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In this paper, we construct a parallel image of the conventional Maxwell theory
by replacing the observer-time by the proper-time of the source. This formulation
is mathematically, but not physically, equivalent to the conventional form. The
change induces a new symmetry group which is distinct from, but closely related
to the Lorentz group, and fixes the clock of the source for all observers. The
new wave equation contains an additional term (dissipative), which arises
instantaneously with acceleration. This shows that the origin of radiation reac-
tion is not the action of a ‘‘charge’’ on itself but arises from inertial resistance
to changes in motion. This dissipative term is equivalent to an effective mass so
that classical radiation has both a massless and a massive part. Hence, at the
local level the theory is one of particles and fields but there is no self-energy
divergence (nor any of the other problems). We also show that, for any closed
system of particles, there is a global inertial frame and unique (invariant) global
proper-time (for each observer) from which to observe the system. This global
clock is intrinsically related to the proper clocks of the individual particles and
provides a unique definition of simultaneity for all events associated with the
system. We suggest that this clock is the historical clock of Horwitz, Piron, and
Fanchi. At this level, the theory is of the action-at-a-distance type and the
absorption hypothesis of Wheeler and Feynman follows from global conservation
of energy.



1. INTRODUCTION

It was 1865 when James Clark Maxwell published his theory of electrody-
namics. The slow but steady progress made by our understanding and use
of mechanics and thermodynamics was given a major boost by Maxwell’s
theory made practical. For example, starting from 1866, a continuous
communications link has existed between Europe and the US (due in no
small part to the efforts of Lord Kelvin). By 1883, Edison had a workable
light bulb, while Bell invented the telephone in 1886. The radio waves
predicted by Maxwell were discovered by Hertz in 1887, and electricity,
producing new inventions weekly, was well on the way to providing what
we now consider normal.

In the intervening 41 years between Maxwell and the introduction of
the special theory of relativity in 1905, a scientific and technological
revolution had taken firm roots. Indeed, it has been suggested by
Feynman(1) that, ‘‘From the long view of the history of mankind—seen
from, say ten thousand years... there can be little doubt that the most
significant event of the 19th century will be judged as Maxwell’s discovery
of the laws of electrodynamics.’’

When the founding fathers, Lorentz, Poincaré, Einstein, and their
contemporaries began to study the issues associated with the foundations
of electrodynamics; they had a number of options open to them in
addressing the fact that the Newtonian theory and the Maxwell theory
were invariant under different transformation groups (see Jackson(2)):

1. Both theories are incorrect and a correct theory is yet to be found.

2. The ‘‘proper’’ Maxwell theory will be invariant under the Galilean
group.

3. The ‘‘proper’’ Newtonian theory will be invariant under the
Lorentz group.

4. The assumption of an ether for electromagnetic propagation is
correct so that Galilean relativity applies to mechanics while elec-
tromagnetism has a preferred reference frame.

At the time, it was unthinkable that the Maxwell theory had any
serious flaws. Lorentz(3, 4) had recently shown that all of the macroscopic
phenomena of electrodynamics and optics could be accounted for based on
an analysis of the microscopic behavior of electrons and ions.

Einstein(5) rejected the fourth possibility and, as noted by Spencer and
Shama,(6) was the ‘‘first scientist with the foresight to realize that a formal
postulate on the velocity of light was necessary.’’ He proposed that all
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physical theories should satisfy the (now well-known) postulates of special
relativity:

1. The physical laws of nature and the results of all experiments are
independent of the particular inertial frame of the observer (in
which the experiment is performed).

2. The speed of light in empty space is constant and is independent
of the motion of the source or receiver.

The first postulate abandons the notion of an absolute space , while the
second abandons absolute time. In a later paper, Einstein(7) modified the
second postulate to make it explicit that he always referred to observers in
inertial frames:

2Œ. The speed of light in empty space is constant and independent of
the motion of the source or receiver in any inertial frame.

Einstein formulated his theory in the usual three-dimensional notation,
making a distinction between time and space. It was noted by Poincaré(8)

that the transformations of Lorentz could be treated as rotations if time is
made an imaginary coordinate. Poincaré had also introduced the metric
now attributed to Minkowski.(9)

Although Poincaré discovered the proper-time, it was Minkowski who
recognized its importance in physical theory and showed that it is the only
unique variable associated with the source and available to all observers.
Motivated by philosophical concerns, he further proposed that space and
time should not be treated separately, but should be unified in the now well-
known fashion leading to Minkowski space. Given the tremendous impact
of the then-recent work in geometry on science, it was natural for him to
think along these lines. Once he accepted this approach, it was also natural
to assume that the proper-time of the source be used to parameterize the
motion, acting as the metric for the underlying geometrization of the
special theory of relativity, thus implicitly requiring that another postulate
be added:

3. The correct implementation of the first two postulates requires
that time be treated as a fourth coordinate, and the relationship
between components so constrained to satisfy the natural invariance
induced by the Lorentz group of electrodynamics, (Minkowski
space).

The four-geometry postulate was very popular at the time and was embraced
by many; but other important physical thinkers, including Einstein, Lorentz,
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Poincaré, and Ritz, regarded it as a mathematical abstraction lacking phy-
sical content and maintained that space and time have distinct physical
properties. Although Einstein demurred, the feeling among many of the
leading physicists at that time was that an alternative implementation should
be possible which preserves some remnant of an absolute time variable (true
time), while still allowing for the constancy of the speed of light. It was noted
by Whittaker(10) that a few weeks before he died, Lorentz is reported to have
maintained his belief in the existence of this ‘‘true time.’’ Dresden(11) reports
that ‘‘...He retained his beliefs in a Euclidean, Newtonian space time, and in
absolute simultaneity ... .’’

1.1. Perspective

The general focus on, and excitement about, the four-geometry left
little room for serious alternative investigations (separated from philo-
sophical debates). This is unfortunate since the diversion is part of the
reason that the physical foundations of classical electrodynamics did not
receive the early intense investigation accorded mechanics. Possibly because
of the apparent completeness of the special theory, interest in statistical
mechanics, quantum theory, and the problem of accelerated motion (the
general theory), Einstein was preoccupied with these other important areas.
On the other hand, the physics community lost three important thinkers
on the subject by 1912. Ritz died in 1908, Minkowski died (shortly after
his paper appeared) in 1909, and Poincaré died in 1912. The First World
War began in 1914 and within four years decimated a whole generation.
Furthermore, by 1913 interests had already shifted from electrodynamics
to the new quantum theory. The longer this investigation into classical
electrodynamics was delayed, the more Minkowski’s approach became
embedded in the culture of physics, permeating the foundations for all
future theories. By the time problems in attempts to merge the special
theory of relativity with quantum theory forced researchers to take a new
look at the foundations of classical electrodynamics, the Minkowski
approach to the implementation of the special theory was considered
almost sacred.

We are now taking our first steps into the twenty-first century, one
hundred and forty-five years later. Electromagnetism is now in the hands
of the engineers, mathematicians, and philosophers, and much of it is not
considered mainstream physics. For those who learned physics in the sixties
and seventies, ‘‘electrodynamics seems as old as mechanics.’’ The continued
success of quantum mechanics and the ‘‘apparent’’ successes of quantum
electrodynamics and the standard model has made the subject passé.
Today, students study the subject as an introduction to the special theory,
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preparation for advanced quantum theory, and as a simple example of a
gauge theory. From this perspective, there is no real reason to believe that
the first possibility should be rejected out of hand (i.e., that both the
Newtonian and Maxwell theories could in some way be incorrect). Such a
possibility is even more likely in light of the fact that the problems facing
the early workers are still with us in one form or another. Furthermore,
additional problems have arisen from both theory and experiment.

1.2. Problems

Newtonian Mechanics

Once it was accepted that the ‘‘proper’’ Newtonian theory should be
invariant under the Lorentz group, work on this problem was generally
ignored until after World War Two when everyone realized that the
quantum theory did not solve the problems left open by the classical
theory. In particular, it was first noticed that (at the classical level)
Minkowski’s approach only works (as expected) in the one-particle case.
It was 1948 when Pryce(12) showed that the canonical center-of-mass is not
the three-vector part of a four-vector. This variable is required for any
‘‘natural’’ relativistic many-particle theory. Virtually all research since then
has focused on attempts to avoid this problem while maintaining use of
the proper-time of the observer as the fourth coordinate for Minkowski
geometry.

In order to provide a simple approach to the problem encountered by
Pryce, let us consider two inertial observers X and XŒ with the same orien-
tation. Assume that the (proper) clocks of X and XŒ both begin when their
origins coincide and XŒ is moving with uniform velocity v as seen by X.
Let two particles, each the source of an electromagnetic field, move with
velocitieswi (i=1, 2), as seen byX, andw −i (i=1, 2), as seen byXŒ, so that:

x −i=xi − c(v) vt+(c(v)−1)(xi · v/||v||2) v (1.1a)

xi=x −i+c(v) vtŒ+(c(v)−1)(x −i · v/||v||
2) v (1.1b)

with c(v)=1/[1−(v/c)2]1/2, represent the spacial Lorentz transformations
between the corresponding observers. Thus, there is clearly no problem in
requiring that the positions transform as expected. However, when we try
to transform the clocks, we see the problem at once since we must have, for
example,

tŒ=c(v)(t−x1 · v/c2), tŒ=c(v)(t−x2 · v/c2) (1.2a)
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This is clearly impossible except under very special conditions on all other
observers. Furthermore, if we write down the center-of-mass position X and
require that it transform as above, we add another (impossible) constraint on
the clock of any other observer. Pryce’s approach is more abstract (and
complicated), but leads to the same result.

In his 1949 paper, Dirac(13) observed that we must choose a particular
realization of the Poincaré algebra in order to identify the appropriate
variables for theory formulation. He showed that there are three possible
choices of distinct three-dimensional hypersurfaces that are invariant under
subgroups of the Poincaré group and intersect every particle world-line
once; the instant form, the point form, and the front form. (It was later
shown by Leutwyler and Stern(14) that there are five choices. However, the
other two are not especially interesting.) The instant form is best known.
It is based on normal time-evolution and uses spacelike hyperplanes in
Minkowski space; the point form is based on mass hyperboloids; while the
front form is based on null hyperplanes.

Following Dirac’s work, Bakamjian and Thomas(15) showed that one
can construct a quantizable many-particle theory that satisfies the first two
postulates of Einstein. However, they suggested that when interaction is
introduced, their approach would not permit both a global theory and
provide an invariant particle world-line description (satisfy the third pos-
tulate). This conjecture was generalized and later proved by Currie et al. (16)

to the effect that the requirements of Hamiltonian formulation, (canonical)
independent-particle variables, and relativistic covariance (i.e., the canoni-
cal positions transform as geometric coordinates), are only compatible with
noninteracting particles (The No-Interaction Theorem). There are many
references on the subject, but the book by Sudarshan and Mukunda(17)

gives a comprehensive review of the problems and attempts to solve them
(up to 1974). All attempts have ended in failure for one or more reasons
which usually include the inability to quantize.

The No-Interaction Theorem led many to suspend the requirement
that canonical positions transform as geometric coordinates and to focus
on the construction of the ‘‘correct many-particle representation for the
Poincaré algebra.’’ However, a very important (but not well-known)
theorem was proved by Fong and Sucher(18) in 1964 for the quantum case,
and by Peres(19) in 1971 for the classical case:

Theorem 1.0 (Fong–Sucher–Peres). Suppose that no restriction is put
on the transformation law of the canonical variables of a many-particle
system. Then given any Hamiltonian H, total momentun P, and angular
momentum J satisfying:
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dH/dt=0, [H, Pm]=0, [H, Jm]=0

[Pm, Pn]=0, [Jm, Pn]=emnsPs, [Jm, Jn]=emnsJs

it is always possible to find a boost generator L so that the full set of com-
mutation relations of the Poincaré algebra for the inhomogeneous Lorentz
group will be satisfied.

In order to underscore the importance of this theorem, Peres showed
explicitly how to construct a ‘‘clearly’’ nonrelativistic Hamiltonian and
appropriate boost generator (along with canonical center-of-mass, total
momentum, and angular momentum). Thus, this theorem implies that a
relativistic classical (or quantum) many-particle theory requires something
else besides the commutation relations for the inhomogeneous Lorentz
group. On the other hand, this is the only requirement imposed on us by
Maxwell’s equations! It follows that, contrary to common belief, our his-
torical (intellectual) state of affairs is not dictated by the Maxwell theory.
We conclude that the Minkowski postulate imposes an additional condi-
tion on the special theory (not required by Maxwell’s equations), but we
are still unable to correctly account for Newtonian mechanics (after almost
a hundred years). Those willing to dismiss the issue as arcane should be
aware that the same problem also exists for the general theory. Thus, the
major problem facing us in the twenty-first century is to construct a quantiz-
able classical theory which satisfies the first two postulates of Einstein in
some reasonable form and includes Newtonian Mechanics.

Interpretation

There are interpretation problems with the Minkowski approach that
are not well-known. First, it should be noted that the conventional use of
the words coordinate time tends to obscure the fact that this is the proper-
time of the observer. This makes physical interpretation complicated and
strange because one is required to refer back to the proper-time of the
source (or the postulated clock of a co-moving observer) in order to
acquire a complete interpretation and analysis of experiments. Thus, the
‘‘parameter’’ (used to define the four-geometry) must also be viewed as a
physically real measurable quantity when the theory is used for experimen-
tal analysis. At the classical level this asymmetrical relationship may be
vexing, but it is not contradictory. However, at the quantum level this same
problem becomes more fundamental. At this level, the observer proper-
time is a c-number that transforms to an operator under the Lorentz
group, while the proper-time of the source is an operator that remains
invariant (see Wigner(20)).
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Radiation Reaction and the Lorentz–Dirac Equation

The problems associated with the radiation of accelerated charged
particles, and those of the Lorentz–Dirac equation, are old and well-known.
Two books that have contributed to a clearer understanding of these basic
problems are those of Rohrlich(21) and Parrott.(22) Rohrlich provides a
comprehensive study of the classical theory up to 1965, which includes a
nice review of the history. (Those unaware of the continuing effort to solve
the classical electron problem should also see Rohrlich.(23)) Parrott’s book
is both clear and insightful. (His chapter on the Lorentz–Dirac equation is
unbiased, well done, and should be required reading for any serious student
of the subject.) The classics, Panofsky and Phillips,(24) and Jackson(2) are
also important sources of insight and history. The elementary (but correct)
account by Feynman(1) in Volume II of his famous lecture series has done
much to educate those with little or no concern with the foundations.

The radiation of accelerated charged particles is known to occur
instantaneously with acceleration and its nature has been the object of
much speculation (see Wheeler and Feynman(25)). The great success of
Lorentz in using the Maxwell (field) theory, along with his aether, to show
that all macroscopic electrodynamics and optics could be derived from a
microscopic analysis has done much to foster our faith in the correctness of
the theory. This success carried with it our first introduction to the
divergences of a field theory. He found that the energy density and the field
momentum for each particle diverges unless the particle has a finite radius.
In addition, the derived (Lorentz) force law did not provide the appropri-
ate dissipation to account for the observed radiation. It was also known
that the electromagnetic mass defined by the electrostatic energy divided by
c2 and that defined via the electromagnetic momentum did not agree,
giving the well known 4/3’s problem (see Schwinger(26)).

These problems led to the study of various finite-size models for
charged particles and, in turn, forced serious consideration of the action of
one part of a charge on itself (self-energy); and also required the introduc-
tion of extra forces to hold the particle together (Poincaré stresses).

The appearance of the classical divergence difficulties in the quantized
theory (along with a few new ones) led many to hope that the successful
construction of a consistent classical theory would help to solve the corre-
sponding problems in quantum electrodynamics. For this reason, many
attempts were made to formulate such a theory. The most well-known
early attempts are due to Born and Infield,(27) Dirac,(28) Bopp,(29) and
Wheeler and Feynman.(25) (Less well-known other attempts are due to
Rosen,(30) Podolsky and Schwed,(31) and Feynman.(32)) Each ran into
problems with quantization and are a part of the history. However, the
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point particle reduction theory of Dirac and the Wheeler–Feynman
approach have special importance.

The use of particles of finite radius causes serious problems with
Lorentz invariance, so a major advance was made when Dirac constructed
a point particle reduction theory for the Lorentz model. To do this, he used
Maxwell’s equations to find the retarded field of the particle, assuming that
at large distances the field only contains outgoing waves, and then cal-
culated the advanced field assuming that at large distances the field only
contains converging waves. He then defined half the difference between the
retarded and the advanced fields evaluated at the particle position, mul-
tiplied by the charge, as the force of radiation reaction. This term was
added to the Lorentz force to provide the appropriate dissipation term (the
Lorentz–Dirac equation). This provided the same dissipation term obtained
by Lorentz (in a nonrelativistic calculation), but was independent of the
particle radius. Thus, Dirac produced a point particle theory while all the
other problems remained unchanged, and this is essentially what we have
today. It should also be noted that point particles of finite mass imply
infinite density. This was a real problem during Newton’s time, but does
not appear to cause problems today.

Wheeler and Feynman took a different ploy. They showed that we
could use point particles, obtain the same radiation reaction term as above,
and eliminate the self-energy divergence. Their approach assumes that the
field which acts on a given particle arises only from other particles (adjunct
field). They used half the sum of the retarded and the advanced fields, and
assumed that there are sufficiently many particles in the system to com-
pletely absorb all radiation given off from any one of them (absorption
hypothesis). The theory is of the action-at-a-distance type and also elimi-
nates the divergences associated with the energy and momentum densities.
Unfortunately, the theory could not be quantized, but this work made it
clear that the action-at-a-distance and field theory approaches are much
closer than was generally expected. (Indeed, Wheeler and Feynman argued
that the two theories are complimentary views.)

The two best-known problems with the Lorentz–Dirac equation are
runaway solutions and preacceleration. The equation has solutions for a
free particle (with no force) that can self-accelerate off to infinity. It was
conjectured that these solutions were eliminated by the asymptotic con-
dition proposed by Haag.(33) However, Parrott(22) (p. 196) notes that the
asymptotic condition is necessary to ensure conservation of energy-
momentum, but may not be sufficient to eliminate all strange solutions.
Furthermore, the recent paper of Parrott and Endres(34) makes this conjec-
ture doubtful. It has been recently shown by Low(35) that this problem also
shows up at the nonrelativistic quantum level. Things are better for quantum
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electrodynamics (they don’t appear), but caution is required as the possible
existence of a Landau-like anomalous pole in the photon propagator or the
electron-massive photon forward scattering amplitude could produce the
runaway effect.

The preacceleration problem arises because the equation is nonlocal in
time. This means that the particle can accelerate prior to the action of a
force. The problem is generally ignored with the observation that the
natural time interval for this effect (say for an electron) is of the order of
6.2×10−24 s, so that no classical particle can enter from a free state into
interaction over such a small time interval.

These problems have existed for sometime now and no solution seems
to be in sight. It is clear that the first problem is based on the assumption
that the dissipation should be in the Lorentz force and, since this term is
third order in the derivative of position variable, the difficulty follows. The
second problem can be traced back to the use of advanced fields which are
necessary for the theory (Dirac and Wheeler and Feynman), and to get the
correct dissipation term.

Mach’s Principle and the 2.7°K MBR

Today, we know that a unique preferred frame of rest exists
throughout the universe and is available to all observers. This is the 2.7°K
microwave background radiation (MBR) which was discovered by Penzias
and Wilson(36) in 1965 using basic microwave equipment (by today’s stan-
dards). This radiation is now known to be highly isotropic with anisotropy
limits set at 0.001%. Futhermore, direct measurements have been made of
the velocity of both our Solar System and Galaxy through this radiation
(370 and 600 km/s respectively, see Peebles(37)). One can only speculate as to
what impact this information would have had on the thinking of Einstein,
Lorentz, Minkowski, Poincaré, Ritz and the many other investigators of
the early 1900s who were concerned with the foundations of electrodyna-
mics and mechanics. The importance of this discovery for the foundations
of electrodynamics in our view is that this frame is caused by radiation
from accelerated charged particles (independent of the various cosmological
suggestions).

As noted by Peebles, the MBR does not violate the special theory.
However, general relativity predicts that at each point we can adjust our
acceleration locally to find a freely falling frame where the special theory
holds. In this frame, all observers with constant velocity are equivalent.
Thus, according to the general theory we have an infinite family of freely
falling frames. Within this context, the Penzias and Wilson findings show
that there is a unique frame in which both the acceleration and velocity can
be set equal to zero at each point in the universe.
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As suggested by Rohrlich,(21) ‘‘Mach’s principle was originally designed
to ensure that there is no difference between the rotation of the earth with
repect to the fixed stars or the fixed stars with respect to the earth.’’ It now
appears that the fixed stars are not needed and the earth really does rotate. Our
concern with this principle is associated with the fact that an accelerated
charged particle experiences a damping force simultaneously with the moment
of acceleration (relative to any inertial frame). Thus, it appears that a charged
particle can be used to identify accelerating frames and raises the question:
what is a charged particle accelerating with respect to? Put another way,
charged particles appear to know when they experience a force. Furthermore,
even if the force is constant, the effect cannot be transformed away. This is a
problem for any theory that seeks to unify electromagnetismwith gravity.

1.3. Purpose

Dirac(41) was critical of the use of Minkowski geometry as fundamental.
As late as 1963, he noted that ‘‘... the picture with four-dimensional symme-
try does not give us the whole situation... Quantum theory has taught us that
we must take a three-dimensional section of what appears to our conscious-
ness at one time (an observation), and relate it to another three-dimensional
section at another time.’’ In reviewing attempts to merge gravitation with
quantum theory, Dirac goes on to question the fundamental nature of the
four-dimensional requirement in physics and notes that, in some cases,
physical descriptions are simplified when one departs from it. The real ques-
tion is: What do we replace it with that solves the outstanding problems and
has some contact with the physics we know?

A major part of our strong belief in the fundamental nature of the
covariant Minkowski approach to theory construction is based on the
Feynman–Schwinger–Tomonaga formulation of QED and their great com-
putational success in accounting for the Lamb shift and the anomalous
magnetic moment. The correct history is at variance with this belief (see
Schweber(38)). It should first be noted that, using noncovariant methods,
French and Weisskopf,(39) and Kroll and Lamb(40) were the first to get the
correct results. The history of the French and Weisskopf paper can be found
in Schweber and is well worth reading. Both Schwinger and Feynman
initially got incorrect results using their covariant formulation and only
after the work of French and Weisskopf was circulated did they find their
mistakes. Later, Tomonaga got the correct results but used noncovariant
methods in the middle of the calculation (see Schweber,(38) p. 270).

In attempting to solve the problems of the classical electron, almost
every possible change has been explored except the Minkowski four-
geometry requirement. Our purpose in this paper is to carefully study the
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mathematical and physical implications that arise when we replace the
observer proper-time by the source proper-time in Maxwell’s equations.
In order to see how this is possible, we first recall Minkowski’s definition
of the proper-time of a source:

dy2=dt2−
1
c2

dx2=dt2 51−1w
c
226 , w=

dx
dt

(1.3a)

dy2=dtŒ2−
1
c2

dxŒ2=dt2 51−1wŒ
c
226 , wŒ=

dxŒ
dtŒ

(1.3b)

Minkowski was aware that dy is not an exact one-form and this observa-
tion may have affected his decision to restrict its use to being a parameter
for the four-geometry. However, there is an important physical reason why
it is not an exact (mathematical) one-form. Physically, a particle can traverse
many different paths (in space) during any given y interval. This reflects the
fact that the distance a particle can travel in a given time interval depends
on the forces acting on it. This implies that the clock of the source carries
physical information, and there is no a priori physical reason to believe
that this information is properly encoded when y is used as a parameter.
We rewrite (1.3) as

dt2=dy2+
1
c2

dx2=(dy)2 51+1u
c
226 , u=

dx
dy

(1.4a)

dtŒ2=dy2+
1
c2

dxŒ2=(dy)2 51+1uŒ
c
226 , uŒ=

dxŒ
dy

(1.4b)

Thus, another possibility appears (which does give an exact one-form).
In case we have two or more particles, our new time transformations are
replaced by (in the simplest case)

a −iyi=c(v)[aiyi −xi · v/c
2] (1.2b)

where yi is the proper-time of the ith particle and ai and a −i are terms which
depend only on yi.

In Sec. 2 we construct the invariance group which fixes the proper-
time of the source in the single particle case and then explore some of the
physical implications and interpretations of this approach. At this level we
see that the speed of particles may be faster than the speed of light. The
physical interpretation is that the mass and the mean lifetime of unstable
particles are now both constant, while the velocity computed using the
clock of the source replaces the velocity computed using the observer clock.
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Thus, as will be seen, there is no contradiction with the second postulate,
only a change in conventions. The second postulate is shown to always
hold for experiments conducted with the source at rest in the frame of the
observer, as is the case for the Michelson–Morley experiment.

In Sec. 3 we show explicitly that Maxwell’s equations have an equiva-
lent representation which fixes the proper-time of the source for all obser-
vers. We then prove that this formulation is covariant under the action of
the proper-time group. Although the fields have the same transformation
properties as the conventional formulation, both the current and charge
densities transform differently. In particular, we prove that if the charge
density is at rest in any inertial frame then it is invariant (not just
covariant) for all observers. By example, even in the accelerating case when
the proper velocity is 2c, the relative velocity of our observers must be a
subtantial fraction of c for them to detect any difference in their measured
properties of the charge distribution.

In this section we also derive the corresponding wave equations and
show that they contain an additional dissipative term,which arises instan-
taneously with acceleration. By a change of variables, we show that the
dissipative term is equivalent to an effective mass for electromagnetic
radiation. We validate this interpretation by directly calculating the energy
radiated by an accelerated charge in the proper-time formulation. The
radiation formulas obtained are close in form and differ from those
computed via the conventional formulation, but agree in the low-velocity
limit. In particular, the proper-time theory predicts an additional term for
the E-field which acts along the direction of motion (longitudinal), proving
the validity of our interpretation of the wave equation. This result means
that, in the proper-time formulation, there is no need to require that the
charge act back on itself in order to account for radiation reaction. When
we couple this result with the invariance of the charge density, we are able
to prove that the proper-time theory is independent of the particle size,
structure, and geometry.

In Sec. 4 we derive the related versions of the optical Doppler effect and
the aberration of wave vectors. These two phenomena are both well-known
and ubiquitous. However, the general forms are usually derived using
Lorentz transformations.(2, 42) Here, we derive them from the proper-time
theory, using the new invariance group. In addition to the usual terms, we
obtain new results because of the nonlocal frequency effects implied by our
theory. These effects play an important role in our derivation of the group
velocity for electromagnetic waves. Here we show that the group velocity is c
only when measured in the (rest) frame of the observer, but will not be c for
any other observer moving relative to that frame. The new value (in the
simplest case) will be either c+v or c−v, depending on the direction of the
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relative motion. However, as will be shown in Sec. 6, this effect is in the noise
for experiments conducted up to now because of theory interpretation.

In Sec. 5 we formulate a global interacting many-particle theory. With
an eye towards the quantum theory, we require that the change from
observer proper-time to source proper-time be canonical. This leads to the
Hamiltonian which generates y translations. To accomplish this, we use a
representation of the proper-time that is independent of the number of
particles. We derive our many-particle theory via the commutation rela-
tions for the Poincaré algebra. As a side benefit, we show that the global
system has a (unique) proper-time (available for all observers). This clock
provides a unique definition of simultaneity for all events associated with
the system and is (shown to be) intrinsically related to the proper-times of
the particles (in the system). From these results, it follows that, at the local
level, during interaction, the proper-time group is a nonlinear and nonlocal
representation of the Lorentz group. On the other hand, at the global level,
the proper-time group differs from the Lorentz group by a scale transfor-
mation. It follows from the work in this section and in Sec. 2 that the
group representation space is Euclidean.

In Sec. 6 we explore the ramifications and implications of our for-
mulation and discuss some apparent disadvantages.

2. PROPER-TIME TRANSFORMATIONS

In this section, we derive the transformations that fix the proper-time
of the source for all observers. If we set b2=u2+c2, then from (1.1) and
(1.4) we have that

t=(1/c) F
y

0
b(s) ds and tŒ=(1/c) F

y

0
b(s)Œ ds (2.0)

It follows that t and tŒ are nonlocal as functions of y in the sense that their
values depend on the particular physical history (proper-time path) of the
source. By the mean value property for integrals, we can find a unique s(y)
for each y, 0 < s(y) < y, such that uy=u(y−s(y)), and

t=(1/c) F
y

0
b(s) ds=(b̄y/c) y (2.1a)

tŒ=(1/c) F
y

0
bŒ(s) ds=(b̄ −y/c) y (2.1b)
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It is clear that this property is observer-independent since

tŒ=c(v)(t−x · v/c2)S (b̄ −y/c) y=c(v)[(b̄y/c) y−(x · v/c2)] (2.2)

With a fixed clock for all observers, we can now develop a theory in which
only the spatial coordinates are transformed. Using (2.2), the required
transformations are

xŒ=x− c(v)(b̄y/c) vy+(c(v)−1)(x · v/||v||2) v (2.3a)

x=xŒ+c(v)(b̄ −y/c) vy+(c(v)−1)(xŒ · v/||v||2) v (2.3b)

From a physical point of view, (2.3) tells us (explicitly) that observers can
only share information about the past position of a given physical system.
The above approach also gives us the only (presently known) rational
solution to the problem of distant simultaneity. It is clear that all observers
have the option of using their proper clocks with no hope of agreeing on
the time occurrence of any event associated with the source. On the other
hand, if each observer agrees to use the proper clock of the source, we see
that they will always agree on the time occurrence of any event associated
with the source.

We now see that ai=(b̄i/c) and a −i=(b̄ −i/c) in Eq. (1.2b). The unit for
b and bŒ is velocity so that physical interpretation is very important. It will
arise naturally when we represent Maxwell’s equations using the proper-
time of the source. For now, we note that they are related by

bŒ=c(v) 5b−u · v
c
6 , b=c(v) 5bŒ+uŒ · v

c
6 (2.4)

For any vector d, set

d†=d/c(v)−(1− c(v))[v ·d/(c(v) v2)] v (2.5)

Then the full set of transformations between observers that fix the proper-
time of the source take the (almost) familiar form

xŒ=c(v)[x†−(v/c) b̄yy], x=c(v)[xŒ†+(v/c) b̄ −yy] (2.6)

uŒ=c(v)[u†−(v/c) b], u=c(v)[uŒ†+(v/c) bŒ] (2.7)

aŒ=c(v){a†− v[u ·a/(bc)]}, a=c(v){aŒ†+v[uŒ ·aŒ/(bŒc)]} (2.8)

where a (aŒ) is the particle proper-(three) acceleration. The above transfor-
mations (along with (2.4)) form the proper-time group. In this formulation,
we now have only one clock as an intrinsic part of the theory.
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The above transformations are so close to Lorentz transformations
that one might wonder if any new physics is possible. Not only is there new
physics, as will be seen later, but just as importantly, there are new physical
interpretations of old ideas. For example, relativistic momentum increase is
attributed to relativistic mass increase so that

p=mw, m=m0[1−w2/c2]−1/2 (2.9a)

In the new interpretation,

p=m0u, u=w[1−w2/c2]−1/2 (2.9b)

so there is no mass increase, the (proper) velocity increases. Thus, in particle
experiments the particle will have a fixed mass and decay constant, inde-
pendent of its velocity. On the other hand, the particle can have (proper)
speeds larger than the speed of light since its velocity is now interpreted to be
dx/dy. All cases where time dilation is discussed in the standard approach
are replaced by statements about u in the new approach.

Note that the relationship between u and w can be viewed as dual in
the sense that

u=w[1−w2/c2]−1/2 (2.10)

w=u[1+u2/c2]−1/2 (2.11a)

This relationship was first derived by Schott(43) in the famous 1915 paper
in which he also derived the well-known Schott term of classical electro-
dynamics. Dividing by c in (2.11a), we get

w
c
=
u
b

(2.11b)

It is easy to show that [1+u2/c2]1/2=[1−w2/c2]−1/2. Expanding both
sides and using (2.11b), we have

[1+u2/c2]1/2=1+
1
2
u2

c2
−
1
8
u4

c4
+·· · (2.12)

[1−w2/c2]−1/2=1+
1
2
w2

c2
+

3
8
w4

c4
+·· · (2.13a)

[1−w2/c2]−1/2=[1−u2/b2]−1/2=1+
1
2
u2

b2+
3
8
u4

b4+·· · (2.13b)
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Thus, all three expressions agree in the low-velocity region. It follows that
all the results derived from the standard implementation of special relati-
vity using w/c can also be consistently derived using u/b. This result will be
repeatedly exploited in this paper to provide an alternative interpretation of
much of classical electrodynamics. The real question that arises is which of
these definitions of velocity is appropriate in the construction of faithful
representations of physical reality (see Sec. 6).

3. PROPER-TIME MAXWELL EQUATIONS

In order to formulate the corresponding Maxwell theory, we need the
following theorem which is derived from (2.0) and (2.6):

Theorem 3.1. The transformation properties of the derivatives when
the observers use the clock of the source are:

1
c
“

“t
=

1
b
“

“y
,

1
c
“

“tŒ
=

1
bŒ
“

“y
(3.1)

N=c(v)[NŒ−(v/cbŒ)(“/“y)], NŒ=c(v)[N+(v/cb)(“/“y)] (3.2)

Proof. For each case, we prove the first result. For the first case, we
use the chain rule so that (1/c) “/“t=(1/c)(“y/“t)(“/“y). Using Eq. (1.3a)
and the fact that [1−w2/c2]1/2=[1+u2/c2]−1/2, we have

(1/c)(“y/“t)=(1/c)[1−w2/c2]1/2

=(1/c)[1+u2/c2]−1/2=(1/b) (3.3a)

This gives the first part of (3.1). To prove the first part of (3.2), we use
Eq. (1.1a) to get that (with an obvious abuse of notation)

“

“x
=
“xŒ
“x
“

“xŒ
+
“tŒ
“x
“y

“tŒ
“

“y
(3.3b)

Now note that (“xŒ/“x)=c(v), (“tŒ/“x)=−c(v) v/c2, and (“y/“tŒ)=
(c/bŒ). Putting these terms in Eq. (3.3b) gives our result.

We can now formulate the proper-time version of Maxwell’s equations.
The conventional form of these equations for two observers is (in Gaussian
units):
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N ·B=0, N×E+
1
c
“B
“t

=0 (3.4a)

N ·E=4pr, N×B=
1
c
5“E
“t

+4prw6 (3.4b)

NŒ ·BŒ=0, NŒ×EŒ+
1
c
“BŒ
“tŒ

=0 (3.5a)

NŒ ·EŒ=4prŒ, NŒ×BŒ=
1
c
5“EŒ
“tŒ

+4prŒwŒ6 (3.5b)

Using (2.11) and (3.1)–(3.2), the above equations can be rewritten using
the proper-time of the source to get

N ·B=0, N×E+
1
b
“B
“y

=0 (3.6a)

N ·E=4pr, N×B=
1
b
5“E
“y

+4pru6 (3.6b)

NŒ ·BŒ=0, NŒ×EŒ+
1
bŒ
“BŒ
“y

=0 (3.7a)

NŒ ·EŒ=4prŒ, NŒ×BŒ=
1
bŒ
5“EŒ
“y

+4prŒuŒ6 (3.7b)

We see that when observers use the proper-time of the source, the veloc-
ity of electromagnetic waves depends on the motion (of the source), and has
magnitude larger than c. This may seem strange and even contradictory to
the second postulate: ‘‘The speed of light in any inertial frame is constant
and is independent of the motion of the source or receiver.’’ This is not the
case. On closer inspection, it is clear that the second postulate assumes that
the observer’s proper-clock is being used to measure time. Thus, there is no
contradiction, just a change in conventions.

In the Michelson–Morley experiment, the source is at rest in the frame
of the observer so that u=0 and b=c. It follows that this approach (also)
explains the Michelson–Morley null result. It also provides agreement with
the conceptual (but not technical) framework proposed by Ritz;(44) namely,
that the speed of light does depend on the (proper) motion of the source.
In this sense, both Einstein and Ritz were correct.

We could follow Einstein’s method(5) in proving the covariance of the
proper-time equations (using (3.1)–(3.2)). However, we use the four-vector
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approach first, to emphasize the fact that our theory is compatible with
four-vectors (in the one-particle case) and second, because it will be con-
venient for our derivation of the proper-time transformation of plane
waves in Sec. 4. (The plane waves will be used to derive formulas for the
Doppler effect and aberration of wave vectors.) Writing our equations in
four-dimensional form as

F=|
0 Bz −By −iEx

−Bz 0 Bx −iEy

By −Bx 0 −iEz

iEx iEy iEz 0

} , “

“x4
=−

i
b
“

“y
(3.8)

it follows that

“Fab
“xc

+
“Fbc
“xa

+
“Fca
“xb

=0, (a, b, c=1, 2, 3, 4) (3.9)

is equivalent to the sourceless Eqs. (3.4a) and

“Fab
“xb

=
4p
b

Ja, Ja=(Jx, Jy, Jz, ibr) (3.10)

is equivalent to the proper-time equations with sources (3.4b). It should be
noted that, in (3.9) and (3.10) and in the sequel, the summation convention
is in force for repeated indices. If we now define [amn] by

[amn]

=|
1+(c−1)(v2x/v

2) (c−1)[(vxvy)/v
2] (c−1)[(vxvz)/v

2] ic
vx
c

(c−1)[(vxvy)/v
2] 1+(c−1)(v2y/v

2) (c−1)[(vyvz)/v
2] ic

vy
c

(c−1)[(vxvz)/v
2] (c−1)[(vyvz)/v

2] 1+(c−1)(v2z/v
2) ic

vz
c

−ic
vx
c

−ic
vy
c

−ic
vz
c

c

}
(3.11)
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with c=[1−(v/c)2]−1/2; then the transformations

x −m=amnxn (m, n=1, 2, 3, 4) (3.12)

correspond for m=1, 2, 3 to the first set of equations in (2.6) with x4=
ib̄yy=i >y0 b(s) ds. Integrating the first equation in (2.4), we have

F
y

0
bŒ(s) ds=c(v) 5F y

0
b(s) ds−

x · v
c
6 (3.13)

Since the transformations (3.12) are equivalent to our proper-time
transformations, we can transform the fields between observers using the
four-vector approach just as is commonly done using Lorentz transforma-
tions.(24, 45, 46) Thus, we see that the transformations F −mn=amaanbFab (m, n, a,
b=1, 2, 3, 4) are equivalent to

EŒ=c 5E+1
c
(v×B)6−(c−1)

(E · v)
v2

v (3.14)

BŒ=c 5B−1
c
(v×E)6−(c−1)

(B · v)
v2

v (3.15)

It should not be surprising that Eqs. (3.14) and (3.15) are the same as
would be obtained if our observers used their own clocks. This is because
the transformation coefficient matrix (3.11) is the same as is used for
Lorentz transformations between fields. On the other hand, when we look
at the current and charge densities, the transformations J −m=amaJa (m, a=
1, 2, 3, 4) are equivalent to

JŒ=J+(c−1)
(J · v)
v2

v− c
b
c
rv (3.16a)

bŒrŒ=c(v)[br−(J · v/c)] (3.16b)

Using the first equation of (2.4) in (3.16b), we get:

rŒ=
r−(J · v/bc)
1−(u · v/bc)

(3.16c)

This result is different from the standard one, (which we obtain if we set
bŒ=b=c in (3.16b)),

rŒ=c(v)[r−(J · v/c2)] (3.16d)
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To see a further difference, if we insert the expression J/c=r(u/b) for the
current density in (3.16c) and J=rw in (3.16d); we obtain

rŒ=r
1−(u · v/b2)
1−(u · v/bc)

(3.17a)

rŒ=rc(v)[−(w · v/c2)] (3.17b)

In order to obtain a sense of the difference between r and rŒ, assume that

u=2c % uŒ, b=`5 c, S w=
2

`5
c % c, S

rŒ=r r 1−
2v
5c

1−
2v

`5 c

s , r=rŒ r 1+
2v
5c

1+
2v

`5 c

s
It follows that, unless the relative speed of our two observers is a sub-

stantial fraction of c, they will decide that r=rŒ. In fact, we obtain the
following remarkable result from equation (3.17a):

Theorem 3.2. If the source is at rest in the X frame then r=rŒ for all
other observers.

Proof. The proof is easy, just note that if u=0 in X then b=c and,
from equation (2.17a), r=rŒ. Since XŒ is arbitrary, the result is true for all
observers.

The above theorem means that, in the proper-time formulation,
a spherical charge distribution at rest in any inertial frame will appear
spherical to all other inertial observers. As will be shown in the next
section, the radiation from an accelerated charged particle appears as a
dissipative term in the wave equations for the fields (i.e., neither self-
interaction nor advanced fields are required). From these two results, we see
that the proper-time formulation is independent of particle size or structure.

3.1. Proper-Time Wave Equations

If in Eqs. (3.6), we set

B=N×A, E=−
1
b
“A
“y

−NF (3.18)
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then we obtain

N 5N ·A+
1
b
“F

“y
6+1

b
“

“y
51
b
“A
“y
6−N2A=

1
b
(4pru) (3.19)

and

−N2F−
1
b
“

“y
[N ·A]=4pr (3.20)

Imposing the (proper-time) Lorentz gauge

N ·A+
1
b
“F

“y
=0 (3.21)

we get the wave equations

1
b2

“
2A
“y2

−
1
b4 (u ·a)

“A
“y

−N2A=
1
b
[4pru] (3.22a)

1
b2

“
2F

“y2
−

1
b4 (u ·a)

“F

“y
−N2F=4pr (3.22b)

We thus obtain a new term that arises because the proper-time of the
source carries information about the interaction that is not available when
the proper-time of the observer is used in formulating theory. In Sec. 5 the
wave equations will be derived for the fields directly to get (no gauge
required):

1
b2

“
2E
“y2

−
1
b4 (u ·a)

“E
“y

−N2E=−N[4pru]−
1
b
“

“y
54pJ

b
6 (3.23a)

1
b2

“
2B
“y2

−
1
b4 (u ·a)

“B
“y

−N2B=
1
b
“

“y
54pN×J

b
6 (3.23b)

Thus, the new term is independent of the gauge. The physical interpretation
is clear, this is a dissipative term which is zero if a is zero or orthogonal
to u. Furthermore, it arises instantaneously with the acceleration of the
source. This is exactly what one expects of the radiation caused by the
inertial resistance of the source to accelerated motion and is precisely what
one means by radiation reaction (see Wheeler and Feynman(25)). It should
be noted that the creation of real physical conditions which will make a
orthogonal to u is almost impossible since a arises because of an external
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force and has no relationship to u. In order to get some insight into the
meaning of the new dissipative terms, let us focus on Eq. (3.22b). If we use
p=m0u from Eq. (2.9b), we see that the external force Fext satisfies (this is
only approximate as will be seen in Sec. 5.5)

Fext=
dp
dy

=m0a (3.24a)

so that equation (3.22b) becomes

1
b2

“
2F

“y2
−1u

b
2 ·1 Fext

m0b2
211

b
“F

“y
2−N2F=4pr (3.24b)

If we identify m0b2 with the effective interaction energy of the particle, then
the middle term can be interpreted as the reactive power loss per unit
interaction energy of the particle due to its resistance to Fext. To see this
additional term in another physically important way, use the change of
variables F=(b/c)1/2 g in (3.22b) to get (see Courant and Hilbert(47))

1
b2

“
2g
“y2

−N2g+5 b̈
2b3−

5ḃ2

4b4
6 g=4pr 1 c

b
21/2 (3.24c)

This is the Klein–Gordon equation with an effective mass m given by

m=3(
2

b2
5 b̈
2b3−

5ḃ2

4b4
641/2 (3.25)

Hence, the reactive power loss per unit interaction energy in (3.24b) is
equivalent to an effective mass for the photon that depends on the external
force acting on the particle.

We have only considered our equations at the source. If we look at
them in a region outside the source, there is a major change. The dissipa-
tive term is now constant with its value fixed at the time the radiation left
the source. Thus, a new picture emerges. Every accelerated charged particle
emits a continuous stream of (very) small particles (photons) in all direc-
tions. The energy and the velocity of the particles depend on the velocity of
the source at the moment of emission. The velocity of the particles remains
constant until they are scattered or absorbed.

3.2. Radiation From An Accelerated Charge

In this section, we compute the radiation from an accelerated charge
using the proper-time theory. We can solve equation (3.24b) directly, but a
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better approach is to first find the solution using the proper-time of the
observer and then transform the result to the proper-time of the source.
This makes the computations easier to follow and gives the result quicker.
We follow closely the approach in Panofsky and Phillips.(24) In this section,
(x(t), t) represents the field position and (xŒ(tŒ), tŒ) represents the retarded
position of a point charge source q, with r=x−xŒ, dr/dtŒ=−w, and d2r/dtŒ2

=ẇ. The field solutions using the standard Lienard–Wiechert potentials
are given by

A=
qw
cs

, F=
q
s
, s=r−1 r ·w

c
2 (3.26)

The proper-time form is obtained by replacing w/c by u/b to get

A=
qu
bs

, F=
q
s
, s=r−1 r ·u

b
2 (3.27)

The field and source-point variables are related by the condition

r=|x−xŒ|=c(t−tŒ) (3.28)

Here, dr/dyŒ=−u=−dxŒ/dyŒ, where yŒ denotes the retarded proper-time
of the source. The corresponding E and B fields can be computed using
Eq. (3.18) in the form

E(x, y)=−
1
b̄
“A(x, y)
“y

−NF(x, y), B(x, y)=N×A(x, y) (3.29)

with ū=dx/dy, where y denotes the proper-time of the present position of
the source and b̄=(ū2+c2)1/2. In order to compute the fields from the
potentials, we note that the components of the N operator are partials at
constant time y, and therefore are not at constant yŒ. Also, the partial
derivatives with respect to y imply constant x and hence refer to the com-
parison of potentials at a given point over an interval in which the coordi-
nates of the source will have changed. Since only time variations with
respect to yŒ are given, we must transform (“/“y) |x and N |y to expressions
in terms of “/“yŒ |x. To do this, we must first transform (3.28) into a rela-
tionship between y and yŒ. The required correspondence is

c(t− tŒ)=F
y

yŒ

b(s) ds (3.30)
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It is easier to first relate “/“t |x to “/“tŒ |x and then convert them to rela-
tionships between “/“y |x and “/“yŒ |x.The following are in Ref. 24, p. 298:

“r
“tŒ

=−
r ·w
r

,
“r
“t
=c 11−“tŒ

“t
2=“r
“tŒ

·
“tŒ
“t
=−

r ·w
r
“tŒ
“t

(3.31)

Since “y/“t=c/b, we have

“r
“t
=c

“

“t
(t− tŒ)=

“y

“t
“

“y
F
y

yŒ

b(s) ds=
c
b̄
5b̄−b

“yŒ

“y
6 (3.32)

We also have, using “yŒ/“tŒ=c/b , that

“r
“tŒ

=
“r
“yŒ

“yŒ

“tŒ
=

c
b
“r
“yŒ

S
1
b
“r
“yŒ

=−
r ·w
rc

=−
r ·u
rb

(3.33)

so “r/“yŒ=−r ·u/r and hence

“r
“t
=
“r
“y

c
b̄
=

c
b̄
5b̄−b

“yŒ

“y
6S “r
“y
=5b̄−b

“yŒ

“y
6 (3.34)

“r
“y
=
“r
“yŒ

“yŒ

“y
=−

r ·u
r
“yŒ

“y
S −

r ·u
r
“yŒ

“y
=5b̄−b

“yŒ

“y
6 (3.35)

Solving (3.35) for “yŒ/“y, we get

“yŒ

“y
=

b̄
b
r
s
, s=r−

r ·u
b

(3.36)

Using this, we see that

1
b̄
“

“y
=

1
b
·
r
s
“

“yŒ
(3.37)

From Nr=−c NtŒ=N1r+(“r/“tŒ) NtŒ, we see that

Nr=
r
r
−
c
b
·
r ·u
r

NtŒS −c NtŒ=
r
r
−
c
b
·
r ·u
r

NtŒ (3.38)

Using c NtŒ=b NyŒ and solving for NyŒ, we get NyŒ=−(r/bs), so that

N=N1 −
r
bs

·
“

“yŒ
(3.39)
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We now compute N1s and “s/“yŒ. The calculations are easy, so we simply
state the results:

N1s=
r
r
−
u
b
=

1
r
1 r−ru

b
2 (3.40)

“s
“yŒ

=
u2

b
−
r ·u
r

−
r ·a
b
+

(r ·u)(u ·a)
b3 (3.41)

We can now calculate the fields. The computations are long but follow
those of Ref. 24, so we only record a few selected results. We obtain

−NF=
q
s2

Ns=
q
s2
1N1s−

r
bs

·
“s
“y
2

S −NF=
q[r(1−u2/b2)−us/b]

s3
+

qr(r ·a)
b2s3

−
qr(r ·u)(u ·a)

b4s3
(3.42)

Now use equation (3.37) to get

−
1
b̄
“A
“y

=1− 1
b
21 r

s
2 “A
“yŒ

S −
1
b̄
“A
“y

=
−(qru/b){(u/b) · [(r/r)−(u/b)]}

s3

+
−qr2a+qr{r×[a×(u/b)]}

b2s3
+

qu[(r · r)(u ·a)]
b4s3

(3.43)

Combining (3.42) and (3.43), we get

E(x, y)=−
1
b̄
“A(x, y)
“y

−NF(x, y)

S E(x, y)=
q[r(1−u2/b2)−us/b]

s3
−
(−qru/b)[(u/b) · (r/r−u/b)]

s3

+
−q[r2a− r(r ·a)]+qr[r×(a×u/b)]

b2s3
+

q(u ·a)[ur2− r(r ·u)]
b4s3

(3.44)
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Finally, using standard vector identities and combining terms, we get (with
ru=r−ur/b)

E(x, y)=
q[ru(1−u2/b2)]

s3
+

q{r×[ru×a]}
b2s3

+
q(u ·a)[r×(u× r)]

b4s3
(3.45)

The computation of B is similar:

B(x, y)=
q[(r× ru)(1−u2/b2)]

rs3
+

qr×{r×[ru×a]}
rb2s3

+
qr(u ·a)(r×u)

b4s3
(3.46)

It is easy to see that we have B=(r/r)×E so that B is orthogonal
to E. The first two terms in (3.45) and (3.46) are the same as (19-13) and
(19-14) in Ref. 24 (p. 299). The last term in each case arises because of the
dissipative terms in Eqs. (3.22) and (3.23).

The last terms in (3.45) and (3.46) are zero if a is zero or orthogonal
to u. In the first case, there is no radiation and the particle moves with
constant velocity so that the field is massless. As noted earlier, the second
case depends on conditions that are impossible in practice, namely the
creation of motion which keeps a orthogonal to u. Since r×(u× r)=r2u−
(u · r) r, we see that there is a component along the direction of propagation
(longitudinal). Hence, in all other cases, there is a small mass associated
with electromagnetic radiation which varies with the acceleration of the
particle.

3.3. Radiated Energy

In light of the difference in the calculated fields, it becomes important
to also compute the radiated energy for the proper-time theory and
compare it with the Minkowski formulation. It is well-known that the
radiated energy is determined by the Poynting vector, which is defined by
P=(c/4p)(E×B).

To calculate the angular distribution of the radiated energy, we must
be careful to note that the rate of radiation is the amount of energy lost
by the charge in a time interval dyŒ during the emission of the signal
(−dU/dyŒ). However (at a field point), the Poynting vector P represents
the energy flow per unit time measured at the present time (y). With this
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understanding, the same approach that leads to the above formula gives
P=(b̄/4p)(E×B) in the proper-time formulation. We thus obtain the
rate of energy loss of a charged particle into a given infinitesimal solid
angle dW as

−
dU
dyŒ

(W) dW=(b̄/4p)[n · (E×B)] r2
dy
dyŒ

dW (3.47)

Using Eq. (3.36), we get that (dy/dyŒ)=bs/b̄r, so that (3.47) becomes

−
dU
dyŒ

(W) dW=(b/4p)[n · (E×B)] rs dW (3.48)

As is well-known, only those terms that fall off as (1/r) (the radiation
terms) in (3.45) and (3.46) contribute to the integral of (3.48). It is easy to
see that our theory gives the following radiation terms:

Erad=
q{r×[ru×a]}

b2s3
+

q(u ·a)[r×(u× r)]
b4s3

=Ec
rad+E

d
rad (3.49)

Brad=
qr×{r×[ru×a]}

rb2s3
+

qr(u ·a)(r×u)
b4s3

=Bc
rad+B

d
rad (3.50)

where Ec
rad, B

c
rad are of the same form as the classical terms with c replaced

by b, wŒ by u, and ẇŒ by a. The two terms Ed
rad, B

d
rad are new and come

directly from the dissipation term in the wave equations. (Note the charac-
teristic (u ·a)/b4.) We can easily integrate the classical terms to see that

FF
W

(−dUc/dy) dW

=(b/4p) FF
W

[n · (Ec
rad ×B

c
rad)] rs dW=

2
3
q2 |a|2

b3 (3.51)

This agrees with the standard result for small proper-velocity and proper-
acceleration of the charge when b % c and a % dw/dt.

In the general case, our theory gives additional effects because of the
dissipative terms. To compute the integral of (3.48), we use spherical
coordinates with the proper-velocity u directed along the positive z-axis.
Without loss of generality, we orient the coordinate system so that the
proper-acceleration a lies in the xz-plane. Let a denote the acute angle
between a and u, and substitute (3.49) and (3.50) in (3.48) to obtain
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−
dU
dy

(W) dW

=
q2 |a|2

4pb3 {(1−b cos h)−4 [1− sin2 h sin2 a cos f

− cos2 h cos2 a−(1/2) sin 2h sin 2a cos f]

−2b(1−b cos h)−5 (sin2 h cos a−(1/2) sin 2h sin a cos f) q

+b2 sin2 h(1−b cos h)−6 q2} (3.52)

where

q=
b2

r |a|
(1−b2)+b cos a 11− 1

b
cos h2− sin h sin a cos f (3.53)

and b=(|u|/b).
The integration of (3.52) over the surface of the sphere is elementary,

and we obtain, after some extensive but easy computations (which are
summarized in the appendix):

lim
rQ.

FF −
dU
dy

(W) dW

=
2
3
q2 |a|2

b3 (1−b2)−3 51−1
5
b2(4+b2)+

1
5
b2(6+b2) sin2 a6 (3.54)

As can be seen, this result agrees with (3.51) at the lowest order. For com-
parison, the same calculation using the observer’s clock for the case of
general orientation of velocity dxŒ/dtŒ and acceleration dwŒ/dtŒ is

lim
rQ.

FF −
dU
dt

(W) dW=
2
3
q2 |ẇŒ|2

c3
(1−b2)−3 [1−b2 sin2 a] (3.55)

where b=(|wŒ|/c).
We observe that, in general, for an arbitrary angle a with 0 [ a [ p/2

and arbitrary b between 0 and 1, our result does not agree with (3.55) even
if we replace b with c and a with dwŒ/dtŒ. This shows, along with our other
results, that the apparently small change in clocks induces large changes in
the physical predictions. We will return to this point in the conclusion of
the paper.
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4. PROPER-TIME DOPPLER EFFECT AND ABERRATION

In this section, we apply our proper-time theory to compute the
optical Doppler effect and aberration. To do this, we first consider the
transformation properties of plane wave solutions to Maxwell’s equations.
Assuming that our observers are in the far-field of the source so that, to a
good approximation, the waves are plane when they arrive at the observers’
positions, we want solutions of the form (E0=const, B0=const)

E=R 3E0 exp 5i 1k ·x−
1
c
F
y

0
w(s) b(s) ds264 (4.1a)

B=R 3B0 exp 5i 1k ·x−
1
c
F
y

0
w(s) b(s) ds264 (4.1b)

where, in accordance with Eqs. (2.0), we have modified the plane wave
representations to allow for proper-time (nonlocal) dependence of the
frequency. Assuming that the frequency is a differentiable function of time,
we get that the above plane wave representations of the fields are solutions
of the wave equations in the far-field region (where the charge and current
densities are zero),

1
b2

“
2E
“y2

−
1
b4 (u ·a)

“E
“y

−N2E=0 (3.23a)

1
b2

“
2B
“y2

−
1
b4 (u ·a)

“B
“y

−N2B=0 (3.23b)

provided that

k2=
w(y)2

c2
51+i

cẇ(y)
bw(y)2
6 (4.2a)

In addition, from (3.4) we have

k ·B0=0, k ·E0=0 (4.2b)

k×E0=
w(y)
c
B0 (4.2c)

It follows from (4.2a) that the wave vector k depends on w(y) and its deri-
vative ẇ(y).
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To obtain the transformation properties of the plane waves, we use
(3.14) and (3.15) along with (4.1) to get

EŒ=R 3E −0 exp 5i 1k ·x−
1
c
F
y

0
w(s) b(s) ds264 (4.3a)

BŒ=R 3B −0 exp 5i 1k ·x−
1
c
F
y

0
w(s) b(s) ds264 (4.3b)

with

E −0=c 5E0+
1
c
(v×B0)6−(c−1)

(E0 · v)
v2

v (4.3c)

B −0=c 5B0 −
1
c
(v×E0)6−(c−1)

(B0 · v)
v2

v (4.3d)

We now use the inverse transformations (2.1a), (2.3b), and (2.4) to trans-
form the phase

F=i 1k ·x−(1/c) F
y

0
w(s) b(s) ds2 (4.3e)

in (4.3a) and (4.3b) to the corresponding expression in the primed
variables:

FŒ=i 1kŒ ·xŒ−(1/c) F
y

0
wŒ(s) bŒ(s) ds2 (4.3f)

where the wave number kŒ and the frequency wŒ(s) are to be determined by
the requirement that the transformed phase FŒ has the indicated form.
Substituting (2.1b) and (2.4) into (4.3e), we get

F=i 51k+(c(v)−1) 1k · v
||v||2
2 v2 ·xŒ

+c(v)
k · v
c

F
y

0
bŒ(s) ds−

1
c
F
y

0
w(s) bŒ(s) ds6

=i 51k+(c−1) 1k · v
||v||2
2 v2 ·xŒ

−
c

c
F
y

0
(w(s)−k · v) bŒ(s) ds−

c

c2
F
y

0
w(s) uŒ · v ds6 (4.4)
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Integrating the last term in (4.4) by parts, we obtain the desired form for FŒ,
where the frequency relation is given by

wŒ(y)=c(w(y)−k · v) (4.5)

and the wave number relation (contributing the nonlocal part to FŒ) is
given by:

kŒ ·xŒ(y)=k ·xŒ(y)+(c−1) 5(k · v)(v ·xŒ(y))
||v||2
6

−
cw(y)
c2

(v ·xŒ(y))+
cw(0)
c2

(v ·xŒ(0))+
c

c2
F
y

0

dw(s)
ds

[v ·xŒ(s)] ds
(4.6)

The wave vectors in our two frames differ by an extra nonlocal term
compared to the standard result, while the transformations of the frequen-
cies (4.5) agree with the normal case except for the y dependence. This
nonlocal term occurs because we allowed the frequency of the wave to
vary. It is easy to check that, if w is constant (and the source passes though
the origin(s) at y=0), we get the standard result.

We now consider the planar representation (4.6) with the velocity v
taken along the x=xŒ axes with angle h defined as that between k and v,
and hŒ the angle between kŒ and v, w constant, and assume that the source
passes though the origin(s) at y=0. We then obtain from (4.6) the following
relations between the angles h and hŒ:

kŒ cos hŒ=ck cos h− c
w

c2
v (4.7)

kŒ sin hŒ=k sin h (4.8)

They combine in the standard manner to give

tan hŒ=
1
c

sin h

cos h−
v
c
w

kc

(4.9a)

This is the standard result for the aberration of wave vectors due to the
relative motion of the two reference frames. It should be noted that we
have not assumed that the X frame is at rest relative to the medium.
Furthermore, we see from (4.2a) that kc=w in free space (under the above
assumptions). In general, kc=w(y)[+i(cẇ(y)/bw(y)2)]1/2 so that our theory
allows for nonlocal effects.
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For any homogeneous medium,w/Rk is equal to the phase velocity, vph,
of the wave,

vph=cR[+i(cẇ(y)/bw(y)2)]−1/2 (4.10)

and c/vph is defined to be the index of refraction, n, of the medium. Thus,
(4.9a) becomes:

tan hŒ=
1
c

sin h

cos h−
v
cn

(4.9b)

This is what we would normally expect from the standard theory.
However, the importance of (4.10) becomes clear when we consider the
group velocity, rather than the phase velocity, of electromagnetic waves.
As is well-known, the group velocity represents the rate of energy trans-
mission, and is defined by vg=R(dw/dk). We know that use of observer
clocks (proper-times) gives vg=v −g=c. The question is, what is this rela-
tionship in the source proper-time theory?

To determine how vg is related to v −g, we restrict ourselves to the case
when the waves are moving parallel to the motion of the XŒ frame relative
to the X frame, so that the wave vectors Rk and RkŒ are parallel to the
velocity v. Then the frequency and wave number relations (4.5) and (4.6)
become (under these conditions)

wŒ(y)=c(w(y)−k · v) (4.11)

kŒxŒ=c 1k− cvw(y)
c2
2 xŒ(y)+cvw(0)

c2
xŒ(0)

+
cv
c2

F
y

0

dw(s)
ds

[xŒ(s)] ds (4.12)

where, in the last equation, we have replaced the vector xŒ(y) by the scalar
xŒ(y) because we are only interested in the y dependence of the frequencies
and wave numbers.

Defining the group velocity in the X, XŒ frames by

vg —R 1dw
dk
2=R 1dw

dy
;dk
dy
2 , v −g —R 1dwŒ

dkŒ
2=R 1dwŒ

dy
;dkŒ
dy
2

(4.13)
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we obtain from (4.11) the equation

dwŒ
dy

=c 1dw
dy

−v
dk
dy
2 (4.14)

and from (4.12) (after canceling terms),

dkŒ
dy

xŒ(y)=c
dk
dy

xŒ(y) (4.15)

Substitution of (4.14) and (4.15) into (4.13) gives the relation

vg=v −g −v (4.16)

between the group velocities in the X and XŒ frames respectively. It is clear
that, if the group velocity of the source has the value c in one frame, it will
not have that value in the other frame and, indeed, may have a larger
value. Furthermore, the Doppler formula (4.11) can be written as

wŒ(y)=cw(y)(1−bn[w(y)] cos h) (4.17)

where we have used b=v/c, k=w/vph, and n=c/vph. Because of (4.10),
this is a nonlinear relationship.

5. PARTICLE THEORY

5.1. One-Particle Theory

In order to understand the additional changes implied by fixing the
proper-time of the source for all observers, we need only consider the
question of particle dynamics. Since our motivation is quantum theory,
any change of variables must be canonical. (We focus on the X-frame
equation, but the same results can also be derived for the XŒ-frame.) In the
conventional formulation of quantum theory, the Hamiltonian H is the
generator of observer proper-time translations. We now seek to identify
the Hamiltonian K which will generate source proper-time translations. To
see how this may be done, let W be any classical observable so that the
Poisson bracket defines Hamilton’s equations in the X frame by: (here,
H=`c2p2+m2c4)

dW
dt

=
“H
“p
“W
“x

−
“H
“x
“W
“p

={H, W} (5.1)
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Now use the fact that the Hamiltonian for a free particle of mass m can be
represented as H=mc2c(w), so that c(w)=H/mc2. This implies that

dy=(mc2/H) dt

The time evolution of the functional W is given by the chain rule:

dW
dy

=
dt
dy

dW
dt

=
H
mc2

{H, W} (5.2)

The energy functional K conjugate to the proper-time y must satisfy
{K, W}=(H/mc2){H, W}. The direct solution is obtained by rewriting
the Poisson bracket relation in (5.2) as

dW
dy

=5 H
mc2
“H
“p
6 “W
“x

−5 H
mc2
“H
“x
6 “W
“p

=
“

“p
5 H2

2mc2
+a6 “W

“x
−
“

“x
5 H2

2mc2
+a6 “W

“p
(5.3)

Now impose the condition that p=0SK=H=mc2. This gives
a=aŒ=mc2/2, and

K=
H2

2mc2
+

mc2

2
=
p2

2m
+mc2 (5.4)

This equation was derived by Gill and Lindesay.(48) It looks like the
nonrelativistic case but is fully relativistic and (partially) eliminates the
problems associated with the square root in the conventional implementa-
tion. The most general solution is

K=mc2+F
H

mc2
(dt/dy) dH̄=mc2+F

H

mc2
(H̄/mc2) dH̄ (5.5)

There are three possible solutions to this equation depending on the
assumptions made.

1. If we fix the Lorentz frame, then H/mc2 is constant and we get

K=
H2

mc2
=
p2

m
+mc2 (5.6)
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This form was first derived by Gill,(49) and was used to give a particle
representation for the Klein–Gordon equation with positive prob-
ability density and with the source proper-time as an operator.

2. If we keep the mass fixed and allow the Lorentz frame to vary
(boost), we get Eq. (5.4).

3. If we keep the momentum P=P0 fixed and allow the Lorentz
frame H and the mass m to vary, we get

K=mc2=`H2−c2P2
0 (5.7)

This is the appropriate Hamiltonian in the constant momentum frame.
This form has received the most attention, having been used to associate
the source proper-time with the (off-shell) mass operator in parametrized
relativistic quantum theories. See Aparicio et al. (50) for a recent discussion
of this case. The book by Fanchi(51) surveys all work up to 1993 (see also
Fanchi(52)). In all three cases, a generator can be constructed proving that
they are true canonical transformations. For the first two cases, the
generators are constructed in Refs. 48 and 49, respectively. The construc-
tion of the generator for the third case was done in the seminal work of
Bakamjian and Thomas.(15)

We plan to use Eq. (5.4) in our work for a number of interesting
reasons. First, it is simple, directly related to the nonrelativistic case, and
the quantized version is (will be) positive definite. Furthermore, since the
mass is fixed, it, along with the spin, are natural choices to label the irre-
ducible representations of the (proper-time) Poincaré algebra describing
elementary particles (see Eqs. (5.24)–(5.32) and Wigner(53)). In addition, it
should be noted that some of the best models for quark dynamics within
nucleons ‘‘appear’’ to be nonrelativistic (see, for example, Strobel(54) and
references therein).

The following theorem provides an explicit representation of the
generator for the canonical change of variables for (5.4). (The result can be
proved by direct computation.(55))

Theorem 5.1. If S=(mc2−K) y, then S is the generator for the canon-
ical change of variables from (x, p, t, H) to (x, p, y, K) (by our X-frame
observer) and:

p · dx−H dt=p · dx−K dy+dS (5.8)

It follows that the proper-time (free particle) equations will be form
invariant (covariant) for all observers.
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5.2. Many-Particle Theory

Suppose we have a closed system of n particles with individual
Hamiltonians Hi and total Hamiltonian H (in the X-frame). We assume
that H is of the form

H=C
n

i=1
Hi (5.9)

If we define the effective mass M and total momentum P by

Mc2=`H2−c2P2 , P=C
n

i=1
pi (5.10)

H also has the representation

H=`c2P2+M2c4 (5.11)

To construct the many-particle theory, we observe that the representation

dy=(Mc2/H) dt (5.12)

does not depend on the number of particles in the system. Thus, we can
uniquely define the proper-time of the system for all observers. (In the
primed frame, we have a similar representation.) If we let L be the boost
(generator of pure Lorentz transformations) and define the total angular
momentum J by

J=C
n

i=1
xi ×pi (5.13)

we then have the following Poisson Bracket relations characteristic of the
algebra for the Poincaré group (when we use the observer proper-time):

dP
dt

={H, P}=0,
dJ
dt
={H, J}=0, {Pi, Pj}=0 (5.14)

{Ji, Pj}=eijkPk, {Ji, Jj}=eijkJk, {Ji, Lj}=eijkLk (5.15)

dL
dt

={H, L}=−P, {Pi, Lj}=−dijH/c2, {Li, Lj}=−eijkJk/c2

(5.16)
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It is easy to see that M commutes with H, P, and J, and to show that M
commutes with L. Constructing K as in the one-particle case, we have

K=
H2

2Mc2
+

Mc2

2
=
P2

2M
+Mc2

Thus, we can use the same definitions for P, J, and L to obtain our new
commutation relations:

dP
dy

={K, P}=0,
dJ
dy

={K, J}=0, {Pi, Pj}=0 (5.17)

{Ji, Pj}=eijkPk, {Ji, Jj}=eijkJk, {Ji, Lj}=eijkLk (5.18)

dL
dy

={K, L}=
−H
Mc2

P, {Pi, Lj}=−dijH/c2, {Li, Lj}=−eijkJk/c2

(5.19)

It follows that, except for a constant scale change, the proper-time group
is generated by the same algebra as the Lorentz group. This result is not
surprising given the close relation between the two groups. It also proves
our earlier statement that the form of K is fully relativistic.

Let the map from (xi, t)Q (xi, y) be denoted by C[ t, y], and let
P(XŒ, X) be the Poincaré map from XQXŒ.

Theorem 5.2. The proper-time coordinates of the system as seen by an
observer at X are related to those of an observer at XŒ by the transformation:

RM[y]=C[ tŒ, y] P(XŒ, X) C−1[t, y] (5.20)

Proof. The proof follows since the diagram below is commutative.

X({xi}, t) |Ł XŒ({xŒi}, tŒ)

C−1[t, y]… ‡C[tŒ, y]

X({xi}, y) |̃ XŒ({xŒi}, y)

(5.21)

The top diagram is the Poincaré map from XQXŒ. It is important to
note that this map is between the coordinates of observers. In this sense, our
approach may be viewed as a direct generalization of the conventional
theory. In the global case, when U is constant, t is related to y by a scale
transformation so that we have a group with the same algebra as the
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Poincaré group (up to a constant scale), but it has an Euclidean metric!
In this case, Theorem 5.2 proves that RM is in the proper-time group,
formed by a similarity action on the Poincaré group by the canonical
group Cy. On the other hand, Theorem 5.2 is true in general. This means
that in both the local and global cases (when the acceleration is nonzero)
t is related to yi and y via nonlocal (nonlinear) transformations. It follows
that, in general, the group action is not linear, and hence is not covered by
the Cartan classification.

Since K does not depend on the center-of-mass position X, it is easy to
see that

U=
dX
dy

=
“K
“P

=
P
M

=
1
M

C
n

i=1
miui (5.22)

where ui=dxi/dyi. We can now define b by

b=`U2+c2 SH=Mcb (5.23)

Thus, Eq. (5.12) can also be represented as

dy=(c/b) dt (5.24)

If we set vi=dxi/dy, an easy calculation shows that

ui=
dxi
dyi

=
dy
dyi

dxi
dy

=
bi
b
vi S

ui
bi
=
vi
b

(5.25)

The velocity vi is the one our observer sees when he uses the global
proper-clock of the system to compute the particle velocity, while ui is the
one seen when he uses the local proper clock of the particle to compute its
velocity. Solving for ui and bi in terms of vi and b, we get

ui=
cvi

`b2− v2i
, bi=

cb

`b2− v2i
or

bi
b
=

c

`b2− v2i
(5.26)

Note that, since b2=U2+c2, if U is not zero, then any vi can be larger
than c. On the other hand, if U is zero, b=c and, from the global perspec-
tive, our theory looks like the conventional one. Using (5.26), we can
rewrite U as

U=
1
M

C
n

i=1
miui=

1
M

C
n

i=1

micvi
`b2− v2i

=
1
M

C
n

i=1

bimivi
b

=
1
H

C
n

i=1
Hivi (5.27)
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It follows that the position of the center-of-mass (energy) satisfies

X=
1
H

C
n

i=1
Hixi+Y,

dY
dy

=0 (5.28)

It is natural to choose Y so that X is the canonical center of mass:

X=
1
H

C
n

i=1
Hixi+

c2(S×P)
H(Mc2+H)

(5.29)

where S is the (conserved) spin of the system. The important point is that
(X, P, y, K) is the new set of (global) variables for the system.

Theorem 5.3. If S=(mc2−K) y, then S is the generator for the change
of variables from ({xi}, {pi}, t, H)Q ({xi}, {pi}, y, K), from (X, P, t, H)Q
(X, P, y, K), and:

C
n

i=1
pi dxi −H dt=C

n

i=1
pi dxi −K dy+dS (5.30)

P · dX−H dt=P · dX−K dy+dS (5.31)

We can now write down the transformations that fix the proper-time
of the system of particles for any observer. If V is the relative velocity
between two observers, we have

bŒ=c(V)[b−U ·V/c], b=c(V)[bŒ+UŒ ·V/c] (5.32)

XŒ=c(V)[X†−(V/c) by], X=c(V)[XŒ†+(V/c) bŒy] (5.33)

UŒ=c(V)[U†−(V/c) b], U=c(V)[UŒ†+(V/c) bŒ] (5.34)

As our system is closed, U is constant and y is linearly related to t. Yet, the
physical interpretation is different in the extreme if U is not zero. Further-
more, we see from Eq. (5.34) that, even if U is zero in one frame, it will not
be zero in any other frame that is in relative motion. It is clear that y is
uniquely determined by the particles in the system and is available to all
observers. Just as important is the fact that there is a very basic relation-
ship between the global system clock and the clocks of the individual
particles. In order to derive this relationship, we return to our definition of
the global Hamiltonian K and let W be any observable. Then
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dW
dy

={K, W}=
H
Mc2

{H, W}=
H
Mc2

C
n

i=1
{Hi, W}

=
H
Mc2

C
n

i=1

mic2

Hi

5 Hi

mic2
{Hi, W}6=C

n

i=1

Hmi

MHi
{Ki, W} (5.35)

Using the (easily derived) fact that dyi/dy=Hmi/MHi=bi/b, we get

dW
dy

=C
n

i=1

dyi
dy

{Ki, W} (5.36)

Equation (5.36) is very important because it relates the global systems
dynamics to the local systems dynamics and provides the basis for a direct
approach to the quantum relativistic many-body problem using one (uni-
versal) wave function. The use of a many-times approach is not new and
dates back to the early work of Dirac et al. (56) Our many-times approach
is like that of Rohrlich and Horwitz(57) (see also Longhi et al. (58)). Our
approach is distinct, as is clear from (5.36) and the fact that all our times
are unique and invariant for all observers.

5.3. Interaction (Global External)

In this section, we follow convention (in the simplest fashion) and
introduce an external global interaction via minimal coupling in the free
Hamiltonian. This means that we fix the position X, the momentum P, and
the mass M. It is still possible for the angular momentum J to be con-
served but, in general, it need not be equal to the angular momentum in the
noninteracting case. Our interaction Hamiltonian becomes

K=
P2

2M
+Mc2+V(X) (5.37)

where A=A(X, y), V=V(X, y) are the vector and scalar potentials of the
external field, and P=P−(q/c) A. (In the next section, we derive an
alternative equation appropriate when the cause of the external field is
included in the theory to form a closed system.) Using (5.37) and Hamilton’s
equations, we get

Ẋ=U=
P

M
, Ṗ=−

NP2

2M
−NV (5.38)
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Using standard vector identities, elementary calculations give the (proper-
time) Lorentz force

Mc
b

dU
dy

=qE+
q
b
U×B (5.39)

E=−
1
b
“A
“y

−NV, B=N×A (5.40)

The fact that we can derive (a generalized form of) the Lorentz force from
a (apparently) nonrelativistic Hamiltonian is well-known (see Hughes(59)).
However, in order to see how the nonuniqueness of the Maxwell–Lorentz
theory shows up here, we need only recall thatW/c=U/b and (1/b) “/“y=
(1/c) “/“t, so we can also write Eqs. (5.39) and (5.40) as (W=dX/dt)

M
dU
dt

=qE+
q
c
W×B (5.41)

E=−
1
c
“A
“t

−NV, B=N×A (5.42)

This is the ‘‘original’’ force derived by Lorentz(3) (in 1892) and used as a
part of his theory of the electrodynamics and optics of macroscopic phe-
nomena. What is truly remarkable is the fact that the two equations (5.39)
and (5.41) are mathematically equivalent, but clearly not physically equiv-
alent, with radically different physical interpretations.

Global Field Theory

We can now discuss the fields of our global system of particles in a given
external field. Using (1/c)(“/“t)=(1/b)(“/“y) (as in the one-particle case),
we can writeMaxwell’s equations for the global system of particles as:

N ·B=0, N×E+
1
b
“B
“y

=0 (5.43a)

N ·E=4pr, N×B=
1
b
5“E
“y

+4pJ6 (5.43b)

where r and J represent the charge and current density of the system (as
a whole) relative to its external environment. Taking the curl of the last
equations of (5.43a) and (5.43b), using the standard vector identity (for any
sufficiently differentiableW)

N×(N×W)=N(N ·W)−N2W,
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and the first equations of (5.43a) and (5.43b), we get the corresponding
global wave equations

1
b
“

“y
51
b
“E
“y
6−N2 ·E=−N(4pr)−

1
b
“

“y
54pJ

b
6

1
b
“

“y
51
b
“B
“y
6−N2 ·B=

1
b
“

“y
54pN×J

b
6

(5.44)

Computing the derivatives, these equations may also be written as

1
b2

“
2E
“y2

−5U
b4 ·

dU
“y
6 5“E
“y
6−N2E=−N(4pr)−

1
b
“

“y
54pJ

b
6

1
b2

“
2B
“y2

−5U
b4 ·

dU
“y
6 5“B
“y
6−N2B=

1
b
“

“y
54pN×J

b
6

(5.45)

From (5.45), we see directly that the dissipative term does not depend
on the gauge. These equations imply that the field of the global system
dissipates energy (radiation) throughout the enclosing domain. Since
U=(1/M);n

i=1 miui, this radiation depends on the average of the (local
proper) motion of all the particles in the system (e.g., ui=dxi/dyi). This
suggests that the particles live in a heat bath of radiation created by the
global system’s (inertial) reaction to the external field. This heat bath will
fill out any domain enclosing the system of particles.

When U is constant, U̇=0 so that there are only velocity fields (and
no radiation fields). This is necessarily the case if energy is conserved on
the global level and implies the following theorem:

Theorem 5.4. If U is constant, then all radiation generated by internal
interactions must be absorbed by the particles in the system.

The above theorem was a (required) postulate for the Wheeler–
Feynman formulation. It should be noted that our formulation does not
require advanced fields. As will be seen in the next section, the individual
particle interaction from the local point of view (using the particle proper-
time), is of the local field type. In Sec. 5.5, we will see that the individual
particle interaction, from the global point of view (using the global proper-
time), is of the action-at-a-distance type. This confirms and refines the
Wheeler–Feynman conjecture concerning the relationship between these
two views.

It is clear that, in general, the above theorem is only approximately true
and it is more reasonable to consider conservation of energy in a statistical
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sense. For example, our galaxy is clearly not a conserved system in the
absolute sense, but may be considered conserved in the mean. Thus, the
radiation we receive from the other galaxies is, on the average, equal to
the radiation leakage from our galaxy.

5.4. Interaction (Internal)

In this section we assume that the system of n interacting particles can
be represented via:

H=C
n

i=1
Hi=H0+V, Hi=Hoi+Vi

(5.46)

H0i=`c2p2i+m2
i c

4, pi=pi −
ei
c
Ai

H0=C
n

i=1
H0i, Ai=C

i ] j
Aji, eiAji=

eiej(wj −wi)
2sji (5.47)

V=C
n

i=1
Vi, Vi=C

i ] j

eiej
2sij

, sji=sij,
“

“xi
(sij)=−

“

“xj
(sij)

Since we have specified the internal interactions, it is not a priori clear
that the system is closed. Under the stated conditions, the following results
can be proven by direct computation.

Lemma 5.1. Set P=;n
i=1 pi, P=;n

i=1 pi, then P=P.

Theorem 5.5. {H, P}=0, {H, V}=0, {P, V}=0.

It follows that, as in Sec. 5.2, we can define the total effective mass M
by Mc2=`H2 −c2P2, so that H=`c2P2+M2c4.

Lemma 5.2. {H, M}=0, {P, M}=0.

Using the above results, it now follows that the set {Hi | 1 [ i [ n}
forms a closed system satisfying all the conditions of Sec. 5.2.

5.5. Particle Interaction (Local View)

We are now ready to investigate the nature of the dynamics of the ith-
particle (say) caused by the action of the other particles on it. Since there
are two possible clocks, y and yi, there are two different views, or answers,
to our question. Let Wi be any observable of the i th-particle, then
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dWi

dy
={K, Wi}=C

n

j=1

1“K
“pj

“Wi

“xj
−
“K
“xj

“Wi

“pj
2

dWi

dyi
={Ki, Wi}=

“Ki

“pi

“Wi

“xi
−
“Ki

“xi

“Wi

“pi

(5.48)

K=
H2

2Mc2
+

Mc2

2
, Ki=

H2
i

2mic2
+

mic2

2
(5.49)

The equations of motion can be computed rather easily in the second case.
The Hamiltonian has an explicit representation as

Ki =
p2i
2mi

+mic2+
V2

i

2mic2
+

Hi0Vi

mic2

S
dxi
dyi

=
“Ki

“pi
=
p i
mi

1 Hi

Hi0

2 (5.50)

dpi
dyi

=−
“Ki

“xi
=−

Nip
2
i

2mi

1 Hi

Hi0

2−NiVi
1 Hi

mic2
2 (5.51)

Using (Hi/Hi0) Nip
2
i=−2(ei/c)[(ui ·Ni) Ai+ui ×(Ni×Ai)], Bi=(Ni ×Ai),

and (Hi/mic2)=(bi/c), we have

dpi
dyi

=
ei
c
[(ui ·Ni) Ai+ui ×Bi]−

bi
c
NiVi (5.52)

Finally, using (ui ·Ni) Ai=(dAi/dyi)−(“Ai/“yi), and Vi=eiFi, we have

c
bi

dpi
dyi

=eiEi+
ei
bi

(ui ×Bi) (5.53)

Ei=−
1
bi

“Ai

“yi
−NiFi (5.54)

We call this the local view since it gives information about the action
of the external field on the particle, but provides no information about the
action of the particle on the source of the external force. Equation (5.53) is
of the same form as (5.39), so if we use (1/bi)(“/“yi)=(1/c)(“/“t) and
(ui/bi)=(wi/c), we have

The Classical Electron Problem 1343



dpi
dt

=eiEi+
ei
c
(wi ×Bi) (5.55)

Ei=−
1
c
“Ai

“t
−NiFi (5.56)

This is the same result we found in Sec. 5.3 when we used minimal
coupling directly for the global case. For later reference we return to
Eq. (5.50), solve for pi, and differentiate, to get

ṗi=m̄i u̇i −m̄iui 5
(ui ·Ni) Vi

Hi

6 , m̄i=mi
11− Vi

Hi

2 (5.57)

Putting this term in (5.53) and taking the dot product, we have

(ui · u̇i)=
1
2

d
dyi

||ui ||2=||ui ||2 5
(ui ·Ni) Vi

Hi

6+ei
m̂i

(ui ·Ei)

m̂i=
c
bi

m̄i=mi
c
bi
51− Vi

Hi

6
(5.58)

5.6. Particle Interaction (Global View)

Let us now see what changes occur when we focus on the motion of
the same particle as seen from the global point of view. In this case, we
have

dxi
dy

=vi=
“K
“pi

=1H
M
2 p i
Hi0

(5.59)

dpi
dy

=−
“K
“xi

=−1 H
Mc2
2 C

n

k=1

5c2Nip
2
k

Hk0
−NiVk
6 (5.60)

Using standard calculations as in the local view, and (H/Mc2)=(b/c), we
have

dpi
dy

=C
n

k=1

3ek
c
[(vk ·Ni) Ak+vk ×(Ni ×Ak)]−

b
c
NiVk
4 (5.61)

Now use

(vi ·Ni) Ai=(dAi/dy)−(“Ai/“y)
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to get

dpi
dy

−
ei
c
dAi

dy
=

ei
c
[vi ×Bi]−

ei
c
“Ai

“y
−
b
c
NiVi

+C
n

k ] i

3ek
c
[(vk ·Ni) Ak+vk ×(Ni ×Ak)]−

b
c
NiVk
4 (5.62)

From, (5.46) and (5.47) we see that (vk ·Ni) Ak=−(vk ·Nk) Aik, etc., so
we may write (5.62) in the form (using Ei=−(1/b)(“Ai/“y)−NiFi, Bi=
Ni ×Ai)

c
b
dpi
dy

=eiEi+
ei
b
[vi ×Bi]

− C
n

k ] i

3ek
b
[(vk ·Nk) Aik+vk ×(Nk ×Aik)]−ekNkFik

4 (5.63)

If we now set (vk ·Nk) Aik=(dAik/dy)−(“Aik/“y), Bik=Nk ×Aik, Eik=
−(1/b)(“Aik/“y)−NkFik, and Fik=ekEik+(ek/b) vk ×Bik, we have

c
b
dpi
dy

=Fi − C
n

k ] i

3Fik+
ek
b
dAik

dy
4 (5.64)

If we use pi=m̄iui, m̄i=mi[1−Vi/Hi], ui=[cvi/(b2− v2i )
1/2], we get (b is

constant)

d
dy
1 m̃ivi
`1−(v2i /b

2)
2=Fi − C

n

k ] i

3Fik+
ek
b
dAik

dy
4 , m̃i=1

c
b
22 m̄i (5.65)

In order to interpret Eq. (5.65), we return to Eq. (5.54) and use the
fact that (1/bi)(“/“yi)=(1/b)(“/“y) and (ui/bi)=(vi/b) to get

−
1
bi

“Ai

“yi
−NiFi=−

1
b
“Ai

“y
−NiFi,

ei
bi

(ui ×Bi)=
ei
b
(vi ×Bi).

This means that our force Fi in (5.65) is identical to the right-hand side of
(5.53) (the local Lorentz force). Equation (5.65) is our replacement for the
Lorentz–Dirac equation. The second term on the right-hand side is the
necessary dissipative term required to satisfy Newton’s third law, and
represents the action of the ith particle on all the other particles in the
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system. It is important to note that this equation contains no third-order
derivatives, so that it will satisfy the standard conditions for existence and
uniqueness of solutions for initial value problems. It will not contain
runaway solutions, nor advanced actions, etc. Furthermore, the equation
does not depend on the structure of the particles in the system.

We now see that the global view of particle interactions is a pure action-
at-a-distance theory while, from the local point of view, particle interactions
are mediated by the fields (a field theory).

For future reference, we assume that the global system is interacting
with an external force, so that U̇ is not zero. If we differentiate the left-
hand side of (5.65), we get (using b2

i=v2i /b
2),

c
b
dpi
dy

=
m̃i v̇i

[1−b2
i ]

1/2+
m̃ivi[vi · v̇i −U · U̇]

b2[1−b2
i ]

3/2

−
m̃ivi

[1−b2
i ]

1/2

d
dy
5ln 11− Vi

Hi

26 , m̃i=mi
c2

b2
11− Vi

Hi

2 (5.66)

Taking the dot product with vi, we obtain the effective power transfer for
the ith particle:

m̃i

2[1−b2
i ]

3/2

d ||vi ||2

dy
−
m̃i ||vi ||2 [U · U̇]
b2[1−b2

i ]
3/2 −

m̃i ||vi ||2

[1−b2
i ]

1/2

d
dy
5ln 11− Vi

Hi

26

=vi ·Fi − C
n

k ] i

3vi ·Fik+
ek
b
1vi ·

dAik

dy
24 (5.67)

If U=0, (5.64) and (5.67) become (b2
i=v2i /c

2, m̃i=m̄i, and y=t)

d
dt
1 m̄ivi
`1−b2

i

2=Fi − C
n

k ] i

3Fik+
ek
c
dAik

dt
4 (5.68)

m̄i

2[1−b2
i ]

3/2

d ||vi ||2

dt
−

m̄i ||vi ||2

[1−b2
i ]

1/2

d
dt
5ln 11− Vi

Hi

26

=vi ·Fi − C
n

k ] i

3vi ·Fik+
ek
c
1vi ·

dAik

dt
24 (5.69)

It follows that, even when the global system is at rest in the frame of the
observer, our theory is distinct. In closing this section we note that
summing Eq. (5.65) or (5.68) on i gives zero as expected, reflecting con-
servation of the global momentum.
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6. DISCUSSION

6.1. Proper-time of the Source

In this paper, we have shown that Maxwell’s equations have a math-
ematically equivalent formulation and additional symmetry group that
fixes the proper-time of the source for all observers. The new group is
closely related to the Lorentz group and, in fact, at the local level, is a
nonlinear and nonlocal representation. We have constructed a dual theory
using the proper-time of the source and have shown that it is covariant
with respect to this group. However, the speed of light now depends on the
motion of the source and the new group replaces time transformations
between observers by transformations of the velocity of light with respect
to the source for different observers. This implies that the speed of light can
be greater than its value in any fixed inertial frame. In the new formulation,
the second postulate of special relativity is only true when the source is in
the rest frame of the observer. We have further shown that, for any closed
system of particles, there is a global inertial frame and unique (invariant)
global proper-clock (for each observer) from which to observe the system.
In this case, the corresponding group differs from the Lorentz group by a
scale transformation. This global proper-clock is intrinsically related to the
proper-clocks of the individual particles in the system and provides a
unique definition of simultaneity for all events associated with the system.
Hence, at the global level, we can always choose a unique observer-inde-
pendent measure of time for the study of physical systems. One important
consequence of this result can be stated as a theorem.

Theorem 6.1. Suppose that the observable universe is representable in
the sense that the observed ratio of mass to total energy is constant and
independent of our observed portion of the universe. Then the universe has a
unique clock that is available to all observers.

The above assumptions are equivalent to the homogeneity and isotropy of
the energy and mass density of the universe.

The use of a global variable without attaching physical meaning to it
dates back to the early work of Tetrode and Fock (for a review, see
Fanchi(51)). However, starting in the 1970s, Horwitz and Piron(60) and later
Fanchi(51) began to suggest the use of a special clock for global systems
which they called the historical time. They predicted that such a variable
should exist as a real physical parameter and Fanchi(52) suggested experi-
ments to detect this clock. In our approach we treat the transformation
from observer proper-time to global system proper-time as a canonical
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(contact) transformation on extended phase space. This approach allows us
to identify the canonical Hamiltonian and the associated Lie algebra
(Poisson) bracket. Hence, we suggest that this global proper-time is the one
sought by the above researchers. From an operational point of view, all
observers can identify the time according to this (global) clock by record-
ing the time on their clock, use the experimentally determined value for the
velocity W of the center-of-mass of the system, and then use Eq. (1.3a).

Rohrlich(61) has recently conducted a very interesting study of the
classical self-force for the dynamics of finite-sized particles with both elec-
tromagnetic and gravitational self-interactions (using the Lorentz–Dirac
equation). He posits his model as a replacement for the point-particle
model, which is beyond the validity of the classical theory. His approxima-
tions neglect the nonlinear terms in the derivatives of the acceleration and
leads to more reasonable equations of motion, but violates time-reversal
invariance. This suggests that a successful classical theory which does not
require the point-particle concept may help to explain time-reversal nonin-
variance at the macro-level.

As noted earlier, the proper-time theory does not depend on the size,
structure, or geometry of the charge distribution. Furthermore, the global
fields of any system of radiating particles in a closed domain will quickly
leak radiation into every part of the domain. Since the field equations carry
intrinsic information about the velocity and acceleration of each particle at
the moment of dissipation, any observer will only receive information
about the past behavior of the particles in the system. Since the observed
radiation is an average over all the particles, this provides an explanation
for the arrow of time as a statistical effect as suggested by Einstein. Also,
since we only use the retarded solutions of Maxwell’s equations, we may
follow the suggestion of Feynman(32) and Stückelberg(62) and treat anti-
matter as matter with its proper-time reversed.

The above approach also provides us with a simple answer for ques-
tions about conservation laws during the big bang. If we assume that the
big bang created two separate universes, one with matter (moving forward
in proper-time), and one with antimatter (moving backward in proper-
time). Then all global (physical) quantities in our universe will be con-
served while providing us with a nice explanation for the lack of large
concentrations of antimatter in our universe.

6.2. Equivalent Theories and Convention

It is no doubt unsettling to many that two theories could be mathe-
matically equivalent but not physically equivalent. It is more natural
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to expect that two mathematically equivalent theories would also be physi-
cally equivalent, and there are a number of historical examples to support
such expectations; the Lagrange–Hamiltonian formulation of classical
mechanics, the Heisenberg–Schrödinger formulation of quantum mecha-
nics, and the Feynman–Schwinger–Tomonaga formulation of quantum
electrodynamics. In the first case, both formulations have proved equally
valuable depending on the purpose. However, the latter two cases raise
interesting questions.

After Feynman constructed a path integral formulation of quantum
mechanics, it was shown to physically include the Heisenberg–Schrödinger
formulation. However, it has never been shown to be mathematically
equivalent since there are well-known serious foundational problems with
the mathematical notion of a path integral for quantum theory. On the
other hand, it has not been shown that the Heisenberg–Schrödinger for-
mulation is physically equivalent to the Feynman path integral approach.
(There are theories where the path integral approach is easy, while the
other two approaches are difficult to construct.)

In order to prove that the Feynman formulation of QED is physically
equivalent to the Schwinger–Tomonaga formulation, Dyson(63) assumed
that time has the additional property of an index which keeps track of the
time an operator operates (time-ordering). This represents a new physical
input to theory formulation and has only recently received any mathematical
attention.(64–66) Thus, mathematical equivalence has not been shown and,
although some progress has been made, we are far from a solution.

In our opinion, the Feynman path integral approach is physically
more general than that of Heisenberg and Schrödinger, and his formulation
of QED is physically more general than that of Schwinger and Tomonaga.
In both cases, he introduces new concepts that make it physically easier to
think about and solve problems. What Feynman did was to show that it is
still possible to formulate theories which more closely represent the way the
world appears to us in our consciousness.

It was Poincaré(67) who first noticed that some hypotheses (assump-
tions), which are made for theory construction, arise because of empirical
data, while others occur because they are convenient. The convenient
hypotheses are generally imposed by the mathematical structures we use to
represent physical theories. These hypotheses are called conventions by
Poincaré in order to point out the fact that different conventions could lead
to different theories which would be mathematically equivalent. He was not
sure that the theories would be physically different, but he seems to have
left open that possibility. The work of this paper shows that different con-
ventions can lead to different physical theories. Since all inertial reference
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frames are equivalent, the one chosen by any observer is a convention. If
we seek simplicity, we can all attach our frames to the MBR and use the
proper-time of the universe for our global clock. In this case, we could
satisfy the two postulates of the special theory, while the field and particle
equations of any system would be invariant under the action of the Lorentz
group (for all observers).

6.3. Velocity of Light

The price paid for the results of this paper will certainly seem high to
many. We have rejected the third postulate of Minkowski that time be put on
an equal footing with position and made a coordinate for four-geometry.
We have also rejected the assumption (convention) that the observer proper-
time be used to define the dynamics of an observed system. Thus, in
our approach, time is a (intrinsic) dynamical variable which must be
determined by experiment along with other properties (of the observed
system). This leads to a new interpretive framework in which the second
postulate is only true when the source is at rest in the frame of the observer.
Thus, we have reduced the observer reference frame to the prerelativistic
three-geometry of Euclidean space. The observer’s clock is now a part of
the measuring equipment which is used to determine the proper-time of the
source.

The proper-time formulation has an obvious disadvantage since, it is
generally believed that, all the available experimental evidence supports the
second postulate of special relativity (that the velocity of light is constant).
Einstein(68) pointed out in a footnote to his second paper: ‘‘The principle of
the constancy of the velocity of light is of course contained in Maxwell’s
equations.’’ What he meant by this was that the second postulate follows
from the fact that the constant c in Maxwell’s equations is an invariant for
all (inertial) observers. Since that time, many experiments have been done
to verify that assumption. However, in 1965, Fox(69) wrote a very impor-
tant paper which reviewed the evidence for constant c and against the
emission theory of Ritz.(44) His conclusion was that all previous experi-
ments were flawed for a number of reasons. In many cases, analysis of the
experimental data failed to take into account the (now well-known) extinc-
tion theorem of Ewald and Oseen (see Jackson(2)). The only data found
that firmly supported the second postulate came from experiments on the
lifetime of fast mesons and the velocity of c rays and light from moving
sources. In his conclusion, Fox states that ‘‘...Unless something has been over-
looked, these seem to be the only pieces of experimental evidence we have. This
is surprising in light of the long history and importance of the problem.’’
These ‘‘pieces of experimental evidence’’ have another interpretation in the

1350 Gill, Zachary, and Lindesay



proper-time theory. As noted in Sec. 1, the lifetime of fast mesons is the
fixed value measured when they are at rest while their velocity is now
computed using the proper-time of the meson which is derived from the
experiment. The same interpretation applies to c rays and light from
moving sources. Thus, the same experiments that support c as constant
when we assume that the observer proper-time should be used to formulate
the theory also supports the result that the speed of light depends on the
motion of the source when we assume that the source proper-time should
be used to formulate the theory.

6.4. Photon Mass

Work on the question of photon mass has focused on the addition of a
mass term to the Lagrangian density for Maxwell’s equations and generally
leads to the Proca equation (see Bargmann and Wigner(70)). Early work in
this direction can be traced back from the paper of Schrödinger and
Bass.(71) As in our approach, the speed of light is no longer constant in all
reference frames. In this case, the fields are distorted by the mass term
and experiments of Goldhaber and Nieto(72) use geomagnetic data to set
an upper bound of 3×10−24 GeV for the mass term (see Jackiw(73)). This
approach causes gauge problems, and has not found favor at the classical
level. The proper-time theory is fully gauge invariant and the (photon)
mass is dynamical, appearing only during acceleration of the source.

It should be recalled that Maxwell’s equations are (spin 1) relativistic
wave equations (see Akhiezer and Berestetskii(74)). On the other hand, the
experiments of Pound and Snider(75) show directly that photons have an
apparent weight (as one would expect of any material object). These experi-
ments do not depend on either the special or general theory of relativity and
are not directly dependent on frequency or wavelength measurements. The
existence of a small mass for the photon has important implications for
QED. It is well-known that a small photon mass can eliminate the infrared
catastrophe (see Feynman(76)).

APPENDIX

In this appendix, we outline the derivation of (3.54) from the angular
distribution (3.52) by taking the limit as rQ. after integrating over a
sphere of radius r. The integrations over the azimuthal angle f are easily
done. Then, for the integrations over the polar angle h, it is convenient to
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make the change of variable m=cos h and for a=2, 3,..., b=0, 1, 2,...,
define the following sequence of integrals:

Ia, b — F
1

−1
(1−bm)−a mb dm (A1)

We then obtain from (3.52) that

lim
rQ.

FF −
dU
dt

(W) dW

=
bq2 |ā|2

b̄4
311−1

2
sin2a2 I4, 0+1

1
2
sin2 a− cos2 a2 I4, 2

−2b 5b cos2 a(I5, 0 −I5, 2)

+1− cos2 a+
1
2
sin2 a2 (I5, 1 −I5, 3)6

+b2 51b2 cos2 a+
1
2
sin2 a2 (I6, 0 −I6, 2)

+2b cos2 a(I6, 3 −I6, 1)+1cos2 a−
1
2
sin2 a2 (I6, 2 −I6, 4)64 (A2)

Relations among the integrals (A1) for different integer values of a and b
are easily obtained by integration by parts:

Ia, b=
1

b(a−1)
[(1−b)−(a−1)−(−1)b (1+b)]−

b
b(a−1)

Ia−1, b−1 (A3)

for a \ 2, b \ 1; and for b=0, only the first term contributes:

Ia, 0=
1

b(a−1)
[(1−b)−(a−1)−(−1)b (1+b)], a \ 2 (A4)

We note that the differences of the integrals (A1) that occur in (A2)
are of the type Ia, b −Ia, b+2 for given values of a and b. For differences of
this type, the term in brackets in (A3) does not contribute and we have:

Ia, b −Ia, b+2=
1

b(a−1)
[−b(Ia−1, b−1 −Ia−1, b+1)+2Ia−1, b+1] (A5)
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for integer values of a and b such that a \ 3, b \ 1. For b=0 the difference
term on the right-hand side of (A5) is missing and we have:

Ia, 0 −Ia, 2=
2

b(a−1)
Ia−1, 1, a \ 3 (A6)

To use the above results to evaluate (A2), we start with differences of
the form (A5) and (A6) with a=6 and b=1, 2. The terms which arise from
the difference term on the right-hand side of (A5) combine with the terms
with a=5 which are already present in (A2). After combining the coeffi-
cients of similar terms, we can then apply the process again to the integrals
(A1) with a=5. Now we have a difference from the situation with the
integrals involving a=6 that , in addition to having differences of the form
(A5) with a=5 and b=1 and of (A6) with a=5, we also have the integrals
I5, 1 and I5, 0 which are not differences. However, these are easily evaluated
by use of (A3) (giving a term involving I4, 0) and (A4), respectively. We can
continue this procedure to successively lower values of a, terminating at the
value a=2. The substitution of the various values of Ia, b and elimination
of cos2 h by use of the identity cos2 h=1− sin2 h leads to the result (3.54).
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