−1,ni), to be 1
when ni−1 > 1 and ni 6 Ni−1 (the condition that Mi is neither starved nor blocked),
otherwise Li(ni−1,ni) equals 0 (Mi is either starved or blocked), i = 1, . . . , k. When
i = 1 or i = k, we assume that n0 = +∞ and nk = −∞ to reflect the fact that the
first machine is never starved and the last machine is never blocked. We have

Li(ni−1,ni) =

{
1, if ni−1 > 1 and ni 6 Ni − 1,
0, else,

i = 1, 2, . . . , k.

The condition that machine Mi is operating on some part is that Mi is up and Mi is
neither starved nor blocked, or equivalently, αiLi(ni−1,ni) = 1.

The state of the system can be denoted by s = (n1,n2, . . . ,nk−1,α1,α2, . . . ,αk)
= (n,α). System state s is the join of the buffer level vector n and the machine state
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vector α, 0 6 s 6 (N , Ik). The probability that the system is in this state is written
p(n1,n2, . . . ,nk−1,α1,α2, . . . ,αk) or p(n,α).

4. Balance equations and performance measures

Given a steady state s = (n,α), the rate of the system leaving it should equal
the rate of entering it, otherwise it is not a steady state. Now consider a small time
interval [t, t+∆t) with ∆t→ 0. At the beginning the system state is (n,α). There are
three kinds of events which may enable the system to leave the current state (n,α)
during this time interval:

1. if machine Mi is down at the beginning (αi = 0), it may be repaired with the rate
of ri during [t, t+ ∆t);

2. if machine Mi is operating on some part (αiLi(ni−1,ni) = 1), it may complete the
operation with the rate of µi during [t, t+ ∆t), or

3. it may fails with the rate of pi during [t, t+ ∆t).
Note that during such a small time interval [t, t + ∆t) the probability that two

or more events occur is o(∆t) and can be neglected. Therefore the rate of the system
leaving (n,α) during [t, t+ ∆t) has the following sum form:

p(n,α)
k∑
i=1

[
ri(1− αi) + (µi + pi)αiLi(ni−1,ni)

]
.

Similarly, the events which may result in the system entering state (n,α) during
[t, t+ ∆t) include:

1. at the beginning the system is in state (n + 1i−1 + (−1)i,α) and machine Mi is
operating on some part (αiLi(ni−1 + 1,ni − 1) = 1). Then Mi may complete the
operation with the rate of µi during [t, t+ ∆t) so that the system enters (n,α);

2. at the beginning the system is in state (n,α|αi = 1−αi) and machine Mi is down.
Then Mi may be repaired (αi = 1) with the rate of ri during [t, t+ ∆t) so that the
system enters (n,α);

3. at the beginning the system is in state (n,α|αi = 1 − αi) and machine Mi is
operating on some part ((1 − αi)Li(ni−1,ni) = 1). Then Mi may fails (αi = 0)
with the rate of pi during [t, t+ ∆t) so that the system enters (n,α).

Again, since the probability that two or more events occur during [t, t+ ∆t) is o(∆t),
the probability that the system may enter (n,α) from any other situations can be
neglected. Hence the rate of the system entering (n,α) during [t, t+ ∆t) is

k∑
i=1

[
p
(
n+ 1i−1 + (−1)i,α

)
µiαiLi(ni−1 + 1,ni − 1)

+ p(n,α|αi = 1− αi)
(
riαi + pi(1− αi)Li(ni−1,ni)

)]
.
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According to the analysis above, we obtain the system steady-state balance equation:

p(n,α)
k∑
i=1

[
ri(1− αi) + (µi + pi)αiLi(ni−1,ni)

]
=

k∑
i=1

[
p
(
n+ 1i−1 + (−1)i,α

)
µiαiLi(ni−1 + 1,ni − 1)

+ p(n,α|αi = 1− αi)
(
riαi + pi(1− αi)Li(ni−1,ni)

)]
, (1)

where 0 6 state (n,α) 6 (N , Ik).
It should be noted that if some state (n+ 1i−1 + (−1)i,α) on the right hand side

of equation (1) is out of the range 0 to (N , Ik), its corresponding function Li(ni−1 +1,
ni − 1) = 0 by definition, and hence that state can be omitted on the right hand side.
Since 0 6 ni 6 Ni; i = 1, . . . , k−1, and αi = {0, 1}; i = 1, . . . , k, there are a total of
T =

∏k−1
i=1 (Ni + 1)2k steady-states and balance equations. The system normalization

equation is

N∑
n=0

Ik∑
α=0

p(n,α) = 1. (2)

Balance equation (1) plus normalization equation (2) provide T+1 linear equations with
T unknown, so one balance equation is redundant. Theoretically speaking, the exact
numerical solutions of steady-state probability p(n,α) are unique and can be derived
from solving these T+1 linear equations, even though the number of equations expand
exponentially with the increase of machines in the system.

System performance measures can be calculated based on these steady-state prob-
abilities. The efficiency of machine Mi in the system, Ei, is defined as the probability
of Mi working in the system (αiLi(ni−1,ni) = 1). It corresponds to the proportion
of time during which Mi is neither idle (starved or blocked) nor down. Ei can be
calculated by the following sum:

Ei =
N∑
n=0

Ik∑
α=0

p(n,α)αiLi(ni−1,ni), i = 1, 2, . . . , k. (3)

The difference between the isolated efficiency ei and the efficiency Ei is that ei is a
characteristic of machine Mi itself while Ei is affected by other machines and buffers
in the system. The production rate of machine Mi in the system, Pi, is the average
number of parts on which Mi finishes operations in the system per unit of time. The
relationship between Pi and Ei is Pi = µiEi. In the next section we demonstrate that
all the machines have identical production rates in the system, which equal the system
production rate P .
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Another important performance measure is the average work-in-process (WIP)
level (expected inventory) of buffer Bi. It can be calculated by the following equation:

n̄i =
N∑
n=0

Ik∑
α=0

nip(n,α), i = 1, 2, . . . , k − 1. (4)

The total WIP level in the system is given by n̄ = n̄1 + n̄2 + · · ·+ n̄k−1. Using Little’s
law, the average flow time of a part, W , can be obtained as: W = n̄/P (see Dallery
and Gershwin [9]).

The probability that machine Mi is down in the system, denoted by p(αi = 0),
can be written as

p(αi = 0) =
N∑
n

Ik−1∑
α/αi=0

p(n,α|αi = 0). (5)

5. Analysis of system properties

5.1. Reversibility and duality of transfer lines

Consider a flow line, TL∗, which is obtained by reversing the flow of parts in
transfer line TL in figure 1. The first machine M∗1 of TL∗ is the same as the last
machine Mk of TL, the last machine M∗k of TL∗ is the same as the first machine
M1 of TL. More generally, machine M∗i of TL∗ is the same as machine Mk−i+1 of
TL. Also, buffer B∗i of TL∗ is the same as buffer Bk−i of TL. All quantities of
TL∗ are labeled by letters with ∗. Therefore (µ∗i , p

∗
i , r
∗
i ) = (µk−i+1, pk−i+1, rk−i+1),

N∗i = Nk−i. All other assumptions of TL∗ are the same as TL. The reversibility means
that the production rate of the reversed line TL∗ is the same as that of the original line
TL. The duality is that the average WIP level of buffer B∗i in TL∗ plus the average
WIP level of the corresponding buffer Bk−i in TL sums up to the capacity N∗i of
buffer B∗i . Muth [18], Ammar and Gershwin [2], and others establish the reversibility
and/or duality of transfer lines based on the comparison of the sample paths of the two
systems using evolution equations. Alternatively, this paper uses balance equation (1)
to prove the reversibility and duality.

Theorem 1. Given transfer line TL and its reversed line TL∗, the production rate
P ∗i of machine M∗i in TL∗ equals the production rate Pk−i+1 of machine Mk−i+1

in TL. The average WIP level of buffer B∗i in TL∗ plus the average WIP level
of the corresponding buffer Bk−i in TL equals the capacity N∗i of buffer B∗i , i.e.,
P ∗i = Pk−i+1, n̄∗i + n̄k−i = N∗i .

Proof. Theorem 1 follows if it can be proven that the steady-state probability p(n,α)
of line TL equals the steady-state probability p∗(N∗ −nr,αr) of line TL∗, where N∗
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is the buffer capacity vector of TL∗, nr and αr are the reverse vectors of n and α,
respectively.

Assume that (n∗,α∗) = (N∗ − nr,αr) for line TL∗, then it is observed that the
following statements hold:

1. ni = Ni − n∗k−i, Ni = N∗k−i; i = 1, 2, . . . , k − 1.

2. µi = µ∗k−i+1, pi = p∗k−i+1, ri = r∗k−i+1; i = 1, 2, . . . , k.

3. Function Li(ni−1,ni) of line TL = L∗k−i+1(n∗k−i,n
∗
k−i+1) of line TL∗ since con-

dition ni−1 > 1 equals n∗k−i+1 6 N∗k−i+1 − 1, and condition ni 6 Ni − 1 equals
n∗k−i > 1.

4. Function Li(ni−1 + 1,ni − 1) of line TL = L∗k−i+1(n∗k−i + 1,n∗k−i+1 − 1) of line
TL∗ since condition ni−1 + 1 > 1 equals n∗k−i+1− 1 6 N∗k−i+1− 1, and condition
ni − 1 6 Ni − 1 equals n∗k−i − 1 > 1.

Substituting the four statements above into balance equation (1), we find that the
balance equation (1) of line TL concerning state (n,α) is exactly the same as that of line
TL∗ concerning state (N∗−nr,αr). This implies that the T balance equations of line
TL are the same as those of line TL∗ except that the sequences of equations in two lines
are different. Thus p(n,α) = p∗(N∗ − nr,αr), 0 6 (n,α) 6 (N , Ik). Combining it
with definition (3), (4) and Pi = µiEi, we know P ∗i = Pk−i+1, n̄∗i + n̄k−i = N∗i . �

By theorem 1, we deduce that if a transfer line has symmetric parameters, then
its average WIP level n̄i + n̄k−i = Ni and the average WIP level of the middle buffer
is about 50%.

5.2. Transient states

The probability that buffer level ni = x and machine state αj = y in the system
is denoted by p(ni = x,αj = y), and can be calculated by

p(ni = x,αj = y) =

N/Ni∑
n/ni=0

Ik−1∑
α/αj=0

p(n|ni = x,α|αj = y).

For example, p(nj−1 = 0,αj = 0) is the probability that machine Mj is down (αj = 0)
and its upstream buffer Bj−1 is empty (nj−1 = 0); p(nj = Nj ,αj = 0) is the
probability that machine Mj is down (αj = 0) and its downstream buffer Bj is full
(nj = Nj). According to the assumptions in section 3, machine Mj cannot operate,
and hence cannot fail, if upstream buffer Bj−1 is empty or downstream buffer Bj is
full. This yields the following theorem:

Theorem 2. p(nj−1 = 0,αj = 0) = 0; 2 6 j 6 k, and p(nj = Nj ,αj = 0) = 0;
1 6 j 6 k − 1.
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Proof. Only the first equation is proven. The proof of the second equation is similar.
Consider balance equation (1) of state (n|nj−1 = 0,α|αj = 0) in line TL and

break down the sum of i on both sides into three terms: i = j − 1, i = j, and
(i 6= j−1 and i 6= j). Note that two of the terms on the right hand side can be omitted
since Lj−1(nj−2 + 1,−1) = 0 and Lj(0,nj) = 0. Now operating on both sides of

this equation with vector sums
∑N/Nj−1

n/nj−1=0 and
∑Ik−1

α/αj=0, we obtain the following
equation form:

(1) + (2) + (3) + (4) + (5) = (6) + (7) + (9),

where

(1) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p(n|nj−1 = 0,α|αj = 0)rj−1(1− αj−1),

(2) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p(n|nj−1 = 0,α|αj = 0)µj−1αj−1Lj−1(nj−2,nj−1),

(3) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p(n|nj−1 = 0,α|αj = 0)pj−1αj−1Lj−1(nj−2,nj−1),

(4) = rj

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p(n|nj−1 = 0,α|αj = 0),

(5) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p(n|nj−1 = 0,α|αj = 0)

×
k∑

i=1, i6=j−1, i6=j

(
ri(1− αi) + (µi + pi)αiLi(ni−1,ni)

)
,

(6) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p
(
n|nj−1 = 0,α|(αj = 0,αj−1 = 1− αj−1)

)
rj−1αj−1,

(7) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

p
(
n|nj−1 = 0,α|(αj = 0,αj−1 = 1− αj−1)

)
× pj−1(1− αj−1)Lj−1(nj−2,nj−1),

(8) =

N/Nj−1∑
n/nj−1=0

Ik−1∑
α/αj=0

k∑
i=1, i6=j−1, i6=j

{
p
(
n|nj−1 = 0 + 1i−1 + (−1)i,α|αj = 0

)
×µiαiLi(ni−1 + 1,ni − 1)



S. Yang et al. / Multi-stage transfer lines 415

+ p
(
n|nj−1 = 0,α|(αj = 0,αi = 1− αi)

)(
riαi + pi(1− αi)Li(ni−1,ni)

)}
.

It can be proven (see Yang [21] for a proof) that: (1) = (6), (2) = (7), and (5) = (8).
Canceling these terms from the two sides of the equation above yields a new reduced
equation: (3) + (4) = 0. Since both (3) and (4) are weighted sums of non-negative
probabilities, we know (3) = (4) = 0. (4) = 0 implies the first equation of theorem 2. �

5.3. Balance between repair states and operation states

From section 4 we know that Ej is the probability of machine Mj working in the
system, and p(αj = 0) is the probability that machine Mj is down in the system. The
following theorem asserts that the rate of transitions from the set of states in which
machine Mj is down to the set of states in which Mj is operational (rjp(αj = 0)) is
equal to the rate of transitions in the opposite direction (pjEj).

Theorem 3. rjp(αj = 0) = pjEj , 1 6 j 6 k.

The proof of theorem 3 is similar to that of theorem 2. First consider balance
equation (1) of state (n,α|αj = 0) in line TL and break down the sum of i on both
sides into two terms: i = j and i 6= j. After operating on both sides of that equation
with vector sums

∑N
n=0 and

∑Ik−1

α/αj=0, most of the terms on two sides are canceled
and only two terms left: rjp(αj = 0) = pjEj . See Yang [21] for a detailed proof.

5.4. Balance between two sets of operation states

Denoting the probability that machine Mi is working and the buffer level nj of
buffer Bj is x (0 6 x 6 Nj) by wi(nj = x), then wi(nj = x) can be calculated by

wi(nj = x) =

N/Nj∑
n/nj=0

Ik∑
α

p(n|nj = x,α)αiLi(ni−1,ni), 0 6 x 6 Nj .

For example, wj(nj = x) is the probability that machine Mj is working with x parts
in its downstream buffer Bj , and wj+1(nj = x + 1) is the probability that machine
Mj+1 is working with (x+ 1) parts in its upstream buffer Bj . Theorem 4 asserts that
the rate of transitions from the set of states with x parts in buffer Bj to the set of
states with x+ 1 parts in buffer Bj , µjwj(nj = x), is equal to the rate of transitions
in the opposite direction, µj+1wj+1(nj = x+ 1).

Theorem 4.

µjwj(nj = x) = µj+1wj+1(nj = x+ 1), 1 6 j 6 k − 1, 0 6 x 6 Nj − 1. (6)

Proof. This can be proven by induction. The following is the outline of proof. See
Yang [21] for a detailed proof.
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(1) For x = 0, consider balance equation (1) of state (n|nj = 0,α) in line TL
and break down the sum of i on both sides into three terms: i = j, i = j+1, and (i 6=
j and i 6= j+1). One term on the left hand side can be omitted since Lj+1(0,nj+1) = 0,
and two terms on the right hand side can be omitted since Lj(nj−1 + 1,−1) = 0 and
Lj+1(0,nj+1) = 0. After operating on both sides of the equation with vector sums∑N/Nj
n/nj=0 and

∑Ik
α=0, most of the terms on two sides are canceled and only two terms

are left: µjwj(nj = 0) = µj+1wj+1(nj = 1).
(2). Assume that theorem 4 holds for x 6 m− 1. For x = m, consider balance

equation (1) of state (n|nj = m,α) in line TL and break down the sum of i on both
sides into three terms: i = j, i = j + 1, and (i 6= j and i 6= j + 1). Operating on

both sides of that equation with vector sums
∑N/Nj
n/nj=0 and

∑Ik
α=0, we note that most

of the terms on two sides are canceled and only four terms left in the equation:

µjwj(nj = m) +µj+1wj+1(nj = m) = µjwj(nj = m− 1) +µj+1wj+1(nj = m+ 1).

By induction the second term on the left equals the first term on the right. This yields
the equation of theorem 4 for x = m: µjwj(nj = m) = µj+1wj+1(nj = m + 1).
Hence theorem 4 holds. �

5.5. Conservation of flow

The following theorem demonstrates the conservation of flow in the system. It
shows that all machines in a transfer line have the same production rate. Therefore
the system production rate P = Pi = Pj , 1 6 i, j 6 k.

Theorem 5. µiEi = µjEj , 1 6 i, j 6 k.

Proof. Summing both sides of equation (6) in theorem 5 for x = 0, 1, . . . ,Nj − 1,
we obtain

left hand side = µj

Nj−1∑
x=0

wj(nj = x)

= µj

Nj−1∑
x=0

N/Nj∑
n/nj=0

Ik∑
α

p(n|nj = x,α)αjLj(nj−1,nj) = µjEj ,

right hand side = µj+1

Nj−1∑
x=0

wj+1(nj = x+ 1)

= µj+1

Nj−1∑
x=0

N/Nj∑
n/nj=0

Ik∑
α

p(n|nj = x+ 1,α)αj+1Lj+1(nj ,nj+1)

= µj+1Ej+1.
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Therefore µiEi = µjEj , 1 6 i, j 6 k. �

5.6. Flow rate–idle time relationship

The next theorem, theorem 6, establishes the flow rate–idle time relation. It
shows that a machine is operational exactly as often as it would be in isolation when
it is neither blocked nor starved (not idle) in the system.

Theorem 6. ei = p(αi = 1|ni−1 6= 0 and ni 6= Ni) and Ei = eip(ni−1 6= 0 and ni 6=
Ni), 1 6 i 6 k.

Proof. By definition of conditional probability,

p(αi = 1|ni−1 6= 0 and ni 6= Ni) =
p(αi = 1,ni−1 6= 0 and ni 6= Ni)

p(ni−1 6= 0 and ni 6= Ni)
. (7)

Note that p(αi = 1,ni−1 6= 0 and ni 6= Ni) = Ei by definition of Ei, and

p(ni−1 6= 0 and ni 6= Ni)

= p(αi = 1,ni−1 6= 0 and ni 6= Ni) + p(αi = 0,ni−1 6= 0 and ni 6= Ni)

= Ei + p(αi = 0,ni−1 6= 0 and ni 6= Ni).

By theorem 2 we know that {αi = 0} and {ni−1 = 0 or ni = Ni} are mutually
exclusive events. Thus

p(αi = 0,ni−1 6= 0 and ni 6= Ni) = p(αi = 0).

Theorem 3 shows p(αi = 0) = piEi/ri. Substituting all these relationships into
equation (7) yields

p(αi = 1|ni−1 6= 0 and ni 6= Ni) =
Ei

Ei + piEi
ri

=
ri

ri + pi
= ei.

On the other hand, by equation (7) we have

Ei = p(αi = 1|ni−1 6= 0 and ni 6= Ni)p(ni−1 6= 0 and ni 6= Ni)

= eip(ni−1 6= 0 and ni 6= Ni). �

The production rate of machine Mi in the system can be written

Pi = µiEi = µieip(ni−1 6= 0 and ni 6= Ni)

= µiei
(
1− p(ni−1 = 0)− p(ni = Ni) + p(ni−1 = 0 and ni = Ni)

)
≈ µiei

(
1− p(ni−1 = 0)− p(ni = Ni)

)
.

The last approximation comes from the observation that the probability of one machine
in the system being starved and blocked simultaneously is very small in reality. This
approximate relationship between flow rate and idle time is widely used in decompo-
sition techniques of long transfer lines.
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5.7. Impact of bottleneck machines

The next theorem asserts that if the isolated production rate of some machine in
a transfer line is much smaller than those of other machines, the system production
rate will be mainly dominated by that bottleneck machine, and the efficiencies of other
machines will approach zero.

Theorem 7. If the isolated production rate of some machine Mj is made much smaller
than those of other machines in the system, i.e., ρj → o(ρi), i = 1, . . . , k and i 6= j,
then the system production rate P → ρj , machine Mj’s efficiency Ej → ej , while
other machines’ efficiency Ei → 0, i 6= j.

Proof. By theorem 6, P = ρip(ni−1 6= 0 and ni 6= Ni) = ρjp(nj−1 6= 0 and nj 6=
Nj),

ρj → o(ρi), yields p(ni−1 6= 0 and ni 6= Ni) =
ρj
ρi
p(nj−1 6= 0 and nj 6= Nj)→ 0.

By theorem 6, Ei = eip(ni−1 6= 0 and ni 6= Ni)→ 0.
In addition, p(ni−1 6= 0 or ni 6= Ni) → 0 implies that p(ni−1 = 0 or Ni) → 1,

i = 1, . . . , k and i 6= j.
This yields p(nj−1 = Nj−1)→ 1 and p(nj = 0)→ 1. Thus p(nj−1 6= 0 and nj 6=

Nj)→ 1.
Consequently, Ej = ejp(nj−1 6= 0 and nj 6= Nj)→ ej and P → ρj . �

5.8. Numerical experiments

Although the system states increase exponentially with increasing numbers of
machines, it is possible to obtain the exact numerical solutions of system performance
for small size transfer lines by solving T + 1 linear equations. These exact solutions
can then be used to evaluate the accuracy of different approximate methods. For exam-
ple, Gershwin [12] presents the DDX decomposition method for discrete synchronous
transfer lines. Yang [21] points out that the deduction of equations describing the
interruptions of flow is not accurate and proposes the addition of two new terms,
−pip(i−1; 011)/Eu(i) and −pi+1p(i+ 1;N11)/Ed(i) to equation (4.31) and equation
(4.32) in Gershwin [12], respectively. (Gershwin has admitted this inaccuracy on his
web site, see http://web.mit.edu/manuf-sys/www/) Next, a four-stage transfer line is
used to show that these modifications can lead to more accurate results.

Consider a four-stage discrete asynchronous transfer line. The parameters of the
system are pi = 0.1, ri = 0.9; i = 1, 2, 3, 4. µ1 = µ3 = µ4 = 10, the buffer capacity
vector N = (3, 3, 3). Now vary the processing rate µ2 of machine M2 from 1 to
20 and observe the system production rate as a function of processing rate µ2. The
solutions of the original DDX method by Gershwin [12], the modified solutions by
Yang [21], and the exact numerical solutions by solving T =

∏k−1
i=1 (Ni+ 1)2k = 1024

linear equations using Matlab each time are depicted in figure 2. Figure 3 shows the
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Figure 2. Production rate vs. µ2 curve.

Figure 3. Errors vs. µ2 curve.

errors of these two approximate methods compared with the exact numerical solutions.
Note that

(1) The errors of the modified method are always smaller than those of the original
method. The maximum error of the original method is about 5.08%, while the
maximum error of the modified method is only 4.04%.

(2) The maximum errors of these two approximate methods are both reached when
machine M2’s processing rate µ2 is close to other machines’ processing rates, in
other words, when the line is nearly homogeneous. This phenomenon has been
noted by us in other numerical examples.

6. Conclusions

This paper studies discrete asynchronous transfer lines subject to exponential op-
eration, failure, and repair processes. A mixed vector–scalar Markov process model is
presented to describe the operation, failure and repair behaviors of multi-stage trans-
fer lines with k unreliable machines and k − 1 buffers. Some important steady-state
system properties, such as the reversibility and duality of transfer lines, conservation
of flow, and the flow rate–idle time relationship, are deduced from this model. These
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properties are widely assumed as prerequisites to decomposition techniques of long
transfer lines in other literature.

Theoretically speaking, the method in this paper may be extended to multi-stage
discrete synchronous transfer lines and continuous transfer lines, and similar steady-
state transition equations may be deduced based on those mixed vector–scalar oper-
ations. However, the transition equations of discrete synchronous transfer lines and
continuous transfer lines will be much more complex than the balance equations of
discrete asynchronous lines presented in this paper. This is because in a discrete syn-
chronous transfer line the probability that two or more events occur within one unit
of time cannot be neglected, and in a continuous transfer the interior and boundary
equations should be considered separately. Similar system properties can be proven
for discrete synchronous transfer lines and continuous transfer lines because most of
the terms in the transition equations can be canceled from both sides of the transition
equations after some vector sum or integration operations are taken. Therefore we are
confident that these properties still hold with more general models pertaining to a wide
range of transfer lines.

For a k-stage transfer line, there are a total of T =
∏k−1
i=1 (Ni + 1)2k steady

states and the same number of balance equations. Theoretically speaking, steady-
state probability p(n,α) can be derived from solving these T linear equations plus
the normalization equation. Then system performance measures can be calculated
using the steady-state distribution p(n,α). However, since the system state space
expands exponentially with an increase in the number of machines, this method is
only applicable to transfer lines of very small size, and this paper has more theoretical
value than practical interest. For the analysis of middle and large size production
lines, approximate techniques are the only feasible solutions. From the viewpoint of
computational complexity, approximate techniques convert the problem from solving
exponentially increasing linear equations to solving polynomial increasing non-linear
equations. For example, the DDX decomposition algorithm presented in Dallery et al.
[8] and Gershwin [12] turns the problem from solving T =

∏k−1
i=1 (Ni + 1)2k linear

equations to solving 6k non-linear equations. Since the computational complexity is
reduced from exponential increase to polynomial increase, the new challenge of solving
non-linear equations seems inevitable in approximate methods instead of solving linear
equations in the original problem.
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