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Equilibrium Values in a Competitive Power
Exchange Market
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Abstract. We consider an open electricity market with demand uncertainty. In this market, the
generators each decide on a bidding price to maximize profit. Units are dispatched in order of the bid
from lowest to highest until demand is satisfied. The market clearing price is the highest bid among
the dispatched units. All dispatched units are then sold at this market clearing price. Under a market
stability assumption, we derive Nash equilibrium solutions, i.e., bidders’ optimal bidding strategies
and the resulting market clearing price.
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1. Introduction

In a deregulated electricity market, generators sell most of their electric power
into the wholesale market, where utilities that distribute to consumers purchase the
power. Deregulation is expected to eliminate the monopoly system and encourage
competition among generators. A desired result is that generators operate their
plants in the most efficient way to sell power at the cheapest rate to consumers.
In this paper, we will show conditions for equilibrium prices and demonstrate that
efficient generation plans do not always result from deregulated markets.

Electricity industries around the world are going through deregulation. The
United Kingdom began to deregulate its electricity industry in 1990, followed
by Australia in 1994, Norway and Sweden in 1996, and New Zealand in 1996.
Many states in the U.S. are currently restructuring their electricity industries. In
March 1998, when the California Power Exchange (PX) began operating, it be-
came the largest deregulated retail electricity market in the world (CAPX-FAQ,
1998). In the California Power Exchange, generators and buyers submit their bids
to construct supply and demand curves. The supply curve provides the amount
of power available as a function of the selling price. The demand curve reflects
the electric demand as a function of the buying price. The point where these two
curves intersect determines the spot price — the trading price of electric power for
all participants in the market.

* Current address: Robert R. McCormick School of Engineering and Applied Science, North-
western University, Evanston, U.S.A.
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In California, there are 2 types of electricity markets: the Power Exchange (PX)
and real-time Balancing Market. In a day-ahead Power Exchange, generators and
buyers submit their bids 24 hours in advance. The market is cleared on the day
before the actual dispatch. Since the PX is cleared before the actual dispatch, the
actual consumption of electricity may not be the same as the amount traded in the
PX market. Therefore, suppliers also bid in a real time balancing market before
the actual demand is revealed so that trade adjustment can be made in real time
to satisfy the demand. More details about the California markets can be found in
CAPX-FAQ (1998), Jacobs and Singh (1997), Moore and Anderson (1997), and
Wilson (1997).

In such markets, it is expected that generators and buyers will play games, i.e.,
bid strategically to take advantage of market conditions. Even though stranded cost
recovery legislation (Nix, 1999) may make generators unlikely to play games dur-
ing the four-year initial period (Borenstein and Bushnell, 1997), but, in Year 2002,
they are expected to do so. An interesting question is then to find the market spot
price. The painful experience in the Midwestern market on 28 June 1998, when
the spot price normally at $30 per Megawatt-hour surged to $7,000 (Kranhold and
Emshwiller, 1998), is one of the reasons why the answer to this question is critical.
Futures are also now available in most electricity markets so that a wide range of
investors require pricing information. To find the market spot price, we need to
understand the bidding behavior of the market participants.

Most of the work related to open electricity markets has focused on the structure
of efficient markets and the characteristics of market participants in the UK market.
Several economists model the UK power market as an oligopoly or duopoly and
use the supply function equilibrium approach (see Klemperer and Meyer, 1989)
to prove the existence of equilibrium points (for examples, see Bolle (1992) and
Green and Newbery (1992)). To do so, the bids of one generator, called the supply
function, are assumed to be continuously differentiable. Von der Fehr and Harbord
(1993), on the other hand, assume a step supply function. They model the UK
market as a sealed-bid multiple-unit auction and find that pure strategy equilibria
do not always exist in their model. Von der Fehr and Harbord (1993) also show that
the particular types of equilibria under the assumption of continuously differenti-
able supply functions cannot be generalized to a model with a step supply function
assumption, which is more realistic. In another study, Anderson and Philpott (1998)
study a duopoly model with a continuously differentiable supply function and de-
rive sufficient conditions for the existence of symmetric supply function equilibria.
They also derive bounds on the loss of revenue when actual supply functions are
step functions.

Instead of assuming the UK market to be an oligopoly or duopoly, Gross and
Finlay (1996) assume perfect competition, i.e., the bid of any bidder has a neg-
ligible effect on the spot price. They formulate the UK market as a nonlinear
programming problem and show that generators will optimally bid at costs.
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Simulation approaches have also been applied in several studies of open elec-
tricity markets. Richter and Sheblé (1997), for example, use genetic algorithms
to evolve the bidding strategies of participants in a double auction market. Mac-
Gill and Kaye (1998) propose a decentralized coordination framework and use
their evolutionary programming approach to simulate the Australian market. By
using simulation, however, equilibrium strategies of participants may not always
be derived.

In most non-sealed bid markets, one of the activity rules indicates that a new bid
price submitted into the market must be at least the previous winning bid minus a
small margin to avoid infinite adjustments of the bid prices. This rule motivates us
to assume the finite and discrete set of possible bid prices, which represents a de-
parture from previous work that assumes all possible bid prices are in a continuous
range. This assumption allows bidders to undercut each others’ bids and, therefore,
destroys most potential Nash equilibria that can be obtained from a discrete set
assumption.

The goal of this paper is to find a Nash equilibrium value of the market spot
price, under the assumption that all participants behave optimally. By ‘optimal’, we
mean that the expected profit of each participant is maximized. We propose both
deterministic and stochastic demand models and then present the market stability
condition in Section 2. The characteristics of pure strategy Nash equilibrium points
in both models are derived in Section 3. Algorithms for finding Nash equilibrium
points are developed in Section 4. Numerical examples are presented in Section 5.
For simplicity, in the rest of the paper, the word ‘equilibrium’ always refers to Nash
equilibrium.

2. Model Description

To model open electricity markets, we first consider a simplified structure that cap-
tures key properties. The insights drawn from these results can help us understand
the real system. We model the Power Exchange and real time balancing markets
as multi-round non-sealed bid auctions. In the PX market, the total demand d is
known to all bidders and can be appropriately modeled as deterministic; however,
in the Balancing Market, where generators submit their bids before demand is
realized, demand is assumed to be stochastic. We denote the balancing stochastic
demand by a random variable D. We also assume that all bidders have the same
belief on the demand distribution, which we denote by F'. To be consistent with the
case of deterministic demand, the realization of the demand in the stochastic case
is also denoted by d.

In our models, a bidder submits a quantity of power that he/she is willing to
generate and an acceptable price for a unit of this power, called the bid price.
Bidders who offer lower prices are dispatched before the ones with higher prices.
We assume that demand must be satisfied. The market spot price or market clearing



96 CHONAWEE SUPATGIAT ET AL.

price (MCP) is the highest bid price among the dispatched units. All dispatched
units are sold at the same price, i.e., the spot price.

We consider a market with N bidders. We assume that Bidder i incurs a gen-
eration cost of ¢; for each unit of electricity and bids for a fixed quantity x; at a
price p;. We denote a vector of bids [(x1, p1), ..., (xn, py)] by b, called a bid
vector. The goal of Bidder i is to choose x; and p; so that his/her expected profit is
maximized.

When demand D is revealed, the market clearing price , as a function of the
realization d and the bid vector b = [(x, p1), ..., (xn, pny)], can be computed
mathematically as:

ab.d)={minp;: Y xi=d. (1)
! )

where I(j) ={i : p; < p;}.

A bidder whose bid price is equal to the market clearing price is called a
marginal bidder. A bidder whose bid price is less than the market clearing price
is called an under-bidder. An under-bidder i is fully dispatched; i.e., the market
consumes x;. A bidder i whose bid price is higher than the spot price 7 is not
dispatched. Marginal bidders are dispatched in the order of the submission time
of their bids. That is, earlier bidders are dispatched before later bidders. Let 4 be
the set of marginal bidders {i|p; = m}. The notation |4| denotes the number of
bidders in 4 and x(4) denotes the set of x; submitted by marginal bidders; i.e.,
x(8) = {x;|li € 8}. We assume that all bidders in 4 are equally likely to bid first,
second, third, and so on.

In order to compute the expected dispatch of Bidder i, we first define the
recursive function:

0 ifd <0,
g:(d',x(8),n) = { Lmin(x;,d)
+ %Zl;:l,jy&i q;d —xj,x(8—{j}),n—1) otherwise .

Then, the expected dispatch quantity of Bidder i for given b and d is:

0 if p; > 7w (b,d),
gi(b,d) =13 xi if p; < (b, d), )
q;(d — Zje{i\p,-qr(b,d)}xj’ x(8), |8]) if p; = (b, d).

We assume that each bidder knows perfectly the other bidders’ costs and bid
quantities and that all bidders behave optimally in order to maximize their expected
profits. Our goal is to find equilibrium prices and bid quantities for all bidders or
agents,i =1, ..., N.Let

fi(b) = Ep[ ( (b, D) —¢;) gi(b, D) ] 3)
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be the expected payoff to Agent i given a bid vector b, a possibly random demand
D, a marginal price 7, that depends on the bids and demand, and a quantity ¢; that
represents Agent i’s production or dispatch quantity that also depends on all bids
and the demand.

We search for a Nash equilibrium, {p},i =1, ..., N}, such that
JillGxr, py)s ooy (i pi)s - ooy (v, YD < @)
< fillx, pD)s ooy iy p)s ey (s PROD)
for all feasible bid prices, p;, for Agenti,and alli = 1, ..., N. Under a differen-

tiability assumption on f, the condition in (4) is equivalent to finding a solution to
the variational inequality,

(b —b""V®*) <0, 5
forall b = [b; = (x;, pi),i =1, ..., N] feasible, where b* = [(x}, p)),i =
1, ..., N]and

Vofi 0 0 0
0 Vyfo 0 0
O 0 . 0
0 0 0 Vfv

V =

In most non-sealed bid markets, the activity rules indicate that a new bid price
submitted into the market must be at least the previous winning bid plus a small
margin. Therefore, we assume that the bid price must be in the discrete set {le | [ =
0,1, ..., O}, where O is alarge integer and € is a small number. This set is called
the set of possible bid prices. The discrete bid price set assumption is a change
from previous analyses, which assume a continuous set of possible bid prices. We
assume also that € is so small that |c; — ¢;| > 2¢ forall i, j € {1, ..., N} and
i # j.Furthermore, O is so large that O¢ > ¢; foralli € {1, ..., N}.

Since b is practically in discrete space and is not continuous, instead of solving
the variational inequality in (5), we solve (4) directly. We give cases where such
solutions exist and characterize the structure of the solutions. In future work, we
may consider the continuous version as given in (5) to solve the variational inequal-
ity directly. The discrete version, however, gives us insight into the structure of the
equilibria and reflects reality.

We assume that the exchange market is stable, which is defined as the condition
when the market clearing price is strictly less than the highest possible bid price,
Oce. The following proposition gives the necessary condition for market stability.

PROPOSITION 1. If a market is stable, then the following condition

D<) xi,forj=1 ..., N, (6)

Vi)
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must be met, where D is the maximum possible realization of demand D.

Proof. Suppose that D > Dovi .j X; for some j, then Bidder j can bid at the
maximum price, Oe¢. In this case, there is a positive probability that the spot price
7 will be equal to Oe€ causing the market to become unstable. O

The market stability condition (6) can be enforced by adding new bidders into
the market and excluding bidders with large capacity. The assumption of market
stability is realistic. For example, the US has more than 30% excess capacity of
power generation.

In a real system, the electricity spot price also depends on the transmission
capacity and transmission cost of the network. Even though the market stability
condition is satisfied, outage of a power line can cause the electric spot price to
surge; however, for simplicity of our model, we assume that there is no loss of the
power line and that the transmission capacity is enough to transmit the necessary
amount of power to satisfy the demand. Moreover, the transmission cost is assumed
to be negligible.

If Epl[ gi(b, D) 1 = x;, Bidder i is completely dispatched; otherwise, when
Epl gi(b, D) ] < x;, Bidder i is incompletely dispatched.

LEMMA 1. If more than one bidder bids at the same price and one of them
is incompletely dispatched, then all marginal bidders bidding at that price are
incompletely dispatched.

Proof. If one of the marginal bidders is incompletely dispatched, then
2 lpy=r .y Xi > d = D i1y <x.ayy Xi- Thus, the last bidder who bids at the
spot price cannot be fully dispatched. Since each bidder can be the last one to
be dispatched with positive probability, the expected dispatch of each bidder is
strictly less than the bid quantity. Hence, all bidders at the spot market price are
incompletely dispatched. a

Lemma 1 implies the following corollary.

COROLLARY 1. Ifthere exists a completely dispatched marginal bidder, then all
marginal bidders bidding at the same price are completely dispatched.

3. Equilibrium Points

We begin by giving conditions on the equilibrium points for the case where every
bidder knows the others’ bids. At each iteration, bidders can adjust their bid prices
from the previous iteration, but they cannot adjust their bid quantities. We assume
that they can adjust their bid prices infinitely often. An equilibrium point is reached
when no bidder is willing to adjust his/her bid price.

If everyone behaves optimally, the market will be closed at a Nash equilibrium
point as in (4). In other words, bidders will adjust their bids until a Nash equilib-
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rium is reached. Since our model is a non-sealed-bid auction market, we restrict
ourselves to the class of equilibrium points where everyone knows the others’ bid
prices.

The analysis for known demand environment and stochastic demand environ-
ment are given in Subsections 3.1 and 3.2, respectively. The detailed analysis of the
market stability condition is given in Subsection 3.3. The proofs may be skipped
for readability without losing the flow of the paper.

3.1. EQUILIBRIUM POINTS WITH KNOWN DEMAND

In this subsection, we give the characteristic of bidders in the market with known
demand. We show that a marginal bidder must bid just below some other bidder’s
cost to achieve the highest spot price Nash equilibrium point. We show that if there
are multiple marginal bidders in an equilibrium point, they must all be completely
dispatched. Another fact that we mention is that a bidder gets dispatched if and
only if his/her cost is less than or equal to the market clearing price.

We focus on one bidder and label him/her as Bidder 0. We now have N + 1
bidders. Without loss of generality, we label the remaining bidders in ascending
order of their bid prices, thatis, p; < pp <--- < pn.

Given a number z, the value y (z) denotes the largest integer such that p,, ;) < z,
ie,y()=max{j: p; <z, j=1, ..., N} Inother words, y(z) is the highest
indexed bidder who bids less than or equal to z. Let y(b, d, p) be the unfulfilled
demand left after being supplied by bidders who bid at a price less than or equal to
p, excluding Bidder 0, i.e.,

y(b,d, p) = max {O, d— Z’J/ipl) xj} )

Furthermore, given demand d and a bid price py, the random variable Y (b, d, po)
denotes the unfulfilled demand left to Bidder O if Bidder O bids at py. If no
other bidder bids at py, the random variable Y (b, d, pg) equals y(b, d, pg) with
probability 1.

We define L(d) to be the smallest integer such that f(d) Xj+xo > d. Further-

« Ud)

more, we define U (d) to be the smallest integer such that ) ol Xj = d. Note that

L(d) can equal U (d).

LEMMA 2. A bidder, labeled as Bidder 0, is a marginal bidder if and only if
PL@) = Po = Pua)-

Proof. To make sure that bidders who bid at pg or less have enough capacity to
satisfy the demand, we must have pg > p; ) to ensure y(b, d, pg) < xo. Bidder
0 can have positive expected dispatch quantity if and only if py < py). When
Bidder 0 has positive expected dispatch quantity and the bidders who bid higher
than py cannot be dispatched, Bidder 0 is the marginal bidder. O
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Lemma 2 implies that Bidder O is not dispatched if py > py ) and Bidder O is
an under bidder if py < pr (). From (4), we have the following.

LEMMA 3. At a Nash equilibrium point, a bidder is(not) dispatched if his/her unit
cost is lower(higher) than the equilibrium market clearing price.

Proof. 1If there is a bidder j whose cost is less than the MCP and is not dis-
patched, Bidder j must decrease p; to the MCP, violating (4). If there is a bidder
J who has cost higher than the MCP and is dispatched, Bidder j must increase p;
to Oe, violating (4). O

Lemma 3 implies that the market clearing price can be viewed as a separation
between the bidders with higher costs than the MCP and the bidders with lower
costs than the MCP. It also implies that a marginal bidder in a known demand
environment must bid at least his/her cost. This is not true, however, in a stochastic
demand environment. In the following, we use the notation, given a real number
x, [x] ([x]), to denote the maximum (minimum) possible bid price that is less
(greater) than or equal to x.

LEMMA 4. At a Nash equilibrium point in a market with known demand, all
optimal bid prices of a marginal bidder must be in the set {p; —€ | j = y(pr@) +
L ..., U@}Y{pjl j = L(d), ..., U(d)}. Optimal bid prices of an under-bidder
can be anything (strictly) less than py . Optimal bid prices of an non-dispatched
bidder can be anything (strictly) greater than py ). If Bidder 0 is not dispatched,
then an optimal bid price for him/her is p; = |co| + €.

Proof. Given the bid vector b = [(x;, p;),i = 1, ..., N] and the demand d,
the profit of Bidder 0 as a function of py is denoted by fy(po | X0, b, d) and can be
written as:

(b, d — xg) — cp)Xg if po < pL(d)>
(po — co) Elmin(xq, Y (b, d, pj)] if pry < Pj = Po < PUW)>
j=Ld), ..., Ud),

b.d) = . ,
folpo 1 x0.b.d) (po — co)min(xg. y(b.d. pj)  if pray < pj < Po < Pj+1 < PU@)- (7
j=L@),...,Ud) -1,
0 if py(ay < po-

From Lemma 2, if Bidder O is a marginal bidder, then pryu) < po < puw)-
Moreover, since Bidder O is a marginal bidder, Bidder O’s profit must be positive,
otherwise Bidder O must bid above py 4y and receive zero profit. Thus, py > cy.
Since the term (pg — c¢o) min(xo, y(b, d, p;)) is increasing in py, the optimal bid
price p; that gives a maximum value of the function fo(po | xo, b, d) must be in
theset{p; —€lj =y (prw) +1, ..., U@} U{p;lj = L), ..., Ud)}.

If Bidder O is an under-bidder, then py < pp ). Bidder O’s profit is (7w (b, d —
Xo) — ¢o)Xo, where (b, d — x¢) is the market clearing price when demand is d — xy.
This market clearing price can be computed from (1). Bidder 0’s profit (; (b, d —
X0) — ¢o)Xo 1s independent of pg as long as py < pr).
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If it is optimal for Bidder O not to dispatch, then pg > py () by Lemma 2. Bidder
0’s profit remains O as long as py > py ). Moreover, ¢y > py) by Lemma 2 and
Lemma 3. Thus, [cg] + € is one of Bidder 0’s optimal bid prices. a

We denote the set of all bidders bidding at p by A(p), i.e., A(p) = {i|lp; =
p.i = 1, ..., N}. The following propositions explain the characteristics of the
market clearing price at an equilibrium point.

PROPOSITION 2. At a Nash equilibrium point in a market with known demand,
if a marginal bidder, labeled as Bidder 0 where py = m(b,d), is completely
dispatched, then po must be in the set {p; — €|p; — € =< c¢j,j = yv(Prw) +
I, ..., U@}

Proof. Suppose Bidder 0 bids at py and is completely dispatched. By increasing
po to py = po + €, Bidder 0 is still completely dispatched if no one else bids at
Po- Thus, the marginal Bidder O can gain more profit by increasing p to p;. At an

equilibrium point, py must be in the set {p; —€,i = 1, ..., N}. From Lemma 2,
however, Bidder O can be a marginal bidder only if p; ) < po < pu (). Therefore,
pomustbeintheset {p; —€,i = y(pra) +1, ..., U(d)}.

Now, suppose that py = p, — € for some k, then bidders who bid at p; are
not dispatched. Therefore, bidders bidding at p; can reduce their bid price and get
dispatched if their costs are less than p; — €. Thus, this is not an equilibrium point.
Hence, the equilibrium point is the point where ¢; > p, — €, Vi € A(py). a

PROPOSITION 3. At a Nash equilibrium point in a market with known demand,
if a marginal bidder, labeled as Bidder 0, is incompletely dispatched, then py must
be in the set {p; —€|p; —€ < c¢j, j =y (prw) + 1, ..., U(d)} and no one else
bids at this price.

Proof. If ¢o > puya), then Bidder O incurs a financial loss by bidding below
Pua)- Therefore, Bidder 0 is not a marginal bidder, resulting in a contradiction.

We consider the case of ¢y < py). Lemma 4 indicates that the marginal
price must be in the set {p; —€|j = y(pr@) + 1, ..., U} U {p;lj =
L(d), ..., U(d)}. We need to show further that, at any equilibrium point, if
Bidder 0 is marginal and go(b,d) < Xxo, then pg is not in the set {p;|j =
L(d), ..., U(d)}. We prove that if pg is in the set {p;| j = L(d), ..., U(d)},
then at least one of the bidders j € {L(d), ..., U(d)} can adjust p; to increase
fj(b, d), therefore, voiding the equilibrium point.

When Bidder 0 bids at p; and is incompletely dispatched, then, from Lemma 1,
each of the bidders bidding at p; is incompletely dispatched.

If po = p; where prw) < pj < pu), all bidders at p; decrease their prices in
order to be dispatched for all of their bidding quantities at the same selling price.
Consequently, only Bidder O bids at p;. Therefore, this point is not an equilibrium.

For the case where py = pya), if Bidder j with p; = py ) lowers p; to p}
so that ¢;(b’,d) = x; and w(b’,d) = m (b, d), where b’ is the vector b with p}
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replacing p;, Bidder j earns a higher profit. Therefore, this is not an equilibrium
point. If no bidder at py ;) can lower his/her bid price without changing the market
clearing price, then each bidder at py (4 must have a bid quantity more than the un-
fulfilled demand y(b, d, pya)—¢€),i.e.,x; > y(b,d, pywy—¢€),Vj € A, pyw)-
If ¢; > py) for some j € A(py)), then fj(b,d) < 0. Hence, Bidder j will
increase p;, again negating the equilibrium condition.

We now consider the remaining case, where ¢; < pyy) and x; > y(b,d,
puw@ — €) for all j € A(py)). Suppose there are / > 2 bidders bidding at
Pu), 1.e., Bidder U(d) —i,i = 0, ..., I — 2 and Bidder O bid at py ). Since
x; > y(b,d, pyw — €) for each j € A(py)), each bidder’s expected dispatch is
v(b,d, pyway —€)/1.1f abidder j € A(pyq)) lowers p; to p} = puw@) — €, then
q;(d',d) > y(b,d, pyw — €), where b’ is the vector b with p} replacing p;.

Since Bidder 0’s optimal bid price is pyq), we have that fo(pyq)lxo, b, d) =
y(b,d, puw — €)(puw) — co)/I must be greater than or equal to the lower bound
of fo(puw) — €lxo, b, d), which is equal to (py) — € — co)y(b,d, pyw) — €).
Simplifying the inequality, we have that ¢ > py) — €l/(I — 1), but [ > 2
gives /(I — 1) < 2, therefore ¢o > pyw) — 2¢. Since ¢y < py@), we have
that pyw)y > co = puw — 2€, but € is small enough so that |[c; — ¢;| > 2e
for all 7, j. Hence, cy@y—i < pu@ —2€,i =0, ..., I — 2, which is the same as
(pu@y—€—cuw@-)y,d, puay—€) > y(b,d, puwy—€)(puw)—Ccvw-i)/2, i =
0,..., I —2.Since I = 2, we have

(puw@) — € — cu@-i)yb,d, pyay —€) >
> y(b,d, puw) — €)(pvw — cva-i)/I, i=0,...,1-=2.

That is, foreachi =0, ..., I —2, the lower bound of Bidder U (d) — i’s expected
profit when Bidder U (d) — i bids at py) — € is greater than Bidder U(d) — i’s
expected profit at py ). Therefore, Bidders U(d) —i,i =0, ..., I —2, want to
lower their bid prices. As a result, the original bid cannot be an equilibrium point.

We have shown that if pg € {p;|j = L(d), ..., U(d)}, then at least one of the
bidders wants to adjust his/her bid and, therefore, py € {p;lj = L(d), ..., U(d)}
at an equilibrium point. As a result, at an equilibrium point, if it exists, po € {p; —
€lj =vyprw) +1, ..., U(d)}. This also implies that the marginal bidder is the
only one bidding at this price.

Suppose the marginal bidder bids at py — € for some k € {L(d),...,U(d)};
all bidders who bid at p; are not dispatched. Therefore, they can reduce their bid
prices if their costs are less than p; — €. Thus, this cannot be an equilibrium point.
Hence, an equilibrium point is a point where ¢; > py — e forall j € A(py). O

Proposition 2, Proposition 3, and Lemma 1 imply the following corollary.

COROLLARY 2. At a Nash equilibrium point in a market with known demand,
the market clearing price must be in the set {p; —€|p; —€ <c;, j=1, ..., N}.
Moreover, if there is more than one marginal bidder, then all of these marginal
bidders are completely dispatched.
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Table I. Data for EXAMPLE 1.

i ci X;
1.0 5
6.0 5

3 7.0 1

PROPOSITION 4. At a Nash equilibrium point in a market with known demand,
the highest possible equilibrium spot price must be in the set {|c;|,i =1, ..., N}.

Proof. Since |¢;| = max{p;, — €|px — € < ¢, px € the set of possible bid
prices}, by Corollary 2, the set {|c;|,i = 1, ..., N} contains the highest possible
equilibrium spot price. a

It is not necessary, however, that all equilibrium spot-market prices are in the
set {|c;],i =1, ..., N}.(See the following example.)

EXAMPLE 1. Consider the costs and bidding quantities in Table I, where ¢ =
0.01 and demand d = 5.

The point p; = 5, p» = 5.01 and MCP =5 is an equilibrium point.
Proposition 4 and Lemma 3 imply the following.

COROLLARY 3. Suppose bidders bid at their costs and Bidder k is the lowest
cost bidder who is not dispatched. Then, [cy_1] is a lower bound on the equilibrium
market clearing price and | c; ] is a lower bound on the highest possible equilibrium
market clearing price.

Proof. Since Y\~ x; > d, if the equilibrium MCP is less than or equal to
[ck—1] — €, then there must be at least one dispatched bidder whose cost is higher
than the MCP, which violates Lemma 3. From Proposition 4, we have that |c ] is
a lower bound on the highest possible equilibrium MCP. a

In summary, for a market with known demand, a marginal bidder must bid just
below some other bidder’s cost to achieve the highest spot price Nash equilibrium
point. Thus, the spot market price is bounded above by the highest bidder’s cost. All
bidders whose costs are higher than this market clearing price are not dispatched.
All bidders whose costs are less than the market clearing price bid at or below this
price. Furthermore, if this marginal bidder is incompletely dispatched, then there
is only one marginal bidder.

We discuss the characteristics of bidders in a market with stochastic demand in
the following subsection.
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3.2. EQUILIBRIUM POINTS WITH STOCHASTIC DEMAND

In the stochastic demand environment, a marginal bidder is someone who bids at
the market clearing price in one or more realizations of demand.

We focus on one bidder and label him/her again as Bidder 0. Without loss of
generality, we label the remaining bidders in ascending order of their bid prices,
p1 < pa <--- < py. Using similar notation to the deterministic case, at any given
demand realization d, the smallest integer L(d) such that ZJLL‘? xj+xo > dis
denoted by L(d) and the smallest integer U (d) such that Zyg) xj > d is denoted
by U (d). We denote the set of the realizations {d|prq) < po < pv)} by . When
D =d e D, Bidder 0 bids at the market clearing price.

When demand is stochastic, bidders cannot forecast the spot-market price ex-
actly. This uncertainty causes some changes in optimal bidding strategies. In this
subsection, we explore the characteristic of bidders at a Nash equilibrium point.
We show that, if the marginal bidder is always completely dispatched, then there
must be a bidder bidding just above the marginal bidder. Moreover, we show that
if there is no bidder bidding just above the marginal bidder, then there must be two
marginal bidders. In fact, among these two marginal bidders, the one with lower
bid quantity must be bidding at most 2¢ above his/her cost. Furthermore, we find
the upper bound of the market clearing price.

The following lemma explains the marginal bidder’s characteristics at an
equilibrium point.

LEMMA 5. At a Nash equilibrium point in a market with stochastic demand,
if there are I, I > 1, marginal bidders who bid at py and there exists a demand
realization that makes one marginal bidder in A(py) incompletely dispatched, then
I — 1 marginal bidders have costs at least py — 2€ and the other bidder has the
highest bid quantity among the I bidders in A(py).

Proof. Suppose I bidders bid at py. We label the one with the highest bid
quantity as Bidder O, i.e., xo = max{x; | i € A(py)}. Since there are marginal
bidders bidding at py, D #* 0.

Since there exists a demand realization d’ € D such that one marginal bidder in
A(po) 1s incompletely dispatched, from Lemma 1, all marginal bidders in 4 (pg)
are incompletely dispatched, i.e., g; (b, d’) < x;Vi € A(po).

We prove this lemma by contradiction. Suppose there is a bidder k € A(py)
such that ¢, < py — 2¢€ and k # 0. We show that Bidder k earns more expected
profit by reducing py to p; = po — €, which violates the equilibrium condition.
We will show this by first conditioning on the demand and then showing that, for
at least one realization of demand, Bidder k earns higher profit by reducing p; and
gains no less profit in all other realizations.

When D = d € D, the demand realization d is such that p; ) < pr < puw)
Or Py = Pu@)- In the case where PL) < pr < Pu)» if qk(b, d) < Xg, Bidder k
can get a higher dispatch at the same selling price by reducing py. If gx (b, d) = xy,
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Table 11. Payoff table of Bidder k.

Case Ji(pilxe, b, d) Ji(p|xi, b, d)

() prL@ > Pk (7T — cp)x (7T — cp)x

2 prL@) = pPk<pu@and  (po—cr)qr(b,d)  (po — ck)xk
qi(b, d) < xj

(3 pL@) = Pk <pu@and  (po — cp)xg (Po — cr)xk
qi(b, d) = xj

@) pr= pu) and (po — c)qr (b, d)  (po — cp)xi
y(b,d, po —€) > x

(5)  px = pu@)and < (po —ck) > (po—€—cp)
y(b,d, po —€) < xi y(b,d, po—€)/2  yb,d, pop—¢)

©)  pr> Pu@) 0 >0

however, Bidder k gets the same dispatch at the same selling price by reducing
pr. Consider the case where py = pyw) = po. If xx < y(b,d, po — €), then
Bidder k is willing to lower p; to p; = po — € to get a higher dispatch at the
same selling price. We now consider the case where x; > y(b, d, po — €). Because
xo = xx > y(b,d, pp — €), we have that y(b,d, po — €)/2 > qi(b,d). The
inequality ¢; < po— 2€ is the same as the inequality (po—e€ —cp)y(b, d, po—€) >
(po — c)y(b,d, po — €)/2, that is, the lower bound of fi(p;|xk, b, d) is greater
than the upper bound of fi(pi|xi, b, d). Therefore, Bidder £ wants to lower py.
Bidder k’s payoft is shown in Table II.

Since there exists d’ € D such that gx (b, d’) < x;, at D = d’, Bidder k earns
higher profit by reducing p;. To show that Bidder k cannot gain less profit in all
other realizations, we consider three types of demand realizations. First, when the
bidders at py are marginal bidders (Cases (2)—(5) in Table II), as previously shown,
Bidder k’s profit is not less by reducing p; to p, = po — €. Second, when the
bidders at py are under-bidders (Case (1) in Table II), Bidder k’s profit is the same
when reducing py to p; = po — €. Lastly, when the bidders at py is not dispatched
(Case (6) in Table II), Bidder k’s profit will be less by reducing py to p;, = py — €
only if ¢, > po — € and the current market clearing price is py — €; however,
cr < po — 2€ from the assumption. Thus, Bidder k’s profit is at least the same if
he/she reduces py to p; = po — €. O

LEMMA 6. At a Nash equilibrium point in a market with stochastic demand, if a
marginal bidder bids at py and is completely dispatched at all demand realizations
that make him/her a marginal bidder, then there exists a bidder k with p; = po+e€.
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Proof. We label the marginal bidder at py as Bidder 0. Since go(b,d) =
Xo, Vd € D, if no bidder bids at py + €, then Bidder O can earn more profit by
increasing py to p;, = po + €, violating the equilibrium condition. a

Lemma 6 implies that, at a Nash equilibrium point where a marginal bidder bids
at po, if no bidder bids at py + €, then there exists a realization d’ € D such that
Bidder 0 is incompletely dispatched, i.e., go(b, d’) < xo.

LEMMA 7. At a Nash equilibrium point in a market with stochastic demand, a
marginal bidder, labeled as Bidder 0, must: (1) bid higher than or equal to cy or
(2) bid at | cy| < co and there exists a bidder who bids at | cy| + €.

Proof. We label the marginal bidder as Bidder 0. We consider two cases.
The first is when Bidder O does not incur a financial loss on one of the demand
realizations that makes Bidder O a marginal bidder. In this case, we have that
Po = Co.

The second case is when Bidder O incurs a financial loss on all demand realiz-
ations that make him/her a marginal bidder. That is, py < cp. Bidder O optimally
bids at this price only if there is a demand realization that makes Bidder 0 an under
bidder with positive profit. Moreover, the market clearing prices 7 of this demand
realization must be higher than cy.

In this case, if no bidder bids at | ¢y |+¢€, Bidder O can gain higher expected profit
by increasing pg to p, = [co] + €. But if there is a bidder bidding at [cy | + €, then
itis possible that Bidder 0’s profit is maximized at pj = [co] < co. This is the case
when Bidder O gains high profit from being an under-bidder while losing slightly
from being a marginal bidder. a

We know from Lemma 3 that a marginal bidder in a known demand environ-
ment must bid at least his/her cost; however, Lemma 7 explains that a marginal
bidder in stochastic demand environment can bid just below his/her cost, if there is
a bidder bidding above him/her.

Lemma 5 explains that / — 1 incompletely dispatched marginal bidders at pg
must have costs at least py — 2¢. The following lemma tightens this result by
showing that, if no bidder bids just above py, then the I — 1 marginal bidders
must in fact have costs higher than py — 2¢. That is, none of them has a cost of
Po — 2e.

LEMMA 8. At a Nash equilibrium point in a market with stochastic demand, if
there are 1, I > 1, marginal bidders who bid at py and there is no bidder bidding
at po + €, then I — 1 marginal bidders have costs strictly higher than py — 2€ and
the other bidder has the highest bid quantity among the I bidders in A(py).

Proof. We label the bidder with the highest bid quantity as Bidder 0, i.e., xo =
max{x; | i € A(pg)}. By Lemma 6, there exists a demand realization d’ that makes
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one marginal bidder in A (pg) incompletely dispatched. By Lemma 5, we only need
to show that the case ¢, = pg — 2¢, k # 0 cannot occur.

Suppose that there exists k # 0 such that ¢, = py—2e¢, then, following the same
arguments as in the proof of Lemma 5, we have that Bidder k£ will always gain
higher profit by reducing py to pg — €, except only in the case where p, = pyw)
and x; > y(b,d’, pg — €).

In this case, the lower bound of fi(p;|xx, b, d")is (po—€ —cr)y(b,d’, po—€),
where p, = po — €, while the upper bound of fi(pilxi,b,d’) is (po — cx)
y(b,d’, po — €)/2. Since ¢t = py — 2¢, we have that fi(p,|lxi, b, d) >
fe(prlxe, b, d"). If there is a demand realization d; such that x; < y(b, dy, pg — €)
and x; > gix(b,d,), then fi(p;lxk, b, dy) > fi(pklxk, b, d;), since Bidder k can
obtain a higher dispatch at the same selling price. Thus, Bidder k can gain higher
profit by reducing py to p;.

As aresult, the only case that we need to consider is when x; > y(b, d, py —€)
for all d that makes Bidder k£ an incompletely dispatched marginal bidder. By
Lemma 1, we have that at all d’ that makes Bidder 0 an incompletely dispatched
marginal bidder, xo > x; > y(b,d’, po — €). In this case, the lower bond
of fo(pilxo,b,d’) is (pg — € — co)y(b,d’, po — €) and the upper bound of
So(polxo, b, d") is (po — co)y(b,d’, po —€)/2.

If co < po — 2¢, then Bidder O can gain higher payoff by reducing his/her bid
price to p, = po—e for all demand realizations that make Bidder 0 an incompletely
dispatched marginal bidder. For other realizations, Bidder O cannot receive lower
profit by reducing py to p;. Hence, Bidder 0 has better expected profit by changing
Do, yielding a contradiction.

Now, suppose ¢y > po — 2€, since ¢y = po — 2€ and |cyp — c;| > 2¢ by
the assumptions, we have that ¢y > pgo; however, from Lemma 7, we have that
Po = lco] and there exists a bidder bidding at py + €, yielding a contradiction. O

The following lemma gives a characteristic of the best response function of each
bidder. This lemma is the stochastic version of Lemma 4.

LEMMA 9. At a Nash equilibrium point in a market with stochastic demand, all
optimal bid prices of a marginal bidder, labeled as Bidder 0, must be in the set
{pj—e€lj=1,..., N}U{pjlj=1,..., N}

Proof. If there is no other bidder j who bids p; = pg or p; = po + €, then
Bidder O can increase po by € without reducing his/her dispatch quantity under
any demand. If Bidder O is a marginal bidder, then the return increases; otherwise,
Bidder O earns the same. Thus, at an equilibrium point, we must have pp = p; or
po = p; — € for some j. O

LEMMA 10. At a Nash equilibrium point in a market with stochastic demand, if
there is only one marginal bidder bidding at py, then there exists a bidder k bidding
at py = po + €.
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Proof. We label the marginal bidder at p, as Bidder 0. Since there is only one
marginal bidder bidding at pg, then pg € {p; —€|j =1, ..., N} by Lemma 9.
Hence, there exists a bidder k bidding at py = po + €. O

COROLLARY 4. At a Nash equilibrium point in a market with stochastic demand,
if a marginal bidder bids at py and no bidder bids at py + €, then there are exactly
two marginal bidders bidding at py. Label the bidder with lower bid quantity as
Bidder k, then py = [c] or po = [ci] + €.

Proof. Since no bidder bids at py + €, from Lemma 10, there is more than one
bidder bidding at py. Suppose there are I bidders at py. From Lemma 8, I — 1
lowest bid quantity bidders at py must have costs higher than py — 2¢. Also, their
cost is at most pg by Lemma 7. From the assumption that |¢; — c¢;| > 2¢, Vi # j,
we have that I = 2. Since py — 2¢ < ¢ < px = po, we have that py = p; €
{Tekls Teel + €} O

The following lemma is a stochastic demand version of Proposition 4.

LEMMA 11. At a Nash equilibrium point in a market with stochastic demand, the
highest possible equilibrium spot price must be in the set {|c;],i =1, ..., N} U

{lc;l,i=1, ..., NJU{[¢i1+e,i=1, ..., NL
Proof. Label the marginal bidder in the highest demand realization as Bidder 0.
We consider two cases. For Case 1, there is a Bidder k bidding just above Bidder
0. Thus, Bidder k is not dispatched for any demand. If Bidder k£ bids more than
Lcx ] + €, Bidder k can gain higher profit by reducing py; however, if p;y < |ci] +¢,
Bidder k cannot incur a financial loss by increasing py to | ¢ | + €. Since we focus
on the highest possible equilibrium spot price, we conclude that Bidder k& must
bid at |cx| + €. From the hypothesis, Bidder O bids at | ¢, |, which is in the set
{lcil,i =1, ..., N}. Consider Case 2 where no bidder bids above Bidder 0. By
Corollary 4, po must be in the set {[¢;],i =1, ..., N}U{[¢;1+€,i =1, ..., N}.
O

It is possible that the equilibrium spot price at the highest demand realization
is not in the set {|¢;|],i = 1, ..., N}U{[¢],i =1, ..., N} U{[¢] + €,i =
1, ..., N}.This is when the undispatched bidder who bids just above the marginal
bidder bids less than his/her cost. We give an example of this case in Subsection
5.2.

Note that the sets {[¢;],i = 1, ..., N} and {[¢;] +€,i =1, ..., N} appear
in the stochastic demand environment but not in the deterministic demand environ-
ment. The following example shows that indeed these conditions can occur at an
equilibrium point in the stochastic case.
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Table III. Data for EXAMPLE 2.

i Cj Xi

1 40
2 7.9 10
3 13 100

Table 1V. Payoff matrix for EXAMPLE 2.

i pj pri  Jfi(pilpj, D =4d) Eplfi(pilpj)]
d=8 d=40
1 pp=10 10 36 315 147.6
8 56 280 145.6
2 p=10 10 84 10.5 9.24
8 08 21 8.88

EXAMPLE 2. Consider a market where demand D is 8 with probability 0.6 and
40 with probability 0.4. Let € = 2. There are 3 bidders with costs and bid quantities
shown in Table III.

Bidder 1’s expected profit when bidding at 10 is 0.6(4(10—1))+0.4(35(10—1))
= 147.6. Bidder 1 earns 145.6 if p; = 8. Bidder 2 earns 9.24 when p, = 10 and
8.88 when p, = 8. Their payoffs are shown in Table I'V. Hence, both Bidders 1 and
2 will bid at 10, or [c,] + €, satisfying the equilibrium condition. Note that when
Bidders 1 and 2 both bid at 12, this is not an equilibrium point because each can
gain by lowering his/her bid.

We know from Lemma 3 that the market clearing price in a known demand
environment can be viewed as a separation between the bidders with higher costs
than the MCP and the bidders with lower costs than the MCP. But in a stochastic
demand environment, the MCP for each demand realization may not be a separator,
as discussed in Lemma 7; however, the MCP at the highest demand realization does
serve as a separator, as shown in the following lemma.

LEMMA 12. At the highest realization of the demand, bidders who bid below or
equal to the marginal price have costs less than or equal to the MCP at this highest
demand realization. Moreover, all bidders bidding above the marginal have costs
higher than or equal to this MCP.

Proof. By contradiction, if a bidder with higher cost than the MCP bids less
than or equal to the MCP, then he/she can gain more profit by increasing his/her
bid price. Likewise, if a bidder with lower cost than MCP bids more than the MCP,
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he/she is not dispatched for any demand and therefore he/she can gain more profit
by reducing his/her bid price. a

The following corollary gives a lower bound on the market clearing price at the
highest demand realization.

COROLLARY 5. Suppose bidders bid at their costs. Let Bidder k be the highest
cost bidder who is dispatched at the highest demand realization. Then, [c] is
a lower bound on the market clearing price at the highest demand realization.
Moreover, at an equilibrium point, Bidder k is dispatched at this highest demand
realization.

Proof. At the highest demand realization d’, if there exists an equilibrium
market clearing price less than [c¢;], then Bidder k should bid above this price
by Lemma 12 and not be dispatched; however, since Bidder k can be dispatched
at d’ when everyone bids at cost, the total bid quantity of bidders with lower costs
than ¢, should be less than d’. Hence, there would exist a bidder with higher cost
than ¢, who gets dispatched at d’, violating Lemma 12. ]

In summary, for a market with stochastic demand, a marginal bidder must bid at
or just below another bidder’s bid price at a Nash equilibrium point. Moreover, if
the marginal bidder is the only one bidding at this price or if the marginal bidder is
always completely dispatched, then there must be a bidder bidding just above the
marginal bidder; however, if no one bids just above the marginal bidder, then there
is exactly one other marginal bidder bidding at that price. Moreover, among these
two marginal bidders, the one with the lower bid quantity must bid less than 2¢
above his/her cost. Furthermore, we have that the market clearing price is bounded
above by the highest bidder’s cost plus 2e.

In the following subsection, we introduce a screening process that can be used
to determine the bidders that will not be able to dispatch any unit.

3.3. MARKET STABILITY CONDITION AND COMPETITIVE BIDDERS

The market stability condition can help remove some redundant or non-competitive
bidders who will not be able to dispatch any unit, thus reducing the size of the
problem.

LEMMA 13. If a set of bidders satisfies the market stability condition (6), then,
at an equilibrium point with known demand, at least one bidder is not dispatched.
When demand is stochastic, if all bidders are dispatched at least for one demand
realization, then the highest equilibrium bid price of the bidders is at most [c; ]+ €,
where k is the highest cost bidder.

Proof. When demand is known, by Corollary 2, if there is more than one
marginal bidder, then all marginal bidders are completely dispatched. Therefore,
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there must be at least one bidder who is not dispatched; otherwise, the market
stability condition is violated. Suppose, when demand is stochastic, all bidders
are dispatched at least for one demand realization, then they are dispatched at the
highest demand realization as well. Condition (6) ensures that there are multiple
marginal bidders at the highest demand realization and no other bidder bids above
them. By Corollary 4, the marginal bidders must bid at most [¢;] + €, where k is
the highest cost bidder. a

The market stability condition and Lemma 13 help us obtain the following
proposition, which gives an upper bound on the equilibrium market clearing price,
thus further reducing the size of the problem.

PROPOSITION 5. [ci] + € is an upper bound of the equilibrium market clearing
price, where k is the highest cost bidder in a subset of bidders that satisfies the
market stability condition.

Proof. Suppose that, for some demand, the equilibrium market clearing price
is higher than [¢;] + €; then every bidder who is not dispatched incurs a financial
gain by bidding below or at [c;] + €. Hence, all bidders can be dispatched. The
contradiction follows from Lemma 13, where the highest bid price of the bidders
must be at most [¢;] + €. O

From Proposition 5, we can tighten the bound by finding the ‘lowest cost’ subset
of bidders satisfying the market stability condition. This tightening can be done by
first setting a subset C to be an empty set . Then, while the bidders in Set € cannot
satisfy the market stability condition (6), we can continue adding the lowest cost
bidders to Set €. We stop adding bidders when bidders in C satisfy the market
stability condition. Set C can be called a set of competitive bidders. All bidders
outside C cannot be dispatched and can be removed from our consideration. The
upper bound on the equilibrium market clearing price is the ceiling of the highest
cost bidder in Set C plus €.

The process of constructing the competitive bidder set is called the screening
process. Before searching for an equilibrium point, screening should be done to
reduce the size of the problem. The formal screening algorithm to construct a set
of competitive bidders C from a set of all bidders 8B is described as follows.

ALGORITHM 0.

1. Set C < ¢.

2. While the bidders in Set C do not satisfy the market stability condition (6) and
B # ¥, move the lowest cost bidder from Set 8B to Set C.

The resulting set C is the set of competitive bidders. All bidders remaining in
Set B will not be dispatched.
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Table V. Data for EXAMPLE 3.

i Cj Xi
1 1.0
2 6.0
3 7.0
4 9.0 1
5 10.5 11

In the following section, we describe an algorithm to compute an equilibrium
point.

4. Finding Equilibrium Points

The following example shows that a problem can have multiple Nash equilibrium
points. Moreover, it is possible that the equilibrium market clearing price is not
unique.

EXAMPLE 3. Consider the costs and bidding quantities in Table V with demand
d =10.

An equilibrium point occurs when Bidder 2 is the marginal bidder bidding at
10.5 and the other bidders bid at their costs. At this point, Bidder 2’s profit is 13.5
while Bidder 1’s profit is 47.5. Another equilibrium point is when Bidder 1 is the
marginal bidder bidding at 9 and the other bidders bid at their costs. At this point,
Bidder 1’s profit is 32 while Bidder 2’s profit is 15.

Both equilibrium points can occur at the end of the market clearing process.
Bidder 1 gains higher profit at the first point when Bidder 1 is an under-bidder.
Bidder 2 gains higher profit at the second point when Bidder 2 is an under-bidder.
The point actually reached depends on the activity rule of the market.

In a market where bidders are allowed to adjust their bids infinitely often
without any further restriction on their bid price, the result may become a game
of ‘chicken’. In this game, bidders hang on to the last moment with bids at cost
(or the lowest possible bid price) waiting for someone else to take on the role of
marginal bidder.

As in most non-sealed bid markets, the California Power Exchange has activity
rules that constrain the adjustment of the bid prices. One of these rules (Wilson,
1997) indicates that a bidder cannot bid more than the MCP in the previous round.
Therefore, the first equilibrium point will be reached if Bidder 1 bids before Bidder
2, and vice versa. The first bidder gains the better market position.
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Not only cost and capacity determine the market power of a bidder in the com-
petitive power exchange market; this example shows that the bid submission time
is also one of the most important factor in determining market power. A bidder
with a fast decision making process has an advantage.

Since a problem can have multiple Nash equilibrium points, we shall focus our
interest on the equilibrium point that gives the highest market clearing price 7. The
following subsections present algorithms to find these Nash equilibrium points of
interest.

4.1. FINDING EQUILIBRIUM POINTS WITH DETERMINISTIC DEMAND

When the problem with known demand d has multiple Nash equilibrium points,
we are interested in finding the equilibrium point that gives the highest market
clearing price 7. Since consumers must pay wd for the supply, this point is worst
for consumers.

Proposition 4 reduces the decision space of the marginal bidder into N possible
market clearing prices. An equilibrium point is derived from finding the marginal
bidder and finding this bidder’s bid price, i.e., the market clearing price. For any
given marginal bidder, an optimal bid price and dispatch can be computed. There-
fore, we first find each bidder’s optimal bid price and dispatch, given that this
bidder is the marginal bidder. Some bidders whose costs are relatively high may
not be able to become a marginal bidder. These bidders will have zero dispatch.
Hence, we can pick the bidder with the highest optimal bid price to be the marginal
bidder. The market clearing price 7 is the optimal bid price of the marginal bidder.
An equilibrium point occurs when the marginal bidder bids at = and the others bid
at their costs. The formal algorithm for finding the equilibrium points follows.

ALGORITHM 1.

1. Foreachi =1, ..., N
. o k
(a) Let K(i) be the set of indices {k| ijl’j# x; <d}.
(b) Set g; (k) = min{x;, d — Zl;zl,j;éi x;} for all k € K(i).

(c) Compute k* = arg maxek) (Lck+1] — ¢i)gi (k).
(d) Set p;j = [cp+41] and ¢; = g; (k¥).
2. Let

7 =max{p/lg; >0,i =1, ..., N}.

3. SetIto be the set of integers i € {1, ..., N} such that p/ = m. This is the set
of possible marginal bidders.

4. The equilibrium points are the points where one of the bidders in I bids at
and the others bid at cost, i.e., bidder j bids at [c;] + €.
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The value of g;(k) can be viewed as the minimum dispatch if i bids at [cp1].
The values of p! and g; computed from Step 1 are the optimal bid price and
dispatched quantity of the marginal Bidder i.

It can also be proven that if all bidders have the same bid quantities, i.e., x; =
xVi, then the optimal strategy of Bidder i is to bid at the next higher bidder’s cost,
Lcit1].

The following proposition confirms that the points computed from Algorithm 1
are the Nash equilibrium points. Moreover, the resulting spot price 7 is the highest
possible equilibrium spot price.

PROPOSITION 6. The points computed from Algorithm 1 are pure strategy Nash
equilibrium points. Moreover, there is no other Nash equilibrium point where a
spot price is higher than 7.

Proof. First, we show that the points computed from Algorithm 1 are Nash
equilibrium points. To prove this, we need to show that no one can obtain higher
expected profit by changing his/her bid price.

Since the bid price of the marginal bidder, r, is the optimal bid price computed
from Step 1 in Algorithm 1, the marginal bidder cannot obtain higher expected
profit by changing his/her bid price. For any bidder j with ¢; > m, he/she is
optimally not dispatched.

For any under-bidder j with ¢; < 7, Bidder j’s payoff will be the same if
Bidder j changes p; to p} < 7 and may be even less if p; = 7. When p; > T,
Bidder j may not be able to be dispatched, hence earning a lower payoff than with
abid of p;. If Bidder j can still be dispatched, Bidder j will become the marginal
bidder with market clearing price 7 and dispatch quantity g’;. Step 1 in Algorithm 1
shows that if j is the marginal bidder, (7’ — ¢;)q; < (p} — ¢;)q;; however, from
Step 2 in Algorithm 1, pj < 7. Therefore, (p;f —cj)qj < (w —cj)x;. Thus, Bidder
J cannot achieve a higher expected profit by changing p;.

As a result, the points computed from Algorithm 1, satisfying (4), are Nash
equilibria. To prove that no other equilibrium point has a spot price higher than
7, we proceed by contradiction. Suppose a point with spot price 7’ > 7 is an
equilibrium point. Then, if a bidder j whose cost is less than 7’ bids more than 7,
Bidder j can earn higher profit by bidding at p;. < 7/, violating the equilibrium
condition. Consider the case where all bidders whose costs are less than 7z bid at 7z’
or less. By Step 1 in Algorithm 1, if the marginal bidder k is the only one bidding
at v/, Bidder k can receive higher profit by reducing py to p; < m’in Step 1d,
violating the equilibrium condition. If there is more than one bidder bidding at
7/, from Corollary 2, these marginal bidders are completely dispatched. Following
Step 1 in Algorithm 1, the marginal bidders can secure higher profit by reducing
their bid prices to p* < 7’ in Step 1d, violating the equilibrium condition. Note that
pi < m' since p; < m from Step 2 of Algorithm 1 and 7 < 7’ from assumption.

O
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Proposition 6 shows that the equilibrium market clearing price computed from
Algorithm 1 is the highest possible equilibrium market clearing price. Since con-
sumers have to pay wd for the supply, the points computed from Algorithm 1 are
the worst points for consumers.

PROPOSITION 7. In a market with known demand, a pure strategy Nash
equilibrium point exists.

Proof. Steps 2 and 3 in Algorithm 1 imply that the algorithm always terminates
with at least one equilibrium point. Proposition 6 confirms that this point is a pure
strategy Nash equilibrium point. a

4.2. FINDING EQUILIBRIUM POINTS WITH STOCHASTIC DEMAND

As in the known demand case, a market with stochastic demand may also have
many equilibria. The bidders’ choice of equilibrium point is not clear. In fact, they
might choose to play mixed strategies. Although pure strategy equilibrium points
can be found by the algorithm described at the end of this subsection, the resulting
point is still unclear. For this reason, we do not focus on constructing an efficient
algorithm to find a pure strategy equilibrium point with stochastic demand. The
point at which the bidders choose to play must first be clarified. We leave that
question for future research.

The results from Subsection 3.2 greatly reduce the size of bidders’ decision
spaces and, therefore, reduce the time to search for equilibrium points. The key
arguments are as follows.

From Corollary 4, a marginal bidder k in the stochastic demand environment
must either bid just below other bidders’ bid prices or bid at [¢;] or [c;] + €.
Suppose the marginal bidder bids just below Bidder j’s bid price. If Bidder j is
never marginal at any demand, then Bidder j can gain higher profit by reducing p;
if ¢; < pi. Hence, ¢; > p; and Bidder j can gain no less profit by bidding at [c;T;
however, if Bidder j is also a marginal bidder in one of the demand realizations,
then either there is a bidder bidding just above Bidder j or p; = [c;] or [c;] + €.

Lemma 11 also tells us that the highest possible equilibrium MCP must be in
the set {|c;],i =1, ..., NYU{[¢],i=1, ..., N}U{[¢i]+e,i=1,..., N}

One simple search algorithm to find pure strategy equilibrium points is the fol-
lowing. First, the screening process or Algorithm O as described in Subsection 3.3
is implemented to reduce the size of the problem. Second, a bidder, labeled as
Bidder 1, is picked from the competitive bidder set and this Bidder 1 is assumed
to be a marginal bidder at the highest demand realization. The bid price of Bidder
1 must be either p; = [c;] or [c;] + €. Next, another bidder, labeled as Bidder
2, is picked from the competitive bidder set and this Bidder 2 is assumed to bid
at or below Bidder 1. The possible bid prices of Bidder 2 are p,, p; — €, [¢3], or
[c2] + €. Next, another bidder, labeled as Bidder 3, is picked from the competitive
bidder set and this Bidder 3 is assumed to bid at or below Bidder 2. The possible bid
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prices of Bidder 3 are p,, p» — €, [c3], or [c3] + €. Note that p3 # p, if p» = p;.
The process is then repeated until the set is empty. We then enumeratively find
a Nash equilibrium from their possible bid prices described above. If no point is
found, the whole selection process is repeated. In fact, the above algorithm can
be substantially improved by using the fact from Lemma 12 that the MCP at the
highest demand realization is a separator between the bidders with higher costs
than this MCP and the bidders with lower costs than this MCP. That is, Bidder 1
should be selected from the highest cost bidder first. Moreover, since all bidders
with costs less than Bidder 1 can be dispatched at the highest demand realization,
we can also check if the selected Bidder 1 can supply the demand. If not, the
selected Bidder 1 can never be dispatched and can be removed from the competitive
bidder set.

5. Numerical Results

Consider the costs and bidding quantities in Table V and € = 0.01. Demand D is
stochastic which is uniformly distributed over 7, 9, and 11.

The following subsections show the numerical results when the demand is real-
ized before bidders make their decisions and when the demand is realized after
bidders make their decisions.

5.1. DEMAND IS KNOWN BEFORE BIDDERS MAKE THEIR DECISIONS

In this subsection, demand D is known before the bidders make their decisions.
Thus, we can model the problem as three deterministic problems with respect to
each realization. The results from Algorithm 1, i.e., the equilibrium point with the
highest spot price, are compared with the results from two other strategy profiles,
which are: (1) bidders bid at the next higher bidder’s costs and (2) bidders bid at
their costs.

The first part of Table VI shows the optimal bid price and the optimal expected
profits computed from Algorithm 1. The last column contains the expected profit
for each bidder and the bolded figures represent the market clearing prices. The
expected equilibrium market clearing price is 10. The second and third parts of
Table VI show the bid prices and the expected profits when the bidders bid at the
next higher bidder’s costs and when the bidders bid at their costs, respectively. The
resulting expected market clearing prices are 7.67 and 6.33, respectively.

It is clear from the example that, when all the bidders behave optimally, they
achieve higher expected profits than when they bid at their own costs or at the next
higher bidder’s costs. It is possible, however, that some bidders can gain higher
profit, if other bidders do not behave optimally. An example of this situation is
when Bidder 2 bids at 6 and the others bid at 10. In this case, Bidder 2 gets 20, as
long as demand is greater than 5.

The dispatches of bidders are socially optimal when they minimize total gener-
ation cost. Hence, socially optimal dispatches can be obtained when bidders bid at
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Table VI. Bid prices and expected profits under three strategy profiles.

i d=17 d=9 d=11 E[fi]
Pi fi Pi fi Di fi

Alg. 1

Bidder 1 1.01 40 1.01 475 1.01 475 45

Bidder 2 9 3 10.5 9 10.5 18 10

Bidder 3 7.01 2 7.01 3.5 7.01 3.5 3

Bidder 4 9.01 0 9.01 1.5 9.01 1.5

Bidder 5 10.51 0 10.51 0 10.51 0 0

Next higher

Bidder 1 6 30 6 30 6 40 33.33

Bidder 2 7 2 7 4 7 15 7

Bidder 3 9 0 9 0 9 2 0.67

Bidder 4 10.5 0 10.5 0 10.5 0 0

Bidder 5 Oe¢ 0 Oe¢ 0 Oe 0 0

At cost

Bidder 1 1 25 1 25 1 30 26.67

Bidder 2 6 0 6 0 6 5 1.67

Bidder 3 7 0 7 0 7 0 0

Bidder 4 9 0 9 0 9 0 0

Bidder 5 10.5 0 10.5 0 10.5 0 0

their costs or at the next higher bidder’s costs; however, the dispatches of bidders
when they each behave optimally, called individually optimal, may not be socially
optimal. For example, when demand d = 9, Bidder 2, who has capacity of 5 units,
prefers to bid at 10.5 and is dispatched for only 2 units. This dispatch has 2 units
less than the socially optimal dispatch. Bidders 3 and 4 who are not dispatched in
the socially optimal condition get completely dispatched in the individually optimal
condition. This situation shows that unregulated markets can often produce costlier
generation plans than a regulated monopoly.

5.2. DEMAND IS REALIZED AFTER BIDDERS MAKE THEIR DECISIONS

In this subsection, demand D can be 7, 9, or 11 with equal probability. There are
many pure strategy equilibrium points for this problem. Several of them can be
found from the algorithm described in Subsection 4.2. For example, the points
where ps = 10.5, ps = 9.01, p3 =7, p» = 9, p; < 7 are pure strategy equilib-
rium points. Bidders 1, 2, and 3 get payoffs of 40, 9, and 2, respectively. Bidders
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Table VII. Costs and bid quant-
ities of bidders.

i ci X;
1 3 5
2 5 3
3 3
4 10 3
5 12 11
6 15 8

4 and 5 get nothing. This point is similar to their optimal bidding decisions when
demand is known to be 7.

There are other pure strategy equilibrium points that cannot be found from the
algorithm as well. For example, the point where p; =1, po =7, p3 =7.01, py =
ps = 7.02 is an equilibrium. This is the point when Bidders 4 and 5 bid less
than their costs. They cannot be affected by doing this because they cannot be
dispatched in any event; however, their bid affects other bidders since the other
bidders receive lower profits.

From Table VI, when demand is realized before bidders make their decisions,
Bidder 2 is always the marginal bidder in all three demand realizations; however,
when demand is realized after bidders make their decisions, Bidder 2 might be op-
timal without being a marginal bidder. For example, when P(D =7) = P(D =9)
= 0.25 and P(D = 11) = 0.5, the points where ps = 10.5, p, = 9.01, p, =
9, p3 =7, p1 <7 are not equilibrium points since Bidder 2 can gain higher profit
by reducing p;. In fact, one equilibrium point is where p; = 9, p» = 6.01, p3 =
7.01, ps = 9.01, ps = 10.52 and Bidder 1 is a marginal bidder in all realizations.

The following is another example of interest. Consider the costs and bidding
quantities in Table VII and € = 0.01.

Demand D is stochastic and can take values 5 with probability 0.25, 10 with
probability 0.5, and 15 with probability 0.25.

This example has many pure strategy equilibrium points. Some of them are
shown in Table 8.

Points 1-3 cannot be obtained from the algorithm described in Subsection 4.2
because Bidder 4 bids less than c4. At these points, Bidder 4 cannot be dispatched
when D = 5, 10 but Bidder 4 is an under-bidder when D = 15. Hence, Bidder 4’s
profit cannot change as long as 6.01 < p4 < 12; however, Bidder 4’s bid price can
greatly affect Bidders 1-3’s profits. The same situation holds for Bidder 6 at Point
3.

Point 4 can be obtained from the algorithm described in Subsection 4.2. This is
the only equilibrium point where every bidder bids above their costs. We suggest
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Table VIII. Some pure strategy equilibrium points.

No. p1 fi 123 f2 3 3 P4 fa Ps fs P6 fe
1 5 25.025 6.01 8.51 5.01 6.765 6.02 3.75 15 0.75 15.01 0
2 6 24.025 3.01 9.765 6.01 6.76 6.02 3.75 15 0.75 15.01 0
3 6 20.2875 3.01 7.5225 6.01 4.5175 6.02 15075 12.01 0.0025 12.02 0
4 6 36.25 10 12.5 6.01 12.75 10.01 3.75 15 0.75 15.01 0

that this point is expected to be played if all bidders are both rational and ‘generous’
to others. Bidder 6 who cannot be dispatched bids at |cs| + €. Bidder 5 who is the
marginal at D = 15 bids just below Bidder 6. Bidder 4 who can be dispatched only
when d = 15 is an under-bidder so p; = [c4] + €. Bidder 3 chooses to play an
under-bidder role when D = 10 and bids just at p3 = |c3] + €. This forces Bidder
2 to take the marginal role and p, = ps — €.

One interesting issue about Point 4 is, that Bidder 2 who has lower cost than
Bidder 3 and the same bidding quantity as Bidder 3 gains less profit than Bidder 3.
Suppose Bidder 2 can submit the bid before Bidder 3 and wants to play an under-
bidder role when D = 10; Bidder 2 might try to bid at p, = |c;] + € = 5.01.
This forces Bidder 3 to take a marginal role at D = 10 by bidding at p3; = 10p;
however, Bidder 1 is not happy with this and can gain higher profit by increasing
p1 to be higher than p,. So, suppose Bidder 2 instead of bidding at 5.01, moves p»
up to 6 so that Bidder 1 can bid at 5.99. This does make Bidder 1 happy; however,
after seeing p; = 5.99, Bidder 2, who currently gains a profit of 15, notices that
he/she can gain higher profit by bidding below p;. Thus, it is not an equilibrium
point. If Bidder 2 reduces p; to be below p;, Bidder 1 will again lose. In fact, both
Bidder 1 and Bidder 2 never settle down at their equilibrium if Bidder 3 bids at 10.

Bidder 2 never wants to be settled at an equilibrium point as in Point 4 by
taking the marginal role at D = 10. This is because Bidder 2 receives only 12.5
while he/she can get 15 at a non-equilibrium point for him/her. As a result, Bidder
2 should be satisfied with the profit of 15 when he/she bids at 6 and the market
closes at a non-equilibrium point.

6. Conclusion

We model a selling-at-spot electricity market as a multi-round non-sealed bid auc-
tion. Both stochastic and deterministic versions of the demand for electricity are
considered. Assuming that bidders are rational, we provide the characteristics and
behavior of the bidders in this market as well as the resulting market clearing price
at an equilibrium point. Furthermore, the market stability condition is introduced
as a requirement for a market to be operable. This condition can also be used to
determine the redundant bidders in the market and, hence, reduce the size of the
problem.
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Algorithms for finding pure strategy equilibrium points in both deterministic
demand and stochastic demand cases are developed. We prove also that a pure
strategy equilibrium point will always exist in a known demand environment.

Using these algorithms, we find equilibrium points for some numerical ex-
amples and show that the resulting dispatches when each bidder behaves optimally
may not be socially optimal. Moreover, we show that unregulated markets can often
produce costlier generation plans than result from a regulated monopoly.

The market power of a bidder is the capability of the bidder to control the market
or determine the market clearing price. In general, there are multiple equilibrium
points that can be reached when the market is cleared. The market power of a
bidder also includes the capability of the bidder to make the market clear at the
bidder’s highest payoff equilibrium point. In general, a bidder with lower genera-
tion cost and higher capacity has high market power; however, we found that the
bid submission time is an important factor in determining the market power. This is
because the bidder who bids earlier has better opportunity to select the equilibrium
point that is beneficial to him/her. Furthermore, it is also possible that a market is
not closed at a Nash equilibrium point when demand is stochastic. A bidder may
choose to play a non-equilibrium point if he/she notices that his/her profit will be
less than the result of playing at an equilibrium point.

We would like to apply our models to the California Power market. Our future
research will focus on models that: (1) allow bidders to submit more than one
bid; (2) include a multi-period problem, where the fixed generation cost will be
incorporated; (3) establish necessary and sufficient conditions for the individually
optimal dispatch to be equal to the socially optimal dispatch; and (4) determine
bidders’ market power.
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