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A b s t r a c t  

A periodic, corrugated, dielectric layer is simulated by an anisotropic 
dielectric layer of equal thickness. The tensor elements of the equivalent 
dielectric layer are given in terms of the permittivity of the dielectric 
material, the period of the surface corrugation, and the width of the 
corrugations. The validity of this technique is verified by comparing the 
reflection coefficient of the equivalent layer with that of the correspond- 
ing corrugated layer using the moment method. Employing a multiple 
layer approach, the technique is extended to handle periodic surfaces 
with arbitrary cross sections whi& can be used to design millimeter 
wave dielectric plate polarizers and absorbers. 

I n t r o d u c t i o n  

The purpose of this paper is to simulate a periodic corrugated dielectric 
layer by a homogeneous anisotropic layer. Figure 1 shows the geometry 
of a corrugated surface over a layered medium. If we let the top (y = t) 
and the bot tom (y = 0) interfaces approach, respectively, +oo and -oo ,  
a medium of periodic slabs as shown in Fig. 2 will be created. Thus the 
periodic dielectric corrugation can be viewed as a layer of a medium 
comprised of homogeneous dielectric slabs of identical material which 
are equally spaced. Ignoring the effect of discontinuities, the problem is 
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reduced to finding the equivalent dielectric tensor of the periodic slab 
medium. 

Depending on the polarization of the fields and the boundary con- 
ditions imposed, a variety of different modes can be supported by this 
structure. Modeling of grooved-dielectric surfaces with anisotropic ho- 
mogeneous media was first studied, to our knowledge, by Morita and 
Cohen [3]. They analyzed this problem by simulating the periodic slab 
medium using a partially-filled waveguide, then by solving the appro- 
priate transcedental equation the propagation constant in the corruga- 
tion was obtained. These results are used in many problems such as 
matching dielectric lens surfaces [3] and designing broadband radomes 
[1,4]. 

Since the interest is in the modes that are excited by an incident 
plane wave, simulating the array by a partially-filled waveguide, which 
forces the tangential electric field to be zero at the waveguide walls, 

x 

Figure 1: Geometry of the corrugated surface. 

Y 

Figure 2: An array of infinite dielectric slabs. 
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may not be appropriate. Here we impose a condition that supports 
the modes which would be excited by a plane wave incident on the 
structure. This approach will provide a formula for the elements of 
the equivalent dielectric tensor which is different from that  reported by 
Morita and Cohen. The validity of this technique is verified in Section 
5 by a numerical solution of corrugated surfaces. In Section 4 the 
reflection coefficient of uniaxial layered media is derived to extend the 
applicabilities of the equivalent dielectric technique to periodic surfaces 
with arbitrary cross sections. 

Theoretical Analysis 

To proceed with the analysis, suppose that similar dielectric slabs of 
an infinite array with thickness d and dielectric constant e are parallel 
to the y-z plane. Further assume that the period of the structure is 
denoted by L. The geometry of the problem is depicted in Fig. 2. If 
the z-y plane is the plane of incidence, the solution is independent of 
z and therefore the waves can be separated into E- and H-polarized 
waves. Each period of the medium can be divided into two regions 
and, depending on the polarization, the z component of the electric or 
magnetic field must satisfy the wave equation, i.e. 

+ ~ + ~g ~ ( x , y )  = 0 0 < x < ~ (1) 

( ~ a~ ) + ~ + ~g ~I (x ,y )  = 0 d < x < L (2) 

where r = E. (x , y )  or H~(x,y). Using separation of variables 
and requiring the phase matchin~ condition, tile solutions of (1) and 

(2) tal<e the following forms 

~'(x, ~ ) :  [ A ~  ~ + s ~ - ~  ~] ~ (3) 

~z~(~,~) : [ c ~  + o~-<,~] ~,~ (4) 

where ky is the propagation constant in the periodic medium which 
must satisfy 

(~ ' )~  + ~ = ~o ~ (6) 

In an a t tempt  to find the unknown coefficients, we use the condition 
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that  the tangential  components  of the electric and magnetic fields must  
be continuous at x = d, which constitutes two equations. Two more 
equations can be obtained by applying Floquet 's  theorem for periodic 
differential equations which requires ~(x  + L, y) = a g ( x ,  y) for some 
constant a. To set an appropriate value for a, suppose the medium 
is simulated as an equivalent homogeneous dielectric. If a plane wave 
illuminates the half-space of the equivalent homogeneous medium at an 
angle r the x dependency would be of the form eik~ ~inr This depen- 
dency suggests tha t  we need to impose a progressive phase condition, 
i.e. let a = eik~ sinr Therefore the other two equations become 

Etan(0  + L, y) = e/k~ slnC~ , y) (7) 

Htan(0 + L,y)  = eik~162176 ) (8) 

Application of the mentioned boundary conditions for the E polar- 
ization gives the following equations 

Aeik~ d + Be-ik~ d = Ce~kI xd + De-ik~ rd 

ik~Xl -ik~II -iko sin CoL A +  B : ICe + De ] e (9) 
I I I  ik1II -iklxll -iko sin r k ~ [ A -  B] = k~ [Ce - D e  ]e  

Since we are interested in the nontriviM solution of the above linear 
equations the determinant  of the coefficient matr ix must  be set to zero. 
This condition provides an equation for k~ and k~ z and is given by 

k_gL" -,~ + ,~ )sin(k~,~)sin (k~(L-,~)) + 2 cos(<'d)cos (k~(L-,~)) : 
2 cos(k0 sin r 

(10) 
Dispersion relations (5) and (6) give rise to additional equations for k~ 
and klI; i.e., 

(k~) 2 - (k~') 2 = k02(e - 1) (11) 

The  transcedental  equation (10) together with (11) can be solved simul- 
taneously to find the propagation constants. It is worth noting that  in 
the limiting case when the periodic medium approaches a homogeneous 
one, then k~ -~ ki~ and (10) reduces to 

cos(k~L) = cos(ko sin CoL) 

which implies k~ = ko sin r as expected. 
After solving (10) and (11) for k~ ~, the propagation constant in the 
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y-direction can be obtained from 

1307 

= kg_( y) (12) 

It should be pointed out that  the solution for k~ I is not unique and 
therefore this s tructure can support  many modes corresponding to dif- 
ferent values of k~ ~. The  dominant  mode for this structure corresponds 
to a value of k~ I such that  the imaginary part of 1% is minimum. For the 
equivalent homogeneous medium with permit t ivi ty e,, the propagation 
constant in the y-direction would be 

k~ : /Co 2 ( e z -  sin 2 4)o) (13) 

Comparing (12) and (13) it can be deduced that  

e ~ = s i n  2 4 ) o + 1 -  \ k o ]  

From the symmetry  of the problem it is obvious that  if the electric field 
is in the y-direction the equivalent dielectric would be the same, that  
iS dy ~ s 

Using a similar procedure the following transcedental equation for 
H polarization can be obtained 

~ ~-~i-~ ~sin(k~d) + 2 cos(k~d) - (~ + 
kx 

2 cos(h0 sin ,COL) 
(15) 

As will be shown later the dispersion relationship in this case is: 

/..2 s  - 
= - s i n  2 r 

and the equivalent dielectric constant e~ can be obtained from 

e~--  1 - (-hO-O 
e z  - sin 2 4)0 

(16) 

where k H is the solution of (15) and (11). Since % • ey = r the 
equivalent med ium is uniaxial with the optical axis being parallel to 
the z-axis. 



1308 Sarabandi 

L o w  F r e q u e n c y  A p p r o x i m a t i o n  

An analytical solution of equations (10) and (15) for k~ and k~ r can- 
not be derived, in general, but  using Newton's or Muller's method  
numerical solutions can easily be obtained. One of the cases where 
approximate expressions for e~ and % = e~ can be derived is the low 
frequency regime where L < 0.2A0. In this approximation the sine and 
cosine functions are replaced with their Taylor series expansion keep- 
ing terms up to the  quadratic term. Therefore equations (10) and (15), 
respectively, reduce to 

{ (k~)2d + (k~I)2(L - d) = (ho sin r 

,(h'Vx, 7d + (k~,)2(L _ d) (k0 sin "~,oa'2 cd+~-d)L2 
(lr) 

These equations together with (11) can be solved easily to obtain 

e~ = ez = 1 + ( e -  1) d (is) 

( 
(19) 

E~= e ( 1 - d / L ) + d / L  

Note tha t  when d --+ L, the dements  of the dielectric tensor approach 

the permit t ivi ty  of region I, i.e. ex, ey, ez --+ e and when d --~ 0, then 

e~, %, e, -+ 1, as expected. At low frequencies, as shown by (18) and 

(19), the equivalent permittivit ies are neither functions of frequency 

(/~o) nor functions of incidence angle. 

R e f l e c t i o n  C o e f f i c i e n t  o f  a U n i a x i a l  L a y e r e d  
M e d i u m  

Consider a multilayer dielectric half-space as shown in Fig. 3. Suppose 
ea& dielectric layer is uniaxial and the optical axes of all the layers are 
parallel to the x axis. Further assume that  a plane wave whose plane 
of incidence is parallel to the x-y plane is il luminating the stratified 
med ium from above at an angle r The interface of the n th  and the 
(n + t ) t h  layers is located at y = d~. 

The  dielectric tensor of the n th  layer is defined by D ~ = e , E  ~ and 
is assumed to be of the following form 
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•n ~ CO [ ~ 0 0 

0 % 0 

0 0 e~ 

(20) 

and its permeability is that  of free space (#~ = fro). In this situation two 
plane waves are generated in the dielectric slabs: one ordinary and one 
extraordinary. For the ordinary wave the electric field and the electric 
displacement are parallel and both are perpendicular to the principal 
plane (the plane parallel to the optical axis and the direction of prop- 
agation) [2], hence the magnetic field is in the z-direction (see Fig. 3). 
For the extraordinary wave, however, the electric displacement and the 
magnetic field tie in the principal plane and the y - z  plane respectively 
which force the electric field to be parallel to the z-axis. Therefore 
the ordinary or the extraordinary waves can be generated, respectively, 
by a magnetic or an electric Hertz vector potential having only an z 
component. For ordinary waves D n = c0e~E n and the magnetic Hertz 
potential ( H ~  = II~2) must satisfy the wave equation, i.e. 

2 ~ 2 
V I I  o + kor o = 0 (21) 

The electric and magnetic fields in terms of the magnetic Hertz poten- 
tial where there is no variation with respect to z are given by 

�9 aH2  
E~ = -d,:oZo .--:-~---z 

o:(/ 
(22) 

Y 

~-X 

. . . . .  

Figure 3: Plane wave reflection from a stratified uniaxial dielectric half- 
space. 



1310 Sarabandi 

2 n 2 n 0 1-Io ^ H~ - 0 rlo~ (23) 

The electric and magnetic fields associated with the extraordinary wave, 
as discussed earlier, can be derived from an electric Hertz vector po- 
tential, i.e. 

which implies 

H~ = -ihoYoV • l I  '~ 

2 E': = koUc + v r  ~ (24) 

where (b ~ is an arbitrary scalar function. Using (20) the electric dis- 
placement in the nth layer is represented by 

D~ = eo[(e~ - e,~)Ec~ + enE~] (25) 

Inserting (24) into (25) and noting that 

D~ VV H'~ 2H~ 
: " - -  V e 

we get 

2 v r t : )  v 2 ~  ~ + ~ k 0 r z ~  + ( ~  - ~ ) - b - ; S x  + v - �9 = 0 (26) 

So far no condition has been imposed on the scalar function ~ .  To 
simplify the differential equation (26) let V . / - / ~  = en~ ~ be the gauge 
condition. Therefore the electric Hertz vector potential must satisfy 

2 n 
2 n 2 n ~ x n - - ~ n 0  1~ e 

V H~ + e~k0H ~ + e~ Ox 2 --- 0 (27) 

In the special case where O/Oz = 0 the magnetic and electric fields of 
the extraordinary waves can be obtained from 

�9 0 ~  
H~ = ~koZo--W-~ (28) u y  

0 H~.^ 1 2 n 1 2 n 2 n 0 I7I ^ 
E :  = (koH~ + + - - - - y  (29) 

en ~ )x  en OxOy 
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The solution of the differential equations (21) and (27) subject to 
plane wave incidence can be represer~ted by e*(k~176 ~) and e 

respectively and upon substitution of these solutions in the correspond- 
ing differential equations the following dispersion relationships are ob- 
tained 

(k2~) 2 + ( k~2ov, = c~k02 (30) 

~ (k:~) 2 + ~ ( k : ~ )  2 = ~0 ~ (3~) 

Imposing the phase matching condition, i.e. ko% = k~% = ko sin ~b0, the 
dispersion relations simplify to 

ko; = - sin k ; :  sin < o 

The Hertz vector potentials in the nth layer can be written as 

rt: : + i o io+o  (32) 

(33) 

In (32)-(33) the subscripts i and r in the coefficients denote the prop- 
agation in the negative and positive y direction respectively. 

Since there is no variation with respect to z, the incident wave can 
be decomposed into parallel (H) and perpendicular (g) polarization 
which would excite extraordinary and ordinary waves respectively. For 
g polarization the electric and magnetic fields in each region can be 
obtained from (22) and (23) using (32). In region 0, A ~ is proportional 
to the incident amplitude, and 0 0 - A J A i  = RE is the total reflection 
coefficient. In region N +  1, which is semLinfinite, A N+I = 0. Imposing 
the boundary conditions, which requires continuity of tangential elec- 
tric and magnetic fields at each dielectric interface, we can relate the 
field amplitudes in the nth region to those of (n + 1)th region. After 
some Mgebraic manipulation, tile following recursive relationship can 
be obtained 

-- �9 n + l  A~ ( -A~+I /A~  .+1) + C'~e ,2ko~ <{:+~ 
A? - ( - A ~ + l l A n + I ~  �9 .+ ,  e-i2k~ (34) 

r # i ] x o  "~ 6-*2k~ dn+l 

where 



1312 Sarabandi 

P~ 

Starting from -AN+~/A~ +~ = 0 and using (34) repeatedly RE can be 
found. 

For H polarization incidence the extraordinary waves are excited 
and using (33) in (28) and (29) the electric and magnetic fields in each 
region can be obtained. Following a similar procedure outlined for the 
E polarization case an identical recursive formula as given by (34) can 
be derived. The only difference is that A is replaced by B, boy by k~ 
and Fo ~ becomes F~ which is given by 

- s i n  r - - s i n  r 
P~ 

- s i n  + - s i n  

Numerical Examples 

As mentioned earlier (10) and (15) can be solved using numerical meth- 
ods. Here we use Newton's method to find the zeroes of the functions 
given by (10) and (15) in which k~ is expressed in terms of k~' using 
(11). Before searching for zeroes we note that  these functions are odd 
functions of . u  k~ , that  is, if n is a solution so would be - n  and both  
would give identical solutions for the equivalent permittivity as given 
by (14). 

To study the behavior of the equivalent dielectric tensor elements, 
we consider a medium with e = 4 + i l  and L = r0 /4  . Figure 4 
and 5 depict the variation of the real and imaginary parts of e~ (H 
polarization) and % = ez (E polarization) versus angle of incidence for 
d/L = 0.5 . It is shown that the dependence on incidence angle is 
very small and these results are in agreement with (18) and (19) within 
10%. The real and imaginary parts of the equivalent permittivities as 
a function of d/L for incidence angle r = 45 ~ are shown in Figs. 6 and 
7 respectively. 

As L/rio increases, the propagation loss factors (Im[ky]) of different 
modes become comparable to each other. For example, if L/ro = rn/2, 
where rn is an integer, there would be at least two modes with equal 
propagation loss factor. Figures 8a through 8c show the location of 
zeroes of (10) in k~S-plane for a l L  -- 0.5, r = 45 ~ and four values 
of L/Ao. The real and imaginary parts of the equivalent permittivities 
as a function of L/ro for d/L = 0.5 and q~o = 45 ~ are shown in Figs. 
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Figure 4: Real part of the equivalent dielectric tensor elements for 
periodic slab medium with L = ~0/4, e = 4 + i l ,  and d/L = 0.5 versus 
incidence angle; e~ (H polarization), % = ez (E polarization). 
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Figure 5: Imaginary  part  of the  equivalent dielectric tensor elements 
for periodic slab med ium with L = Ao/4, e = 4 + i l ,  and d/L = 0.5 
versus incidence angle; e= (H polarization),  % = ez (E polarization).  
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Figure 6: Real part  of the equivalent dielectric tensor elements for a 
periodic slab med ium with  L = ~o/4, e = 4 + i l ,  and r = 45 ~ versus 
d/L; e~: (H polarization),  ey = e~ (E polarization).  
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Figure 7: Imaginary  part  of the equivalent dielectric tensor elements 
for periodic slab med ium with  L = Ao/4, e = 4 + i l ,  and r = 45 ~ 
versus d/L; e~: (H polarization),  ey = e~ (E polarization).  
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9 and 10. The discontinuity in the equivalent permittivities at integer 
multiples of ),o/2 are due to the abrupt changes in the location of the 
zeroes in the k~I-plane which correspond to the dominant mode. 

To check the validity and applicability of this technique we com- 
pare the reflection coefficient of a corrugated surface using the moment 
method [5] with the reflection coefficient of the equivalent anisotropic 
medium as derived in Section 4. The geometry of the scattering problem 
is shown in Fig. 1. We consider a case where L = )~0/4, d = t = ),0/8, 
r = 4 + it ,  and c2 = 15 +i7 .  The tensor elements for these parameters 
are found to be e~ = 1.65 + i0.12, % = ~ = 2.6 + i0.58. Figures 11 and 
12, respectively, compare the amplitude and phase of the reflection co- 
efficients for both E and H polarizations. Excellent agreement between 
the results based on the moment method and the equivalent layer is 
an indication for the validity of the model. As frequency increases, be- 
cause of presence of higher order modes, the discrepancy between the 
moment method and the equivalent layer results becomes more evident. 
Figures 13 and 14 show the reflection coefficient of a corrugated layer 
with L/),o = 0.4, d = t = 0.2),, el = 4 - ~ i l ,  and e2 = 15 + i7. In this 
case e~ = 1.81 + i0.2, % = ez = 2.77 + i0.78 and the agreement is still 
very good, but for L > A0/2 where more than one Bragg mode exists 
the model fails to predict the reflection coefficient accurately. 

Success of the equivalent layer in modeling rectangular corrugations 
can be extended to arbitrary periodic geometries. By approximating 
the cross section of the periodic surface with staggered increments o f  
equal height, the surface can be viewed as a stack of corrugated lay- 
ers (see Fig. 15). The height of each layer A H  must be chosen such 
that  A H  ~ ~/10 where )~ is the wavelength in the material. Then 
each corrugated layer can be modeled by an equivalent anisotropic slab 
and the reflection coefficient of the resultant uniaxial layered medium 
can be obtained. To demonstrate this method consider a wedge-shape 
microwave absorber with permittivity e = 2 + i0.5, period L = 0.4),0, 
wedge height H = 1.5),0, and base height D = 1),0. The number of lay- 
ers considered here is 30 and the corresponding reflection coefficients for 
both E and H polarizations as a function of incidence angle is depicted 
in Fig. 16. 

C o n c l u s i o n s  

The equivalent dielectric tensor elements of a periodic array of infinite 
slabs is derived by requiring the phase of the Floquet's constant (a) to 
be the phase variation of an incoming plane wave over one period. It is 
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Figure 10: Imaginary  par t  of the equivalent dielectric tensor elements 
for periodic slab medium with  e = 4 + i l ,  and r = 45 ~ and d/L = 0,5 
versus L/Ao; % (H polarization),  % = ez (E polarization).  
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Figure 11: Amplitude of reflection coefficient of a corrugated surface 
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Figure 12: Phase of reflection coefficient of a corrugated surface for 
both E and H polariza, tions versus incidence angle; L = 0.25Ao. 
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for both E and H polarizations versus incidence angle; L = 0.4A0. 
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Figure 15: Geometry  of a wedge-shape microwave absorber and its 
staircase approximation.  
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Figure I(~: Ampl i tude  of reflection coefficient of a wc,i~e-shape mi- 
crowave ~bsorber for bo th  E and H poIarizations versus incidence angle; 
L = 0.4~0, H = 1-5~0~ D = 1~0, and r = 2.5 q~ ~0.5. 
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shown that the equivalent medium is uniaxial. The equivalent tensor el- 
ements are obtained by finding the zeroes of the transcedental equations 
and at low frequencies analytical expressions are derived. The validity 
of this technique is verified by comparing the reflection coefficient of the 
equivalent layer with that of the corresponding corrugated surface us- 
ing the moment method. Excellent agreement was obtained for values 
of L < A0/2. Although the anaIysis is carried out for infinite siabs, it 
is shown that the effects of the discontinuities can be neglected. Using 
a multilayer approach the applicability of the technique is extended to 
handle periodic surfaces with arbitrary cross sections which can be used 
to analyze millimeter wave absorbers and dielectric plate polarizers. 
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