
77

0885-7458/04/0400-0077/0 © 2004 Plenum Publishing Corporation

International Journal of Parallel Programming, Vol. 32, No. 2, April 2004 (© 2004)

CAS-DSM: A Compiler Assisted
Software Distributed Shared
Memory
N. P. Manoj,1 K. V. Manjunath,2 and R. Govindarajan3

1 Hewlett-Packard India Software Operations, 29 Cunningham Road, Bangalore 560 052,
India. E-mail: manojnp.mnp@alumnus.csa.iisc.ernet.in

2 Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, USA. E-mail: kvman@umich.edu

3 Department of Computer Science and Automation, Supercomputer Education and Research
Centre, Indian Institute of Science, Bangalore 560 012, India. E-mail: govind@csa.iisc.
ernet.in

Traditional software Distributed Shared Memory (DSM) systems rely on the
virtual memory management mechanisms to detect accesses to shared memory
locations and maintain their consistency. The resulting involvement of the OS
(kernel) and the associated overhead which is significant, can be avoided by
careful compile time analysis and code instrumentation. In this paper, we
propose such a Compiler Assisted Software support approach (CAS-DSM). In
the CAS-DSM implementation, the involvement of the OS kernel is avoided by
instrumenting the application code at the source level. The overhead caused by
the execution of the instrumented code is reduced through several aggressive
compile time optimizations. Finally, we also address the issue of reducing
certain overheads in polling-based implementation of receiving asynchronous
messages. We used SUIF, a public domain compiler tool, to implement compile
time analysis, instrumentation and optimizations. We modified CVM, a publicly
available software DSM to support the instrumentation inserted by the com-
piler. Detailed performance evaluation of CAS-DSM is reported using a set of
Splash/Splash2 parallel application benchmarks on a distributed memory IBM
SP-2 machine. CAS-DSM achieved moderate to good performance improve-
ments for most of the applications compared to the original CVM implementation.

Reducing the overheads in polling-based implementation improves the perfor-
mance of CAS-DSM significantly resulting in an overall improvement of
12–52% over the original CVM implementation.

KEY WORDS: Coherent Virtual Machine (CVM); software distributed shared
memory; Stanford University Intermediate Form (SUIF); performance evalua-
tion

1. INTRODUCTION

Shared Memory and the Message Passing models are two major parallel
architecture models. A Shared Memory system has a global memory
accessible to all the processors in the system. (1) There are two models
available in shared memory systems based on the nature of sharing of this
global memory across processors. They are the Uniform-Memory-Access
(UMA) architecture, wherein the access times to a memory word from any
two processors are equal and the Non-Uniform-Memory-Access (NUMA)
architecture, wherein the access time varies for different processors. (1)

Examples of NUMA architectures, also known as hardware Distributed
Shared Memory (DSM) systems include Stanford DASH, (2) SCI, (3)

DDM, (4) and KSR1. (5) Programming in shared memory systems is rela-
tively simpler as updating shared data is considered as a natural extension
to programming in uniprocessor environment. This is a major advantage of
shared memory systems. However, with increase in the number of proces-
sors, these systems typically suffer from increased contention and longer
latencies in accessing the shared memory. This degrades the performance
and limits scalability. Also, data access synchronization, cache coherency,
and memory consistency are other issues in shared memory systems.
Although sophisticated memory consistency models (1, 6) facilitate higher
performance, they also increase the burden on programmers to ensure
appropriate memory access order through synchronization primitives.
Lastly, implementing the shared memory abstraction in hardware increases
the cost of the system.

A Distributed Memory system consists of multiple independent pro-
cessing nodes with local memory modules, connected by a general inter-
connection network. (1) Unlike shared memory systems, the local memories
are private and are accessible only to the local processors. Hence these
systems also have the nomenclature No-Remote-Memory-Access (NoRMA)
machines. Since there is no centralized shared memory, increasing the
number of nodes does not result in any of the problems mentioned for
shared memory systems. Thus, the main advantage of these systems is that
they are highly scalable and do not require expensive and complex hard-
ware for memory controllers. A major drawback of distributed memory

78 Manoj, Manjunath, and Govindarajan

systems is that the responsibility of partitioning the data and managing the
communication falls on the application programmer. Parallel Virtual
Machine (PVM) (7) and Message Passing Interface (MPI) (8) are standard
application program interfaces used to program distributed memory
systems.

The Distributed Shared Memory (DSM) paradigm evolved from the
shared memory model and the distributed memory model, attempts to
combine the advantages of shared memory and distributed memory
systems. In other words, DSM systems attempt to achieve both ease of
programming and scalability. A distributed shared memory system (DSM)
logically provides a single global address space over a physically distributed
system. A DSM system can also be realized in software. In a software
DSM, a software layer provides the shared memory abstraction over a dis-
tributed memory machine. This abstraction in software can be provided in
several ways such as by user-level libraries, modification of OS, using
compiler support, binary program instrumentation, or by a combination of
these. Ivy, (9) TreadMarks, (10) Munin, (11) Midway, (12, 13) CVM, (14) Shasta, (15)

Tapeworm, (16) and Millipede (17) are examples of software DSMs.
Software DSM systems are attractive from the viewpoint that they are

cost effective and can run either on a distributed memory machine or on a
cluster of workstations. Further, software DSM systems can employ more
sophisticated memory consistency models to achieve higher performance.
Although the performance of software DSMs is somewhat lower compared
to hardware DSMs, Lu, et al., demonstrate that software DSM programs
could achieve a performance comparable to efficient distributed memory
programs. (18) Thus software DSMs not only serve as a platform for shared
memory program development but also as systems where moderate to high
performance can be achieved in a distributed memory machine or a cluster
of workstations/PCs at moderate to low cost. Recently OpenMP (19) is
gaining increasing acceptance as a shared memory programming model.
In order to run OpenMP programs on distributed memory machines or
cluster of workstations, a software DSM is used as an inexpensive base
framework in Refs. 20 and 21.

1.1. Overview of Our Work

Typically, a user-level DSM detects accesses to the shared location
through the support of the virtual memory (VM) system. Such a software
DSM is also known as Distributed Virtual Shared Memory System
(DVSM). If a shared location is not in a consistent state as per the followed
memory consistency model, then an access to the page in which this loca-
tion resides will result in raising the segmentation violation (segv) signal

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 79

which will be caught by the DSM layer using a segmentation violation
handler. This handler will make the page consistent by taking appropriate
actions. The steps are detailed in Section 2.1.

One of the main overheads occurring in a DVSM is due to the reliance
on VM mechanism for identifying shared memory location. The motivation
for our approach comes from the fact that while the consistency steps
themselves are unavoidable, the generation of the segv signal and the
resulting involvement of the OS for handling the segv signal, can be
avoided by careful compile time code instrumentation. We discuss methods
by which this dependence on the VM mechanism can be reduced signifi-
cantly or eliminated by performing compile time analysis of the application
source code. In this paper, we propose an implementation of a Compiler
Assisted Software DSM (CAS-DSM). A number of compile-time optimi-
zations have been proposed and implemented to reduce the overheads
incurred by the instrumented code, and thus improve the performance of
CAS-DSM. These optimizations include, aggregation and hoisting (above
nested for loops) of the instrumented code for ensuring consistency,
selective discarding of consistency checks, and function-inlining and con-
stant propagation to increase the scope of our compile-time analysis and
optimization. We evaluate the performance improvement due to these
optimizations on a set of Splash/Splash-2 shared memory applications. (22)

CAS-DSM achieves 5–15% performance improvement over Coherent
Virtual Machine (CVM), (14) a public domain software DSM on which CAS-
DSM is implemented.

Software DSMs typically use the polling-based approach to receive
asynchronous messages. This is because the polling-based approach incurs
less overhead than the interrupt-driven approach. However, the time at
which the messages are polled relative to when they arrive, informally
referred to as the holdup time time,4 can have significant impact in software

4 Refer to Section 2.3 for a detailed discussion and a clear definition of holdup time.

DSMs. In this paper, we propose to reduce the holdup time by the use of
compile-time instrumentation in source code and present a simple
approach for this. Preliminary performance results of our approach reveals
a significant reduction in the holdup time which in turn leads to overall
performance improvement of 10–15% on the average, and upto 52% in
certain application.

Section 2 discusses the motivation behind our work. In Section 3, we
present the details of a basic implementation of CAS-DSM and its per-
formance. Sections 4 and 5 discuss the proposed compile-time optimiza-
tions and their implementation respectively. We report the performance of

80 Manoj, Manjunath, and Govindarajan

CAS-DSM and the benefits of different optimizations in Section 6.
Section 7 discusses works related to ours. We conclude in Section 8.

2. MOTIVATION

This section is divided into three parts. The following subsection
provides the necessary background for understanding our work. Next, we
discuss the pagefault overhead and motivate the need for reducing this.
Last, we illustrate certain overheads involved in the polling-based approach
for receiving asynchronous messages and the need to reduce them.

2.1. Background

Our work is in the area of DVSMs. Memory consistency models play
a very important role in DSMs. A memory consistency model defines the
legal ordering of memory references issued by a processor as observed by
other processors. (23) A commonly assumed memory consistency model for
shared memory multiprocessors is sequential consistency, which gives
programmers a simple view of the system. Informally, sequential consis-
tency requires that memory operations from all processors appear to
execute one at a time and interleaved in an arbitrary manner, with the
memory operations within a process maintaining program order. The
sequential ordering of reads and writes, however, limits the performance in
a multiprocessor system. To overcome this, several relaxed memory con-
sistency models were proposed, such as processor consistency, (24) weak con-
sistency, (25) and release consistency. (23) In the (eager) release consistency
model, (23) a consistent view of memory is guaranteed only at (lock) release
or barrier synchronization points. In our work, we follow the lazy release
consistency protocol, (26) in which the consistent view is further delayed to
the subsequent lock acquire, and the consistent view is guaranteed only at
the acquiring process. The relaxed consistency models allow more
asynchrony to be exploited, resulting in lower execution time for the shared
memory application. However, programming under weaker consistency
models requires additional efforts from the programmer, as it is the
responsibility of the programmer to ensure the required memory access
ordering through appropriate use of synchronization primitives.

As mentioned earlier, many of the DVSMs detect accesses to shared
locations with the help of the VM support through SIGSEGV signal. On a
SIGSEGV signal, with the involvement of the OS kernel, the segv handler
installed in the DSM layer gains control over the execution. First, this segv
handler checks that the page fault was caused due to an access to a shared
location and not by a program error. Once it confirms that the signal was

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 81

indeed caused by a shared memory access, steps are initiated to make the
shared data consistent, consistent under the supported memory consistency
model.

Typically in a software DSM, the size of the shared data accessed/
fetched from a remote node, referred to as the granularity of sharing, is
equal to the size of a virtual page. This is mainly due to involvement of the
virtual memory management in maintaining consistency of shared data,
and partly due to the overhead involved in sending short messages in dis-
tributed memory systems. A side effect of the large granularity of sharing is
false sharing. False sharing occurs when two processors repeatedly access,
at least one of the accesses being a write, to different parts of a shared
page. This results in the page being sent back and forth between the two
processors. If the accesses by the two processes are to non-overlapping
parts of the page, the incurred cost of sending pages back-and-forth is an
overhead, as the data is not truly shared. In order to reduce the overheads
due to false sharing we follow a multiple writer protocol. (11) A multiple
writer protocol will allow more than one processor to write into the same
page and thus reduce false sharing. As per the lazy release multiple writer
protocol, the modifications to the pages have to be merged at a subsequent
synchronization point to obtain a consistent copy of the page. In order to
achieve this, a copy of the page, called twin, will be made when the page is
first written. At a synchronization point, the differences between the origi-
nal copy and the written copy is determined. This is called a diff. The diffs
by all the processors are collected at the synchronization point for making
the page consistent.

In our work, we assume that the shared memory programs are written
for a system supporting lazy release consistency model. Further the shared
programs are written under the SPMD (Single Program Multiple Data)
program model, and all shared variables have an explicit ‘‘shared’’ keyword
as prefix.

2.2. Pagefault Overhead Reduction

As mentioned earlier, many of the software DSMs detect accesses to
shared locations and maintain consistency through SIGSEGV signal. While
the steps taken by the segv handler themselves are unavoidable (in the
sense that they are needed for ensuring the consistency of data), the invol-
vement of the OS (kernel) and hence the associated overhead due to the
page fault is high and avoidable. Henceforth we refer to this overhead as
the page fault overhead. In this overhead we do not include the time taken
for the steps that make a shared page consistent. Instead of invoking the
consistency steps implicitly through the segv handler, one could insert

82 Manoj, Manjunath, and Govindarajan

Table I. Page Fault and Function Invocation Overheads

Page fault Empty function
Platform overhead call overhead

in m seconds
IBM SP Power2 Processor @ 77MHz 104.1 0.89
IBM Power3 Processor @ 375MHz 22.5 0.02
Sun UltraSparc II Processor @296 MHz 78.9 0.01
Sun UltraSparc II Processor @450 MHz 48.9 0.07

explicit function calls in the application program. The latter approach
would only incur the overhead of invoking a function call. We compared
the overheads due to page fault and function invocation on a number of
hardware platforms.5 Our results are summarized in Table I.

5 Since the experimental results presented in this paper is based on a somewhat older hardware
platform, we conducted this study on a number of modern workstations to see if there is a
significant difference between these two overheads in modern platforms as well.

Thus the page fault overhead due to the kernel involvement is at least
two orders of magnitude higher. This overhead can be avoided by careful
compile time analysis and code instrumentation. We explain this with the
help of an example.

Consider the example code given in Fig. 1. All the variables prefixed
by ‘‘shared_’’ are shared variables. The function call barrier() repre-
sents the call to the barrier synchronization routine. Assume at the start of
the code all shared pages are invalid at a particular node. For the code
shown in Fig. 1, a traditional DSM will cause a page fault in statement 3,
when each page of shared memory is accessed for the first time. The sub-
sequent access in statement 4 will not cause a page fault. However the write
access in statement 5, will again raise a SEGV to ensure the twin of the
page is created when an element in the shared page is written for the first
time. Finally, the subsequent read access do not cause any page fault.

Our compiler support essentially captures this idea by inserting
appropriate code before statements 3 and 5 and, thereby avoiding the pos-
sible page fault at these accesses. The inserted code is henceforth referred to
as instrumented code. The inserted API function make_page_read-
able() ensures that the page in which this shared address lies is made
consistent and read permission is set through the mprotect() call.
Similarly, the API function make_page_writable() ensures a consis-
tent page is both readable and writable, and the creation of the twin for the

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 83

Fig. 1. Motivating example.

page. The resulting code is shown in Fig. 1(b). In comparison to the code
shown in Fig. 1(a), our approach does not incur any page fault overhead.
However the cost of checking whether the page is consistent is incurred for
each array access. In contrast, in the conventional software DSM systems,
once a page is made consistent, further accesses to the same page do not
incur any overhead until the page is invalidated at a synchronization
point.

What is the granularity of sharing that is to be supported in our
approach? While supporting granularity at shared variable (or object) level
(e.g., as done in Ref. 27) makes compile-time analysis easier, it is wasteful
in terms of both communication bandwidth and execution time, to make a
full shared object consistent, especially if the object is a large area spanning
multiple pages. Further, object level granularity would aggravate false
sharing problem for large objects. On the other hand, supporting a lower
level granularity less than a pagesize, e.g., a size of 64 bytes as in Ref. 15, in
our approach would require exact compiler analysis for ensuring consis-
tency of shared data. As will be discussed later, in the absence of exact
compile-time analysis, instrumenting an application program conservati-
vely would increase the overhead due to the instrumentation. Hence we
support pagesize granularity in our approach and follow an optimistic
approach in our analysis and code instrumentation. This implies that at
places where the shared data can potentially be consistent, our approach
optimistically avoids instrumentation. Whenever the optimistic assumption

84 Manoj, Manjunath, and Govindarajan

fails and the accessed page is inconsistent, we rely on the underlying virtual
memory support to make the data consistent.

Next we address the issue of the overhead incurred by the inserted
code. It should be noted that the instrumented code by itself is an over-
head. While the efficiency of inserted code can be ensured and improved by
careful hand-tuning of the code, the overhead incurred due to frequent
execution of the instrumented code can significantly degrade the perfor-
mance. This is best explained with the help of our motivating example
shown in Fig. 1.

From Fig. 1(b), it can be seen that the overhead of the instrumented
code is incurred at every iteration of the for loop, although only once in a
number of iterations it is required for ensuring consistency. Assuming a
pagesize of 4 Kbytes, and the size of each of array element as 4 bytes, the
consistency check is required roughly once in 1024 iterations. Thus
the frequent invocation of the consistency check function may result in the
instrumented version performing worse than the VM based systems. In
order to reduce this overhead, accesses to shared data are analyzed.
Determining which pages of the shared array will be accessed before the
barrier at statement 8, and inserting a single function call to get those pages
consistent before entering the for loop would reduce the overhead
drastically.

Further, following an optimistic approach, we combine multiple con-
sistency function calls for the same variable in order to reduce the overhead
incurred at runtime due to the consistency function calls. Various standard
compile time optimizations such as inlining and constant propagation
were made use of to accomplish the above goal. It should be noted here
that our instrumentation as well as the optimizations discussed in
Section 4, including the aggressive optimistic discard optimization, always
ensure the correctness of the application program under the given memory
consistency model. That is, any access to shared memory is ensured to
return a consistent data, under the lazy release memory consistency
model, (26) either by our instrumentation or through the underlying virtual
memory mechanisms.

Last, we briefly explain how our approach works in the presence
of lock acquire and release synchronization primitives. In the example
shown in Fig. 1, if the first barrier (in line (1)) is replaced by a lock
acquire (l) and the second barrier (in line (8)) is replaced by a
lock release (l), then the consistency check calls inserted in the code
would be exactly same as the ones shown in Fig. 1(b). That is, our analysis
assumes that at the lock acquire (l) synchronization primitive, all
shared pages could be modified by other processes and hence their consis-
tency need to be checked. Our analysis does not consider or determine

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 85

which shared pages are modified by other processes before the synchroni-
zation step.6 Last, for the release consistency model, (6, 23) a memory read

6 Such an analysis, in the first place, could be quite involved. Second, in lazy release consis-
tency model, the analysis needs to consider only the pages modified by the process releasing
the lock. However, it is not possible to determine this exactly at compile time.

following a lock release (l) does not introduce any consistency check,
if the shared page has been accessed at least once since the last acquire
or barrier. For a memory write access following the lock release (l),
a consistency check is introduced only if the diff creation is eager.

2.3. Reducing Holdup Time

The DVSM layer relies on the underlying message passing system for
communication between nodes, and hence incurs a significant amount of
time in communication, roughly 30 to 60% of the total execution time of
the application. Although this varies considerably from application to
application, it is still a significant portion of the total execution time. In a
software DSM, many consistency related messages such as getting a page
or diff from a remote node, or synchronization related communication for
a barrier or lock acquire, wait for a response to arrive from a remote node.
All these messages will arrive at the remote process asynchronously. Due to
the overheads involved in the interrupt mechanism,7 many software DSMs

7 The interrupt overhead time, defined as the average time to process an interrupt with an
empty interrupt service routine, is roughly 20 microseconds for the hardware platform used
in this paper. On faster (more recent) workstations, the interrupt overhead is lower (5 to 10
microseconds) but is still in the order of a few microseconds.

use polling for handling these messages. The polling-based approach is very
efficient especially when a processor sends a request, such as a request for a
shared page or lock acquire, and waits for its response. However, in receiv-
ing asynchronous message, the response to the requesting processor is
delayed if the processor is busy doing computation and deferring polling.
We illustrate the scenario with the help of an example.

Consider the following scenario shown in Fig. 2. The application
program is running in two processors, P0 and P1. Assume that an access to
a shared location in P0 caused the DSM layer to get control and initiate
the steps for making the page consistent. At time t0 processor P0 sends a
message m to P1 for getting the modifications of this page. P0 may conti-
nue to do certain computation after t0. This computation may belong either
to the application (if the DSM supports multithreading (28)) or to the DSM
layer. Let this computation overlap with communication up to time t2 and
let process P0 start waiting from time t2. At time t1 the message reaches the

86 Manoj, Manjunath, and Govindarajan

Fig. 2. Request-reply scenario in our DSM.

receiver and is held in a buffer until the receiver polls for messages at t3.
P1 polls for the message only when the DSM layer in P1 gets control. Let
P1 poll at time t3.8 To process the message, P1 initiates the related compu-

8 If there are other messages that have arrived in P1 before m, then there is also a waiting time
in P1 involved before P1 can process the message. We can associate this with the request
processing time.

tation, if any, and sends the reply to P0 at t4. At t5, the reply reaches P0
and is handled immediately, as P0 will be continuously polling for this
reply.

The time from t0 to t5 is divided into different groups as shown in
Fig. 2. Of these, the send and receive latencies (time delays (t1 − t0) and
(t5 − t4) respectively) depend on the communication layer and are not in the
direct control of the application program. Also, the request processing time,

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 87

(t4 − t3) at P1 depends on the type of the request and the related consis-
tency actions and is not in the control of user application. This leaves us
with the holdup delay (t3 − t1) of which (t2 − t1) is overlapped by user/DSM
computation at P0. The remaining time (t3 − t2) is called the holdup delay.
Our method targets the reduction of this holdup delay through careful
insertion of polling functions in the application code.

To summarize, in this paper we explore a number of compile time
techniques to reduce the overheads incurred by a software DSM. We have
implemented CAS-DSM, a Compiler Assisted Software DSM and
evaluated its performance. The following sections deal with the details of
CAS-DSM, the compiler optimizations and performance evaluation.

3. CAS-DSM: BASE FRAMEWORK

An overview of the implementation of CAS-DSM is shown in Fig. 3.
We perform a source-to-source translation of application programs. This
transformation is based on analyzing the application program and instru-
menting the application with code that ensures consistency of shared data.
Consistency is achieved through a set of calls to API functions in the DSM
layer. For our work, we chose CVM, a public domain DSM implementa-
tion, (14) as our base software DSM. CVM is an efficient implementation
and supports multiple memory consistency models, which makes CVM a
good choice for experimental work. One other reason for using CVM is
that it can be easily ported to IBM-SP, our experimental platform. Last,
CVM has also been used by a few other work (refer, e.g., Refs. 29, 30,
and 31). In our work, we modified CVM to provide the necessary API for
our implementation. For performing compile time analysis and instrumen-
tation of code, we make use of the SUIF compiler framework. (32) The
instrumented code is compiled and linked with the modified DSM
libraries.

The executable is run on IBM-SP2, (33) a distributed memory machine.
The SP2 system consists of a number of POWER2 Architecture RISC
System/6000 processor nodes each with its own main memory and its own
copy of the AIX operating system. The SP2 system used in our experiments
consists of sixteen IBM RS/6000 591 wide nodes, each having 256 MB
main memory, running at a clock speed of 77 MHz. The nodes are inter-
connected by a high-performance, multistage, packet-switched network for
interprocessor communication. (34) The high-performance switch, TB2, is a
low-latency, high-bandwidth switching network. We have used the User
Space path for communication which gives a two-way latency of 75 micro-
seconds and a bandwidth of 40 MB/seconds.

88 Manoj, Manjunath, and Govindarajan

Fig. 3. Overview of our work.

3.1. The Compiler Framework: SUIF

SUIF (Stanford University Intermediate Format) compiler system
is a platform for research on compiler-techniques for high-performance
machines. (35) SUIF is a research compiler used for experimenting and
developing new compiler algorithms. The compiler is structured as a small
kernel plus a toolkit consisting of various compilation analysis and optimi-
zations built using the kernel. The SUIF kernel provides an object-oriented
implementation of the SUIF intermediate format. The intermediate format
is a mixed-level program representation. Besides the low-level constructs
such as SUIF instructions, this representation includes three high-level
constructs: loops, conditional statements and array access operations. The
high level compiler passes typically represent a procedure as a list of
language-independent abstract syntax trees (ASTs). An AST includes block-
structured constructs such as loops and conditionals. At the leaves of an
AST are expression tress, composed of SUIF instructions.

The SUIF system consists of a set of compiler passes implemented
as separate programs. Each pass typically performs a single analysis or

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 89

transformation and then writes the results out to a file. New passes can be
inserted freely at any point in a compilation. Different compiler passes
interact with one another either by updating the SUIF representation
directly or by adding annotations to the SUIF program. Each kind of
annotation is defined with a particular structure so that definitions of the
annotations serve as definitions of the interface between passes. We have
made use of the following passes for our work:

• scc is the driver for the SUIF ANSI C and FORTRAN 77
compiler.

• porky makes various transformations to the SUIF code.
• s2c reads the specified SUIF file and prints out its translation into

the Standard C language.

3.2. The DSM System: CVM

CVM (14) is a software DSM that supports multiple coherence proto-
cols and consistency models. CVM is written entirely as a user-level library
and runs on most UNIX-like systems. CVM provides a multiple-writer
protocol to reduce false sharing. CVM’s primary protocol implements a
multiple-writer version of lazy release consistency model. The UNIX
mprotect system call is made use of to control access to shared pages.
In particular, the inconsistent shared pages are read or write protected.
An attempt to perform an access, to a location in these shared pages
generates a SIGSEGV signal. The SIGSEGV signal handler, initiates the
steps necessary to make the page adhere to the lazy release multiple writer
protocol.

3.3. Basic Implementation

In our work, we start from a basic implementation. We used the high-
level intermediate representation, called high-SUIF, and our analysis tra-
verse through this abstract syntax tree (AST) representation to identify and
mark shared accesses. Using these markings (or annotations), our compiler
pass inserts the consistency function before every shared memory access in
the AST. Finally the annotated AST is converted to C using s2c.

Our analysis is restricted to only array and scalar references in for
loops. It does not deal with dynamic structures or references in while or
do loops. In the base implementation, the consistency check is added
before the first shared reference (of a specific type – read or write) after a
synchronization point, exactly as shown in Fig. 1. Further, our analysis is
between two successive synchronization points in the code and is limited to

90 Manoj, Manjunath, and Govindarajan

accesses within a process. It is possible to extend our analysis to consider
accesses made by different processes in between two barrier points, and
hence obtain information on the pages that are (likely to be) modified by
other processes, as done in the work of Lu et al. (36) However, we do not
attempt this here.

3.4. Performance

We evaluated performance of the basic implementation. We call this
implementation CAS-Basic. We used some of the Splash/Splash-2 bench-
mark programs. (22, 37, 38) The benchmarks used are listed in Table II with a
brief description for each. All the benchmarks were run on an IBM SP2 (33)

system using User Space Communication mode. The benchmarks were run
for different configurations ranging from 1 to 8 processors.

We observed that the performance of the applications on CAS-Basic is
significantly poorer than in the original CVM. This is because, while the
overhead due to page fault is almost eliminated in CAS-Basic, the over-
heads due to the instrumented code results in a significant slowdown,
which more than offsets the gain achieved by eliminating page fault
overhead.

For all the benchmarks we measured, less than one percent of the
CVM_Basic_consistency calls actually translated into consistency related
calls (cvm_make_page_consistent()). This implies that on the
remaining calls, the instrumented function found the page to be already
consistent. In these cases the checking for consistency merely causes heavy
run-time overheads. The original virtual memory based approach does not

Table II. Benchmarks

Name Brief description Input Size

SOR Models natural phenomena like determining 2000 × 500
the temperature gradients over a square area. for 10 K iterations

FFT 3-Dimensional Fast Fourier Transform which 26 × 26 × 24

numerically solves partial differential equations. integers

LU Factors a dense matrix as the product of upper 1024 × 1024 matrix
triangular and lower triangular matrices. block size=16

TOMCATV Solves tridiagonal system of equations by 257 × 257
computing residuals using 2-dimensional matrices. for 1000 iterations

RADIX Implements an integer sort by generating 2 × 1024 × 1024
histograms in an iterative method. radix=1024

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 91

incur any overhead for this, since the SEGV signal is generated only if the
page does not have the desired access permissions. Thus our experimental
results clearly indicate that the basic implementation is highly inadequate
and results in a significant slowdown. Aggressive compiler techniques are
needed to reduce this overhead. In the following section, we discuss various
such optimizations.

4. OPTIMIZATIONS

In this section we discuss various compile time optimizations which
are motivated by the significant overhead incurred by the consistency
checking code in our basic implementation. Our analysis targets shared
memory array accesses, within for loops. We restrict our analysis to array
accesses with linear indices—linear with respect to the indices of the for
loop that contain this access. Also, using porky we convert as many
while loops as possible to appropriate for loops. This increases the scope
of our analysis. For ease of analysis, all for loops are normalized using
porky. A normalized for loop is the one in which the lower bound is zero,
step size is one and condition is a ‘‘less than or equal to’’ test. In the
following sub sections we describe the various optimizations and their
implementation.

4.1. Aggregation and Hoisting

The idea behind hoisting the instrumented code is best explained with
an example. Consider the program segment shown in Fig. 4(a). Statements
are labeled for easy reference in the discussion. The instrumented version is
shown in Fig. 4(b), with the inserted code given in italics. The variable
shared_a and shared_b are integer arrays. Consider the first access to
shared_a inside the for loop. We see that the array is accessed from
location 0 to N-1, consecutively. So, instead of instrumenting code once
for every shared access, we can aggregate the instrumentation for all the
iterations of a shared access and hoist this aggregate outside the for loop.
This will cause the instrumented code to be executed less frequently,
thereby reducing the associated overheads substantially. The pseudo code
for this function, CAS_AgHoist is shown in Fig. 5. Henceforth, this opti-
mization will be referred to as AgHoist.

The input parameters to the instrumented function are the base
address of the concerned array, the size of each array element, the bound-
ary indices of the array access, and the type of access. First, the
CAS_AgHoist function will determine the addresses of the start and the
end elements accessed as shown in Fig. 5. Next, the page numbers of the

92 Manoj, Manjunath, and Govindarajan

Fig. 4. Original code and instrumented code after aggregation and hoisting.

shared page in which these addresses fall are calculated. Finally, the pages
are checked for the corresponding consistency, and are made read/write
accessible through cvm_make_page_consistent.

As discussed above, AgHoist instruments the consistency code and
hoists it above the for loop where shared access occurs. As a logical
extension to this, the aggregation and hoisting can be done above the outer

Fig. 5. Pseudo code for CAS_AgHoist.

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 93

for loops also until the next synchronization primitive is encountered. The
maximum hoisting and aggregation phase is henceforth referred to as
MaxAgHoist phase.

It should be noted here that the cvm_make_page_consistent call
is blocking; i.e., the process waits for responses to the diff requests which
are received through polling. Once the process receives the diffs, it
applies them and to make the page consistent. Also, the calls to make pages
consistent in CAS_AgHoist are done one at a time as shown in Fig. 5.
Further discussion on this is deferred to the following subsection.

4.2. Discarding

Discarding some of the instrumentation code is another technique
used to improve the performance. The idea behind discarding is to group
accesses due to different statements in the source program and insert only a
single CAS_AgHoist call. The intuition behind this optimization is that the
different shared accesses inside a loop have a large overlapping section
between them. For example in Fig. 4 consider the accesses to
shared_a[i] and shared_a[i+1] in statements S1 and S3 respec-
tively. Except for the extreme elements, i.e., shared_a[0] and
shared_a[N] all the other elements in between these two are touched in
both the accesses. Thus even if we discard one of the two calls to
CAS_AgHoist it may still be possible to ensure consistency of the ele-
ments accessed. Discarding is done after the AgHoist pass. Henceforth the
term AgDiscard will also refer to discarding after AgHoist. This is because
the non-overlapping accesses are also likely to fall in the same virtual page
as those of overlapping pages. However if they do not, then the underlying
VM based mechanism ensures consistency. Thus, discarding one of the
AgHoist calls results in reducing the overhead due to the call.

An important issue in discarding is, given a number of choices, what
are the guidelines to be followed to select the CAS_AgHoist calls to be
discarded? One of the guidelines is the type of the access. If we are given a
choice between two AgHoist calls, one for read and another for write
access to shared data, then the former is discarded. This because the con-
sistency related operations done for a write operations form a superset of
those done for a read. Another criterion which influences this choice is the
amount of information available about an access. For example, assume
that for one access we know the stride is less than a page size and in other
we do not know the stride at all. In this case, we instrument code for which
the stride is known at compile time while discarding the other. In such a
case, by instrumenting the code for an access for which the stride is

94 Manoj, Manjunath, and Govindarajan

known, the application will not incur the additional overhead of stride cal-
culation during runtime.

Finally, it should be noted that the technique of discarding is based on
heuristic and not on exact analysis. This is because exact analysis is expen-
sive, resulting in run-time overhead, and doesn’t give any significant
advantage compared to our heuristic approach. If discarding is performed
after MaxAgHoist, we refer to it as MaxAgDiscard.

As shown in Fig. 5, the calls to make pages consistent in
CAS_AgHoist are done one at a time. However it is possible to aggregate
this which amounts to aggregating the diff requests sent for various
pages to different processes. We have implemented a new function in
CVM, cvm_make_all_pages_ consistent, which sends a single
message to each relevant process requesting the diffs for all the pages
that need to be made consistent. Each process, in response, sends a single
aggregated message, of the diffs for the various pages. It should however
be noted here that the number of pages which are made consistent in a
single cvm_make_all_pages_consistent call varies from applica-
tion to application. We study the impact of message aggregation by apply-
ing this optimization with MaxAgDisard. We refer to the resulting
implementation as MaxAgDiscard+MsgAggr. Thus when we refer to
MaxAgHoist and MaxAgDiscard optimizations, messages are not aggregated
in these implementations.

4.3. Inlining and Constant Propagation

It should be noted that our analysis is intra-procedural. Performing
inter-procedural analysis will improve the scope for MaxAgHoist and
MaxAgDiscard as well as enable better compile time analysis such as iden-
tifying a constant in the function body which was passed as a parameter.
We motivate the discussion with an example.

Consider the function fn shown in Fig. 6(a). This function is accessing
a shared variable inside a loop. Also, it can be seen that the function is
called within a loop from another function main. If we instrument the
code using the optimizations discussed so far, the resulting code is shown in
Fig. 6(b). Since the MaxAgHoist and MaxAgDiscard are limited to func-
tion boundaries, only single level aggregation is achieved in this code. As a
result, the consistency function will be executed 101 times, once for every
loop within the function and once in main. But if we inline the function
in main, as shown in Fig. 7(a), and then with MaxAgHoist, we get the
instrumented code as shown in Fig. 7(b). The consistency code will
get executed just once in this case, leading to a substantial reduction in
the overhead. Further, constant propagation of the inlined code leads to

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 95

Fig. 6. Original version.

determining exact end points of the shared accesses at compile time itself.
Hence the overhead in calculating some of the runtime boundaries is also
avoided. Such a code segment occurs in one of our benchmarks, namely
LU decomposition. This motivates the need for inter-procedural analysis.
Since our compiler framework does not support such an analysis, we
manually inline and perform constant propagation to enhance the scope of

Fig. 7. Inlined version.

96 Manoj, Manjunath, and Govindarajan

MaxAgHoist and MaxAgDiscard. Once the function body is manually
inlined, our compiler framework is able to perform constant propagation,
and the instrumentation along with the optimizations. We observe signifi-
cant improvement in performance in the case of LU due to manual inlining
and constant propagation. Automating selective function inlining requires
inter-procedural analysis in our SUIF framework. This is left for future
work. Once inter-procedural analysis is included in the framework, it
enables other compiler optimizations as well which could be beneficially
applied in our framework.

4.4. Reducing Holdup Delays

Next we propose a method to reduce the holdup time. Referring
to Fig. 2, it can be seen that the holdup time arises essentially due
to the asynchronous nature of the message arriving in P1. In the CVM
implementation, the polling for the message starts only when the DSM
layer takes control (of execution). To reduce the holdup time, we must
invoke the polling actions as often as needed. CVM provides an API
function cvm_probe. In our approach, we instrument explicit polling
calls at the application source code itself to moderately increase the
frequency of polling. Since most of the shared accesses in our programs
occur within for loops, we decided to introduce calls to polling function
above the for loops. Calling the cvm_probe too often would increase the
overhead, and hence, we combined the optimizations discussed in the pre-
vious sections with the polling function and instrumented both of them
together.

Multithreading can be used to overlap computation with communica-
tion in order to the mask the communication overhead in processor P0.
Essentially, multithreading masks the waiting time seen at the sender’s side
(P0). Whereas our approach, reduces the holdup time at the receiver’s end.
It is possible that when there is sufficient computation available for
overlapping, i.e., sufficient enough to cover the holdup time, multithread-
ing will perform better than our method. On the other hand, if the compu-
tation overlap is less, then multithreading can be used to complement our
method. As mentioned in Ref. 28, multithreading comes with its own
overheads such as thread switch cost, cache pollution, and local contention
of resources between threads in the same node. In contrast, the overhead
associated with our method is the overhead of polling and thus the total
overhead depends on the total number of times the polling function is
called. By performing more compile time analysis, it is possible to reduce
this overhead in our method.

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 97

5. IMPLEMENTATION

In this section, we discuss the implementation of the above optimiza-
tions in the compiler framework.

5.1. Compiler Analysis and Optimization Passes

The source code of the application is first converted into the SUIF
intermediate format. The analysis and instrumentation parts, henceforth
referred to as aggregation phase, has different passes associated with it. The
details of different passes are shown in Fig. 8. Communication of informa-
tion between successive passes in SUIF is through annotations in the
intermediate format.

Pass 1, the shared array access identification pass, identifies the acces-
ses to shared arrays, using the keyword shared. The type of access is also
identified and the information is annotated on the array access instructions.
Pass 2 identifies the innermost for loop. Simultaneously, the code is tra-
versed checking for the presence or absence of synchronization constructs.

During Pass 3, variable write detection and linear access identification
pass, for every for loop, which does not contain any synchronization
construct, the list of all variables (shared as well as non-shared) which are
written in that for loop are identified and pointers to each of these are
stored in the annotations of the mrk node, a structure in SUIF where
annotations can be stored. This linear access information is used in the next
pass to determine whether or not aggregate analysis can be performed.
Also, for all the shared array accesses within a for loop, checks are done
to see whether the array indices are linear with respect to the for loop
index. This information is annotated at the respective array instructions.
Also, the pointers to the linear array accesses are kept at the mrk node so
that the analysis can be made faster in the subsequent passes.

Pass 4 is the dependency checking pass. In this pass, the array indices
are separated out and for each variable in the index, a check is done to
determine whether that variable is being written inside the body of the for
loop. This is done by looking at the variable write list generated in the
previous pass. It should be noted that for non-linear array indices, or for
an array access whose index variables are written within a loop, no consis-
tency check instrumentation is done and we rely on the fall back option of
VM mechanism. Address formation pass, Pass 5, generates some of the
parameters to the CAS_AgHoist function call. This pass will find the start
and end elements in the array that are accessed in the for loop.

The next pass (Pass 6) uses the annotations generated during the pre-
vious passes and identifies the API function to be inserted. If discarding is

98 Manoj, Manjunath, and Govindarajan

Identify shared arrays

Determine access type

Annotate shared arrays

Determine innermost for loop

Determine synchronization points inside for loop

Annotate the for loops

Determine variables written inside for loop

Identify arrays with linear indices

Annotate for loops with pointers to array access

Seperate indices from array access

Check dependencies for variables in indices

Annotate the for loop

Compute start and end addresses

Find element size

Annotate the array indices

Identify functions to be instrumented

Create the cal instruction

Annotate the for loop

Instrument the function

Pass 2

Synchronization construct

identification pass

Pass 3

Write

detection pass

Pass 1

Shared access

identification pass

Pass 4

Dependency

check pass

Pass 5

Address formation

pass

Pass 6

Function identification

and formation pass

Pass 7

Instrumentation

pass

.

Fig. 8. Compiler passes.

done, then the function call to be discarded is decided based on the pre-
viously discussed criteria and marked as discarded. This selection is based
on the amount of information available about the accesses as well as the
stride of the access. The MaxAgHoist phase is implemented within the
aggregate phase, but before the discarding pass. The MaxAgHoist is done
iteratively, by calling this pass repeatedly for each level of for. Each pass
does the aggregation and hoisting for the for loop at a particular level.

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 99

The AgDiscard, MaxAgHoist, and MaxAgDiscard passes (not explicitly
shown in Fig. 8) are implemented one after another as shown in Fig. 9. The
final pass (Pass 7) does the actual instrumentation of the code. In actual
implementation, only very few passes exist since multiple passes are
combined into one. Only for the sake of presentation we have organized
them as so many different passes.

Currently, our compiler is not performing inter-procedural analysis.
Hence, in order to study the performance improvements due to inter-pro-
cedural analysis, we inlined the functions manually and applied the
MaxAgHoist and MaxAgDiscard optimizations. Also, we performed con-
stant propagation, so that more information is made available for the
compile time analysis. Inlining is useful if a particular function is called
inside a loop and also if the function is accessing shared variables.

As discussed before, holdup time reduction is achieved by instrument-
ing explicit polling functions in the application programs. The polling
function will check whether any messages are waiting and passed on to the
message handler. The polling function returns after servicing all outstand-
ing requests. The implementation of this optimization is preliminary, since
we perform only very limited analysis for the instrumentation with polling
function. The polling function is piggy-backed on the existing optimiza-
tions.

5.2. The global picture

In this section we discuss the order in which the optimization are
applied to the application source code. All the passes are shown in the
Fig. 9. In this figure, rectangular boxes with rounded corners represent
original or translated code while other rectangular boxes represent com-
piler phases. The name of the compiler phase is shown in italicized font
adjacent to the rectangular box, while the text within the rectangular box
indicates the action performed by the phase.

The source code of the application program is run through the C
preprocessor cpp. In case, inlining is done, it should be done before
preprocessing. As mentioned before, inlining is done manually in the
current implementation. After preprocessing, the source code is converted
to the SUIF intermediate code using snoot. Next a series of optimizations
such as dismantling the if loops, forward propagation, dead code elimina-
tion and find-fors are done. The find-for phase will build for loops out of
loop nodes such as while · · · do for which a suitable index variable and
bounds can be found. Since our analysis is based on for loops, this phase
increases the scope of our optimization. Constant propagation is optionally
invoked by porky.

100 Manoj, Manjunath, and Govindarajan

Fig. 9. The global picture.

The porky passes are followed by our optimization passes. It should
be noted that our passes operate for a given procedure.

Our optimization passes AgHoist, AgDiscard, MaxAgHoist,
MaxAgDiscard are applied in the order shown in Fig. 9. Then the program
is instrumented with the API functions. The instrumented code is then
translated back to C code, using s2c. The modified source code thus
obtained is compiled using the gcc compiler in IBM-SP2, and linked with
the enhanced DSM libraries.

5.3. Enhancements to CVM

In this section we discuss the implementation of the API. We have
provided different API functions to be inserted in the application depend-
ing upon the amount of information available. The different API functions
are summarized in Table III. The CAS_Basic_consistency is used in
CAS-Basic implementation. With the optimizations discussed in this
section, the CAS_AgHoist_const function is typically used in our
implementation. This function is used when the index expressions of the
start and end elements of the array are compile time constants and the
stride of access is less than the pagesize. Two variants of this function,
CAS_AgHoist_expr and CAS_AgHoist_step, are implemented and
used respectively when the index expression do not evaluate to constants
and the step size is greater than the pagesize. In these cases, the evaluation

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 101

Table III. Instrumentation API in CAS-DSM

Function name Parameters Brief description

CAS_Basic_consistency addr, type Makes a single page which contains addr
consistent

CAS_AgHoist_const base, type Makes multiple pages pg_start to
pg_start,pg_end pg_end consistent

CAS_AgHoist_expr base,type similar to CAS_AgHoist_const except
start, end that start and end are address

expressions evaluated at runtime

CAS_AgHoist_step base, type similar to CAS_AgHoist_expr except that
start, end, the stride is greater than pagesize

stride stride is evaluated at runtime

of index expressions takes place at run time and hence incur additional
overhead. The assembly code of all four functions are hand-tuned to
minimize the overhead incurred by these calls. Hand-tuning the assembly
code has resulted in reducing 1 or 2 assembly instructions in the instru-
mentation functions.

6. PERFORMANCE EVALUATION OF CAS-DSM

In this section, we report the performance of CAS-DSM. We applied
the optimizations in the source to source translation of benchmarks. We
have compared the performance of CAS-DSM (with optimizations imple-
mented) with that of original CVM implementation. Both were imple-
mented on IBM-SP2. Although the platform used in our experimental
work is a somewhat slower/older machine, the focus of our experimental
results is on the relative advantages/benefits of the different optimizations
discussed in Section 4. We use the metric Relative Speedup for performance
comparisons, which is defined as

Relative Speedup=
CVM Exec. Time

CAS-DSM Exec. Time
.

We evaluate the performance improvement due to individual optimizations
as well as their collective impact9 Apart from the speedup we are also

9 The execution times reported in the paper are obtained by running each experiment a
number of times (typically 3, and sometimes 5) and taking the average of these runs.

interested in the number of segvs eliminated. Finally, we are also interested

102 Manoj, Manjunath, and Govindarajan

in how many CAS_AgHoist calls actually translated into consistency
related steps. Such calls are referred to as useful calls. Other calls corre-
spond to the overhead incurred by CAS-DSM. We measure the percentage
of useful calls to the total calls in CAS-DSM. In the subsequent sections,
we discuss the effectiveness of various optimizations based on these three
metrics.

6.1. Performance of Aggregation, Hoisting and Discarding

The relative speedups achieved for different optimizations are shown
in Table IV. For comparison purposes, we also report the execution time
of all applications under different optimizations in Table V. Since our
focus is to evaluate how the different optimizations (AgHoist, AgDiscard,
MaxAgHoist, MaxAgDiscard, and MaxAgDiscard+MsgAggr) improve
the performance of the application, we do not report the absolute speedup
with increasing number of processors. It can be noted that some of these
applications do have a poor speedup (with number of processors) even on
the original CVM.

From Table IV, we can observe that the CAS-DSM approach with
MaxAgHoist, MaxAgDiscard, and MaxAgDiscard+MsgAggr is able to
achieve a small performance improvement over CVM. The performance
improvement achieved by our approach is governed by three factors: (i) the
reduction in number of segmentation violations, (ii) overhead incurred by
the consistency check, measured using the percentage of useful calls, and
(iii) reduction in message overhead due to fetching of pages in an
aggregated fashion. The percentage reduction in the number of segmenta-
tion violations due to the instrumented code is shown in Table VI for 4 and
8 processor runs. Table VII reports the number of consistency check calls
and the percentage of useful calls, those which necessitate a consistency
action, for the 8 processor case. In the following paragraphs, we discuss the
results of each benchmark and the reasons for performance improvement
or degradation using these parameters for the 8 processor case.

In SOR, a relative speedup of upto 1.08 is achieved with AgDiscard on
a 8 processor system. Also, we are able to get almost 100% reduction in the
segmentation violations. However, we can see that the consistency check
overhead is quite high as only less than 1% of the total checks are useful.
One reason for the low percentage of useful calls is that, in introducing the
consistency checks for a memory access following a synchronization primi-
tive, our approach does not consider/analyze whether or not the shared
data is modified before the synchronization. It conservatively assumes all
shared data have been modified. Further, the absence of runtime informa-
tion also causes a significant number of useless consistency check calls.

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 103

Table IV. Relative Speedups on CAS-DSM under Various Optimizations

No. of
procs. AgHoist AgDiscard MaxAgHoist MaxAgDiscard MaxAgDiscard+MsgAggr

Relative Speedup (SOR)

1 1.03 1.04 1.03 1.04 1.18
2 1.05 1.06 1.05 1.06 1.20
4 1.05 1.06 1.05 1.06 1.20
8 1.07 1.08 1.07 1.08 1.18

Relative Speedup (FFT)

1 0.92 0.96 0.99 0.99 1.01
2 0.97 1.02 1.04 1.04 1.04
4 0.94 1.01 1.00 1.04 1.04
8 0.99 1.03 1.05 1.04 1.06

Relative Speedup (LU)

1 0.31 0.31 0.31 0.31 0.31
2 0.38 0.38 0.39 0.39 0.39
4 0.45 0.45 0.46 0.46 0.46
8 0.55 0.55 0.56 0.55 0.55

Relative Speedup (TOMCATV)

1 0.88 0.95 0.94 0.95 0.98
2 0.91 0.98 0.97 0.98 0.98
4 1.08 1.15 1.10 1.22 1.23
8 1.41 1.46 1.45 1.47 1.47

Relative Speedup (RADIX)

1 1.01 1.01 1.01 1.01 1.01
2 1.02 1.02 1.02 1.02 1.08
4 1.01 1.01 1.01 1.01 1.03
8 1.01 1.02 1.01 1.02 1.04

In can be observed that discarding does not significantly reduce the number
of SEGVs eliminated (refer to Table VI), yet improves the percentage of
useful calls. This in turn reduces the consistency check overhead and
improves the performance at least marginally. It should be noted that in
SOR, maximum aggregation is the same as AgHoist and hence the columns
MaxAgHoist and MaxAgDiscard represents the same figures as AgHoist
and AgDiscard. The maximum improvement in performance is seen in the
case of MaxAgDiscard+MsgAggr. Fetching pages in an aggregated
fashion as against fetching them sequentially at a consistency check
decreases the message overhead. This results in a speed-up of upto 1.20.

104 Manoj, Manjunath, and Govindarajan

Table V. Execution Time on CAS-DSM under Various Optimizations

CAS-DSM

No. of Original MaxAgDiscard+
procs. CVM AgHoist AgDiscard MaxAgHoist MaxAgDiscard MsgAggr

Execution Time in Seconds (SOR)

1 2974.31 2901.11 2865.01 2901.11 2865.01 2520.60
2 3086.82 2958.05 2921.07 2958.05 2921.07 2572.35
4 1607.89 1534.69 1516.18 1534.69 1516.18 1339.90
8 864.53 809.36 803.65 809.36 803.65 732.50

Execution Time in Seconds (FFT)

1 253.72 275.37 264.12 257.07 256.39 251.20
2 256.92 264.38 252.73 246.07 248.11 247.04
4 177.69 188.60 175.76 177.67 171.60 170.86
8 137.25 139.29 133.68 132.15 131.53 129.48

Execution Time in Seconds (LU)

1 18.13 59.25 59.23 57.72 57.89 57.89
2 24.61 64.00 63.94 62.47 62.69 62.69
4 17.73 39.28 39.31 38.36 38.78 38.78
8 13.58 24.90 24.58 24.28 24.81 24.81

Execution Time in Seconds (TOMCATV)

1 48.49 55.14 50.89 51.87 51.21 49.47
2 53.05 58.14 54.08 54.96 54.32 54.13
4 39.87 37.01 34.79 36.39 32.66 32.41
8 34.20 24.28 23.33 23.58 23.20 23.20

Execution Time in Seconds (RADIX)

1 12.18 12.03 12.07 12.03 12.07 12.06
2 19.83 19.38 19.39 19.38 19.39 19.39
4 13.68 13.54 13.49 13.54 13.49 13.49
8 10.56 10.40 10.38 10.40 10.38 10.38

FFT, on the other hand suffers a small performance degradation with
only AgHoist optimization. The relative speedup ranges from 0.92 to 0.99.
We can observe that the percentage reduction in segmentation violations, is
only between 38 to 54%. The reason for the large number of segmentation
violations, even in the instrumented case, is due to the fact that array
accesses in FFT are with non-linear indices. Since we are not analyzing non-
linear array indices, but chose the fall-back VM support for the same, these

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 105

Table VI. Percentage Segmentation Violations Eliminated

Benchmark
No. of

Optimizations procs. SOR FFT LU TOMCATV RADIX

AgHoist 4 99.99% 54.42% 80.00% 47.24% 9.46%
AgHoist 8 99.99% 38.60% 85.75% 53.27% 8.76%
AgDiscard 4 99.99% 53.91% 80.00% 47.16% 9.46%
AgDiscard 8 99.99% 38.46% 85.75% 53.27% 8.41%

accesses result in segmentation violations. Further, in FFT, the percentage
of useful calls is very low (0.1%), leading to high consistency check over-
head. With AgDiscard optimization, we get a relative speedup of 1.03 with
respect to the original. It can be seen that the percentage of useful calls
have been increased by a factor of 10 when compared to AgHoist. This
substantial reduction in the overhead has caused the performance gain.
Also FFT achieved a relative speedup of 1.04 to 1.05 with MaxAgHoist
and MaxAgDiscard.

Table VII. Statistics on Consistency Checks and Useful Calls

Optimization
Performance

Benchmark metric AgHoist AgDiscard MaxAgHoist MaxAgDiscard

SOR # Consistency 200.000 M 160.000 M 200.000 M 160.000 M
checks

% Useful calls 0.358% 0.448% 0.358% 0.448%

FFT # Consistency 68.891 M 6.664 M 2.059 M 0.773 M
checks

% Useful calls 0.212% 2.190% 7.090% 18.770%

LU # Consistency 46.758 M 46.757 M 45.384 M 45.384 M
checks

% Useful calls 0.027% 0.027% 0.028% 0.028%

TOMCATV # Consistency 2.212 M 1.507 M 1.507 M 1.262 M
checks

% Useful calls 0.462% 1.595% 1.584% 1.612%

RADIX # Consistency 0.013 M 0.007 M 0.013 M 0.007 M
checks

% Useful calls 8.420% 15.560% 8.420% 15.560%

106 Manoj, Manjunath, and Govindarajan

Even with aggressive optimizations, LU performs worse. We can see a
slowdown by a factor of 2 to 3. Although, the reduction in number of
segmentation violations ranges from 75 to 85% (refer to Table VI), the
main overhead comes in the consistency checks. For the different number
of processors, the useful calls is less than 0.02%, which is an order of
magnitude lower when compared to other benchmarks (see Table VII).
Also, there is little difference in the execution time with and with AgDis-
card optimization. Lastly, the performance of LU does not exhibit much
change even after MaxAgHoist or MaxAgDiscard optimizations, as can be
seen from Table IV.

In the case of TOMCATV, a performance improvement of upto 41%
is achieved with AgHoist. AgDiscard, MaxAgHoist, and MaxAgDiscard
optimizations results in further improvement in the execution time as is
evident from Table IV. The consistency overhead is comparable to that in
SOR or FFT. The relative speedup also improves when the number of
processors is increased from 2 to 4 or 8. In this benchmark, the reduction
in holdup time plays an important role in the performance gains. We
defer a discussion on this to Section 6.3. As will be shown in Table VIII,
there is a significant improvement in the percentage of useful calls with 4
and 8 processors which also contributes to this improvement in relative
speedup.

Lastly, in RADIX, the improvement in execution time is minor
(1 to 2%). This lower performance improvement could be due to the fact
that the percentage of segmentation violations reduced is very small (less
than 10%). In radix a large majority of its shared references are of the form
a[b[i]], which is not amenable to compile-time analysis. Hence, we do
not instrument this reference and rely on the underlying VM support to
take care of this access. The consistency check overhead in RADIX is
comparatively low, as the percentage of useful calls is roughly 8%. This is
an order of magnitude higher when compared to other benchmarks.
Further, the actual number of consistency calls in RADIX is also low
resulting in relatively low overhead. Even with the AgDiscard optimization,
there is not much difference in performance. However, it can be seen that
the percentage of useful calls has increased roughly by 7% with discarding.
Also, in RADIX, the performance of MaxAgHoist and MaxAgDiscard are
same as AgHoist and AgDiscard respectively, as the consistency check calls
cannot be moved out of the innermost loop due to synchronization primitives.

In all of the above applications except SOR, MaxAgDiscard+
MsgAggr performs only marginally better than MaxAgDiscard. As
explained in Section 4.1, we aggregate messages at a consistency check, i.e.,
if the check determines that n pages are inconsistent, and (say) Proc 1 is the
last writer to all the n pages, then only one message is sent to fetch the n pages

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 107

Table VIII. Improvement in Percentage of Useful Calls with Number of Processors

in MaxAgDiscard Optimization

Percentage of useful calls in
No. of
procs. SOR FFT LU TOMCATV RADIX

1 0.003 0.09 0.001 0.12 14.18
2 0.123 12.59 0.013 0.31 14.56
4 0.223 15.15 0.015 0.64 14.95
8 0.448 18.77 0.028 1.62 15.56

as against n individual messages (sent in the case of MaxAgDiscard). It can
be easily seen that aggregation can improve performance only for large
values of n. It was observed that the average value for n in FFT, LU,
TOMCATV, and RADIX was between 1 and 2. As a result the perfor-
mance improvements due to message aggregation is not significant in these
applications.

In summary, it can be seen that the relative speedup shows reasonable
improvement over the original CVM code. Also, the relative speedup
improves from single processor configuration to 8 processor configuration.
This is due to the fact that the percentage of useful calls increases with
increasing number of processors, as shown in Table VIII.

6.2. Inlining Results

The effect of inlining and constant propagation on the execution time
of LU is shown in Table IX. To make a fair comparison we also measured
the execution time of LU with inlining on the original CVM implementa-
tion.

Table IX. Execution Time in Seconds for Inlined LU

Execution time in seconds

CVM CAS-DSM

No. of Original Inlined MaxAgDiscard+
procs. code code AgHoist AgDiscard MaxAgHoist MaxAgDiscard MsgAggr

1 18.13 14.47 50.14 49.95 14.38 14.40 14.40
2 24.61 21.00 54.92 54.80 19.02 19.02 19.02
4 17.73 14.96 33.45 33.42 13.80 13.80 13.80
8 13.58 11.18 20.62 20.44 10.56 10.65 10.65

108 Manoj, Manjunath, and Govindarajan

Table X. Relative Speedups for Inlined LU w.r.t. Inlined Original

Relative speedup w.r.t. inlined original
No. of
procs. AgHoist AgDiscard MaxAgHoist MaxAgDiscard MaxAgDiscard+MsgAggr

1 0.31 0.31 1.05 1.05 1.05
2 0.38 0.38 1.16 1.16 1.16
4 0.45 0.45 1.15 1.16 1.16
8 0.55 0.55 1.15 1.15 1.15

It can be seen that inlined original version itself performs slightly
better than the original version with no inlining on CVM. The execution
times after AgHoist as well as AgDiscard are still comparable, with the
corresponding earlier versions, since there is no substantial reduction in the
overhead of consistency calls. However after MaxAgHoist the overhead
decreases substantially resulting in a performance improvement. Table X
reports the relative speedup of LU with inlining. To quote the actual
figures, the number of consistency calls in the inlined version reduced from
45 million to 0.2 million. This resulted in an increase in the percentage of
useful calls to 4.76% and hence an improvement in execution time.

Fig. 10 summarizes the relative speedup of CAS-DSM due to the
different optimizations for 2, 4, and 8 processors.

6.3. Impact of Reducing Holdup Time

In this section we evaluate the performance improvement due to the
instrumentation of polling code in the application. In this study we assume
that the application is instrumented with MaxAgDiscard optimization, and
the cvm_probe function is inserted in CAS_AgHoist. We present both
the relative speedups and reduction in the holdup time (refer to Fig. 2 in
Section 2.3) due to the instrumentation of the polling function. It should be
noted here that the holdup time reported in this discussion is a result of
CVM’s design decision to handle message reception through polling. As a
consequence, the two-way latency of messages as seen by the application
increase in CVM, even though the underlying high performance switch of
IBM-SP2 can support a low two-way latency of 75 microseconds. Thus the
high values of holdup time reported in this section are essentially due to
this rather than due to the interconnection network in the underlying
architecture.

In these experiments, the reduction in the overall execution time is a
result of both MaxAgDiscard optimization and polling. Likewise, in addi-
tion to the consistency check overhead, the overhead due to the polling

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 109

Fig. 10. Relative speedup of CAS-DSM.

110 Manoj, Manjunath, and Govindarajan

Table XI. Relative Speedups with Polling

Relative speedup of CAS-DSM with polling
No. of
procs. SOR FFT TOMCATV LU(inlined) RADIX

2 1.34 1.12 1.23 1.40 1.01
4 1.30 1.21 1.20 1.32 1.01
8 1.22 1.19 1.52 1.17 1.01

function is also incurred. To determine the overhead associated with
polling, we ran a small program which just polls and returns. It was found
that each call of the polling function takes 5.83 m seconds.

The relative speedups for all the benchmarks with polling is shown in
Table XI. It can observed that with the instrumentation of polling, the
performance of all applications (except RADIX), has improved signifi-
cantly (12 to 52%). This performance benefit is due to the reduction
(through cvm_probe) in the holdup time. For illustrative purposes, we
report the execution times for SOR with and without the instrumentation
of polling in Table XII. For comparison purposes, the execution time of
SOR in the original CVM implementation is also presented in the same
table. The last column shows the relative speedup of the application after
instrumentation with polling function to the execution time of the program
in the original CVM implementation. From the last column it is clear that
the improvement in the execution time is more than 25% over the original
(once the polling function is instrumented).

To substantiate our claim on the reduction in holdup time, we plot the
histogram of the holdup time experienced by messages in Fig. 11. The
x-axis represents the holdup time in milliseconds (ms). On y-axis the
number of messages which take x amount of holdup time is plotted.

Table XII. SOR-Execution Time in Seconds

SOR-Execution Time in Seconds

Aggregation Relative
No. of speedup
procs. Original Without polling With polling (with polling)

2 3086.82 2958.05 2309.11 1.34
4 1607.89 1534.69 1234.03 1.30
8 864.53 809.36 707.83 1.22

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 111

-50 0 50 100 150 200 250 300

Time in Milliseconds

10
0

10
1

10
2

10
3

10
4

10
5

N
o

of
M

es
sa

ge
s

-50 0 50 100 150 200 250 300

Time in Milliseconds

10
0

10
1

10
2

10
3

10
4

10
5

N
o

of
M

es
sa

ge
s

(a) Original 2 Procs (b) Aggregation & Polling 2 Procs

Fig. 11. Holdup time for SOR.

It should be noted that the y axis is in the logarithmic scale. Due to space
constraints, we present only the histogram for SOR (2 processors), but it is
representative of all benchmarks that we considered. Figures 11(a) and
11(b) show the holdup time respectively for the original code and the ins-
trumented (with MaxAgDiscard and polling) code. In the graphs, we plot
the number of messages which experienced less than 1 ms of holdup time at
time 0 ms. Similarly, the total number of messages whose holdup times are
greater than or equal to 250 ms are plotted at time 250 ms. One can
observe a shift in the histogram towards the lower holdup times in the
graph shown in Fig. 11(b) compared to that in Fig. 11(a). Specifically, we
see that previously, a large number of messages having a holdup time
between 50 and 100 ms in Fig. 11(a). After the instrumentation most of the
accesses incur a holdup time of less than 50 ms. To quote the actual
numbers, if we take the two ‘‘peaks’’ in the graphs occur at 0 ms and at
74 ms in Fig. 11(a) with number of messages equal to 41,795 and 17,095
respectively. On the other hand, in Fig. 11(b) there is only one peak at 0 ms
with the value of 58,317 messages. The histograms for other benchmarks
also follow a similar trend and hence have not been included in the paper.
This substantial reduction in the message holdup time contributes heavily
toward the reduction in the execution time or the improvement in the rela-
tive speedup.

Why does the average holdup time reduce with polling (cvm_probe
calls) in CAS_AgHoist function? In the original CVM implementation,
diff request for updating a page is sent by a process only when it tries to

112 Manoj, Manjunath, and Govindarajan

access some location in the shared page that is in a inconsistent state.
Further requests for updating different pages are sent by the process at
different times depending on when it accesses the shared pages. However,
these messages are seen by the receiving processes only when they enter the
DSM layer during its execution. As a result the holdup time experienced by
asynchronous messages could be quite high in the original CVM imple-
mentation. As opposed to this, in our CAS-DSM implementation with
polling calls inserted in the instrumented calls, the aggregation and hoisting
of cvm_make_page_consistent calls enable sending the diff request
messages for all pages in a clustered fashion by different processes more or
less at the same time, often following a barrier synchronization call. Thus
when all processes are making the required pages consistent, they also
receive messages from other processes, which they see through
cvm_probe call and service, resulting in smaller average holdup time.

Similar performance improvement due to the reduction in holdup time
has also been reported by Keleher, (39) although he refers to holdup time
and its effects as ‘‘responsiveness’’ to messages. In his work calls to
cvm_probe are directly inserted in the application program, whereas in
our approach they are automatically included as a part of cvm_make_
page_consistent calls.

The performance improvement in the benchmarks (SOR, FFT,
TOMCATV, LU and RADIX) with the insertion of polling are upto 1.34,
1.21, 1.52, 1.40, and 1.01 respectively. Thus except in RADIX we observe
significant improvement in execution time due to the reduction in holdup
time. The reason for no performance improvement in RADIX is that even
in the original code, the average holdup time is less than one millisecond.

A careful observation of the relative speedups (in Table IV) reveals
that the performance of TOMCATV is disproportionately large when
compared to the rest of the benchmarks. The reason for this is that the
optimizations implicitly reduce the holdup time, and hence the communi-
cation overhead. We plotted the graphs showing the holdup time reduction
for the original benchmark as well as instrumented one with only AgHoist
(but without polling function). The histogram for TOMCATV for 2 pro-
cessor case is shown in Fig. 12. We observe that with the AgHoist optimi-
zation, message that experience a holdup time of 100 ms or more have
reduced significantly.

To get a more quantitative view of the reduction in holdup time, we
present the average holdup time ratio which is the ratio of the average
holdup time of the instrumented code (AgHoist instrumentation but
without polling) and the average holdup time of the original code (again,
without any instrumentation). The average holdup time ratios for all the
benchmarks are shown in Table XIII. It can be seen from the table that in

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 113

-50 0 50 100 150 200 250 300

Time in Milliseconds

10
0

10
1

10
2

10
3

10
4

10
5

N
o

of
M

es
sa

ge
s

-50 0 50 100 150 200 250 300

Time in Milliseconds

10
0

10
1

10
2

10
3

10
4

10
5

N
o

of
M

es
sa

ge
s

(a) Original 2 Procs (b) Aggregation 2 Procs

Fig. 12. Holdup time for TOMCATV for 2 processor.

all the benchmarks the average holdup time ratio is close to 1, for most of
the number of processors, except in the case of TOMCATV. For
TOMCATV, the average holdup time ratio ranges from 0.62 to 0.83. This
plays a major role in increasing the relative speedup and hence the perfor-
mance of TOMCATV under AgHoist and other optimizations.

Lastly, we evaluate the effect of increasing the frequency of polling in
the original CVM itself. It should be noted that in the original code the
polling function in CVM will get executed only when the DSM layer gets
the control. Segmentation handler is one of the entry points into the DSM
layer from the application program which is executed very often. Hence, we
introduced this polling function in the segmentation handler. We refer to
this implementation as DSM Poll as the polling is done inside the DSM

Table XIII. Average Holdup Time Ratio

Average holdup time ratio
No. of
procs. SOR FFT LU TOMCATV RADIX

2 1.17 1.41 1.00 0.83 0.75
4 0.97 0.95 0.73 0.69 1.00
8 1.05 0.94 1.00 0.64 1.00

114 Manoj, Manjunath, and Govindarajan

Table XIV. Combined Effect of Instrumentation

Relative speedup

SOR FFT
No. of
procs. Appln. poll DSM poll Combined Appln. poll DSM poll Combined

1 0.67 1.00 0.67 0.99 1.00 1.00
2 1.34 1.00 1.35 1.12 1.02 1.12
4 1.30 1.00 1.31 1.21 1.20 1.21
8 1.22 1.00 1.23 1.19 1.17 1.18

TOMCATV LU RADIX

No. of Appln. DSM Appln. DSM Appln. DSM Combined
procs. poll poll Combined poll poll Combined poll poll

1 0.74 0.99 0.75 0.89 0.99 0.88 1.01 1.00 1.00
2 1.23 0.95 1.22 1.40 1.05 1.42 1.01 1.00 0.96
4 1.20 0.98 1.22 1.32 1.03 1.32 1.01 1.05 1.00
8 1.52 0.99 1.53 1.17 1.02 1.19 1.00 1.03 1.00

routine. In contrast, in the implementation discussed earlier, the poll func-
tion is invoked in the aggregation (CAS_AgHoist function). Hence we
refer to that as Application Poll. The results of DSM Poll, and Application
poll for all the benchmarks are shown in Table XIV. This table also shows
the effect of instrumenting the calls both in the application program and in
the DSM (referred to as Combined).

Except in FFT, DSM polling does not result in any significant improve-
ment in performance. The improvement in FFT could be due to the sharing
pattern of the application. Last, in all the applications combined polling, i.e.,
polling in DSM layer in addition to Application layer does not offer any
additional performance improvements over the Application poll. In a few
cases, combined polling reduces program performance owing to increased
overhead in polling. From the above, we conclude that instrumenting the
application code without introducing polling in the DSM layer performs
better in general. Also, more analysis should be performed to determine the
positions where the polling code should be introduced in the application code.

7. RELATED WORK

Several software DSM implementations have been proposed in the
literature. (9–12, 14, 27, 40–43) Of these, a large majority (10–12, 14, 41) use VM support

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 115

for detecting shared accesses and maintaining consistency of shared loca-
tions while we use compile time support to reduce the reliance on VM.
More recently, Keleher proposes a tape mechanism that records shared
accesses and uses that to predict future access and prefetch them (16) in a
software DSM. In Ref. 17, Itzkovitz and Schuster describe a page-based
software DSM called Millipage that is based on Multiview, which enables
variable sharing granularity. A survey of DSMs can be found in Ref. 44. In
the following paragraphs, we compare other DSM implementations which
are similar to CAS-DSM.

In Ref. 15, Scales et al., present Shasta, a software DSM that instru-
ments the application executable to insert code before every load and store.
This work also describes some optimizations to reduce the overhead due to
the instrumentation code. One major advantage of our approach over
Shasta is that, more information about the shared accesses is available to
our CAS-DSM, since we perform the analysis on application source as
opposed to application binary. This helps us to incorporate more optimi-
zations. A major advantage Shasta has over our method is that it provides
support for setting the coherence granularity level. In our approach, the
granularity is fixed to the page level. Support for varying coherence gra-
nularity in Shasta, helps application programmers to take advantage of fine
grain granularity to increase the performance of the application. Lastly, as
Shasta instruments executables/binaries directly, it is applicable to a larger
range of applications, including commercial software where the source code
is not available.

Another related work is RT-DSM (13) which also proposes compile
time instrumentation. In RT-DSM, the application source is analyzed
during compile time to instrument code after a write to a shared location
for consistency maintenance. Consistency in RT-DSM is maintained in two
phases: A write detection phase and a write collection phase. An important
difference between CAS-DSM and RT-DSM is that RT-DSM instruments
code after every write. RT-DSM relies on VM-support mechanism for read
accesses to shared locations. Whereas in CAS-DSM the instrumentation is
for both read and write. Further, RT-DSM supports fine grain sharing for
writes while CAS supports page level granularity. A major advantage RT-
DSM has over our approach is that it avoids the cost of diffs and twins by
having a fine granularity of sharing. The main objective of CAS-DSM is to
reduce the segmentation violation overheads.

Dwarkadas et al., (45) eliminate synchronization overheads by compile
time analysis. Their approach identifies modification to shared data by
each processor, that would be required in other processors and push the
data by inserting this code at appropriate parts in the program. In other
words, their analysis will avoid a significant number of segmentation

116 Manoj, Manjunath, and Govindarajan

violations without the overhead of explicit consistency check code. This
work also addresses issues regarding communication overhead reduction
using message aggregation mechanisms. Further in this work since the
modified data is pushed to the receiver, it also reduces communication
delays. In contrast our motivation was to eliminate the page fault by
careful program instrumentation and is based on the pull data model. Our
approach is restricted to compile-time analysis of possible segmentation
violations and insertion of appropriate consistency check calls. Further,
our analysis is limited to memory accesses and synchronization constructs
within a process, as opposed to across processes as in Ref. 45. However,
their work did not study the impact of holdup delays (in processing asyn-
chronous messages) on the execution time.

Lu et al., have proposed a method by which compile time analysis can
be used for the reduction of communication overheads for irregular appli-
cations. (36) This work concentrates on aggregation of messages into a single
message and thus reduce the overhead associated with sending more
number of messages. In CAS-DSM, the messages are aggregated under the
MaxAgDiscard+MsgAggr optimization. We reduce the waiting time of the
messages in CAS-DSM by insertion of the polling function. This reduces
the waiting time at the receiver’s side. In contrast, their work (36) concentra-
tes on reducing the overhead only at the sender side,

In Ref. 39, Keleher reports the responsiveness to asynchronous com-
munication and reducing notification delays in distributed systems. In this
work he studies the effect of introducing network polls judiciously in the
application code and their impact on the performance. This is similar to
our approach of instrumenting polling function. In our approach we
instrument the polling function within the CAS_AgHoist function. Both
work report the resulting performance gain due to reduction in holdup
time, and the need for extensive analysis.

Our approach to making pages consistent (through cvm_make_
page_consistent) ahead of time is different from software prefetching
approaches. (46) The latter approach attempts to mask the latency by pre-
fetching the pages/blocks that are likely to be accessed in future. These
approaches, at least currently, do not take into account the presence of
synchronization constructs and the memory consistency model supported.
Whereas our approach is tuned to do exactly this. Secondly, while pre-
fetching methods focus on hiding memory latency, our approach focuses
on eliminating page fault kernel overhead. Further prefetching methods
fetches only a few pages/blocks that are just enough to mask the latency;
prefetching more pages/blocks than required may have other effects
displacing useful information, especially in the case of hardware DSMs. In
CAS-DSM, with MaxAgDiscard optimization, we aggregate and get all

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 117

pages that are accessed until the next synchronization point. Lastly, in the
present implementation of CAS-DSM, the cvm_make_page_consis-
tent and cvm_make_all_pages_consistent calls are blocking; i.e.,
execution control waits (polls for responses for diff requests) on these
calls until the pages are made consistent. Although it may be possible to
change this implementation, due to the aggregation of messages (diffs for
all pages) and the small amount computation that is involved between the
cvm_make_all_pages_consistent call and the first access to the
shared page, we do not expect any significant improvement. As a result,
our approach does not mask the latency involved in getting pages consis-
tent.

8. CONCLUSION

This paper presents CAS-DSM, a Compiler Assisted Software DSM.
The major goal of CAS-DSM is to reduce the involvement of OS kernel
using compiler techniques. For achieving this, CAS-DSM performs a
source to source translation of the application code. We made use of SUIF,
a compiler tool, for performing the analyses and instrumenting the code.
We modified CVM, a publicly available DSM, to provide the enhanced
support required for instrumentation. We proposed and implemented
various aggressive compile time optimizations to improve the performance
of CAS-DSM. These optimizations include aggregation and hoisting of
consistency checking code, optimistically discarding some of the instru-
mented calls, and standard compile time techniques such as inlining and
constant propagation. Our methods achieve a performance improvement of
upto 10 to 15% for most of the applications compared to the original CVM
implementation.

Also, we proposed a method to reduce the overheads involved in the
polling-based implementation for receiving asynchronous messages. We
concentrate on reducing the waiting time of the messages by decreasing the
delay associated in servicing a request. This is also accomplished by
compile time analysis and instrumentation of polling code into the appli-
cation source. Preliminary experiments were carried out in this direction
and we were able to get performance improvements as high as 47% in some
cases.

Future work could include extending the analysis to across procedures
and performing constant propagation inter-procedurally. Selective function
inlining can also be included in the our compiler framework. It is also pos-
sible to extend our analysis on shared accesses across different processes,
which would help reduce unnecessary consistency check calls. Software

118 Manoj, Manjunath, and Govindarajan

prefetching can also be incorporated to improve the existing performance
by overlapping computation with communication. From the point of
communication overhead reduction, further analysis can be carried out to
determine the overheads associated with the inserted polling calls. Last, in
order to reduce the effects of hold-up time, the software DSM can be
implemented using the multithreaded approaches, where multiple compu-
tation and communication threads can be made responsible for computa-
tion and communications.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous reviewers for their
numerous suggestions which helped to improve the presentation of the
paper. The support received from IBM (under IBM’s Shared University
Research Program), IBM Solutions Research Centre, India, and Tata-IBM,
India, are gratefully acknowledged. The work by Manoj was supported by
IBM’s Shared University Research Program and a research grant from
IBM Solutions Research Centre, India and Tata-IBM, India. A preliminary
version of the work of Manjunath has appeared in the Proceedings of the
First Workshop on Software Distributed Shared Memory, held in conjunc-
tion with the International Conference on Supercomputing (ICS-99),
Rhodes, Greece, June 1999. The work of Govindarajan was done when the
first and second authors were at the Department of Computer Science and
Automation, Indian Institute of Science, Bangalore, 560 012, India.

REFERENCES

1. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 2nd
Ed., Morgan Kaufmann Publishers, San Francisco, CA (1996).

2. D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam, The Stanford DASH Multiprocessor, Computer, 25(3):63–79
(March 1992).

3. D. V. James, A. T. Laundrie, S. Gjessing, and G. S. Sohi, Distributed-Directory Scheme:
Scalable Coherent Interface, IEEE Comput., 74–77 (June 1990).

4. E. Hagersten, A. Landin, and S. Haridi, DDM—a Cache-Only Memory Architecture,
Computer, 25(9):44–54 (September 1992).

5. S. Frank, KSR1: High Performance and Ease of Programming, No Longer an Oxy-
moron, Proc. of the 5th Ann. ACM Symp. on Parallel Algorithms and Architectures, Velen,
Germany, p. 335 (June 30–July 2, 1993).

6. Sarita V. Adve and Kourosh Gharachorloo, Shared Memory Consistency Models:
A Tutorial, IEEE Comput., 66–76 (December 1996).

7. V. S. Sunderam, PVM: A Framework for Parallel Distributed Computing, IEEE Con-
currency: Practice and Experience, 2(4):315–339 (December 1990).

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 119

8. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press (1994).

9. K. Li. Ivy, A Shared Virtual Memory System for Parallel Computing, International Con-
ference on Parallel Processing, pp. 94–101 (1988).

10. C. Amza, A. L. Cox, S. Dwarakdas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel, Treadmarks: Shared Memory Computing on Network of Workstations,
IEEE Computer, 18–28 (February 1996).

11. J. K. Bennett, J. B. Carter, and W. Zwaenepoel, Munin: Distributed Shared Memory
Based on Type-Specific Memory Coherence, Proc. of the Second ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, Seattle, WA, pp. 168–176 (March
14–16, 1990).

12. B. N. Bershad and M. J. Zekauskas, Midway: Shared Memory Parallel Programming with
Entry Consistency for Distributed Memory Multiprocessors, Technical report, School of
Computer Science, Carnegie Mellon University, Pisstburgh, PA 15213 (1991).

13. M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad, Software Write Detection for a Dis-
tributed Shared Memory, The Symposium on Operating Systems Design and Implementa-
tion (OSDI), pp. 87–100 (November 1994).

14. P. Keleher, CVM: The Coherent Virtual Machine, University of Maryland, College Park,
MD (July 1997). http://www.cs.umd.edu/projects/cvm

15. D. J. Scales, K. Gharachorloo, and C. A. Thekkath, Shasta: A low Overhead, Software-
Only Approach for Supporting Fine-Grain Shared Memory, Proceedings of Seventh
International Conference on Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA, pp. 174–185 (October 1996).

16. P. Keleher, Tapeworm: High Level Abstractions of Shared Access, Proc. of the 3rd Symp.
on Operating System Design and Implementation, pp. 201–214 (February 1999).

17. A. Itzkovitz and A. Schuster, Multiview and Millipage: Fine Grain Sharing in Page Based
DSMs, Proc. of the 3rd Symp. on Operating System Design and Implementation,
pp. 215–228 (February 1999).

18. H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, Message Passing Versus Distrib-
uted Shared Memory on Networks of Workstations, Proc. of the Supercomputing Con-
ference SC-95 (December 1995).

19. OpenMP. http://www.openmp.org.
20. H. Lu, C. Lu, and W. Zwaenepoel, OpenMP on networks of workstations, Proc. of the

Supercomputing Conference SC-98 (November 1998).
21. K. Kusano, M. Sato, T. Hosomi, and Y. Seo, The Omni OpenMP Compiler on the Dis-

tributed Shared Memory of Cenju-4, Proc. of the Intl. Workshop on OpenMP Applications
and Tools, WOMPAT 2001, West Lafayette, IN, USA (July 2001).

22. S. C. Woo, M. Ohara, E. Torrie, J. Pal Shingh, and A. Gupta, The SPLASH-2 Programs:
Characterization and Methodological Considerations, Proc. of the 22nd Ann. Intl.
Symp. on Computer Architecture, Santa Margherita Ligure, Italy, pp. 24–36 (June 22–24,
1995).

23. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors,
Proc. of the 17th Ann. Intl. Symp. on Computer Architecture, Seattle, WA, pp. 15–26 (May
28–31, 1990).

24. J. R. Goodman, Cache Consistency and Sequential Consistency, Technical Report 1006,
Dep. of Comp. Sci., University of Wisconsin, Madison (February 1991).

25. M. Dubois, C. Scheurich, and F. Briggs, Memory Access Buffering in Multiprocessors,
Proc. of the 13th Ann. Intl. Symp. on Computer Architecture, Tokyo, Japan, pp. 434–442
(June 2–5, 1986).

120 Manoj, Manjunath, and Govindarajan

26. P. Keleher, A. L. Cox, and W. Zwaenepoel, Lazy Release Consistency for Software Dis-
tributed Shared Memory, Proc. of the 19th Ann. Intl. Symp. on Computer Architecture,
Gold Coast, Australia, pp. 13–21 (May 19–21, 1992).

27. K. L. Johnson, M. F. Kaashoek, and D. Wallach, CRL: High-Performance All-Software
Distributed Shared Memory, Proc. of the Fifth Workshop on Scalable Shared Memory
Multiprocessors (June 1995).

28. K. Thitikamol and P. Keleher, Multi-Threading and Remote Latency in Software dsms,
International Conference on Distributed Computer Systems, Baltimore, Maryland, USA
(May 1997).

29. D. A. Bader and J. JaJa, SIMPLE: A Methodology for Programming High Performance
Algorithms on Clusters of Symmetric Multiprocessors (SMPs), Journal of Parallel and
Distributed Computing, 58(1):92–108 (1999).

30. H. Han and C-W. Tseng, Compile-Time Synchronization Optimizations for Software
DSMs, Proc. of the International Parallel Processing Symposium (1998).

31. T. Park and H. Y. Yeom, An Efficient Logging and Recovery Scheme for Lazy Release
Consistent Distributed Shared Memory Systems, Future Generation Computer Systems,
17(3):265–278 (2000).

32. Stanford SUIF Compiler Group, The SUIF Parallelizing Compiler Group, Technical
report, Stanford University (1994).

33. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir,
Sp2 System Architecture, IBM Systems Journal, 34(2):152–184 (1995).

34. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice,
P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and
P. R. Varker, The sp2 High-Performance Switch, IBM Systems Journal, 34(2):185–204
(1995).

35. Stanford SUIF Compiler Group, An Overview of the Suif Compiler System, Technical
report, Stanford University (1994).

36. H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel, Compiler and
Software Distributed Shared Memory Support for Irregular Applications, Sixth Sympo-
sium on Principles and Practices of Parallel Programming, pp. 48–56 (1997).

37. G. E. Blelloch, C. E. Lieserson, B. M. Maggs, C. G. Plaxton, and S. J. Smith, and
M. Zagha, A Comparison of Sorting Algorithms for the Connection Machine CM-2,
Symposium on Parallel Algorithms and Architectures, pp. 3–16 (July 1991).

38. S. C. Woo, J. P. Singh, and J. L. Hennessy, The Performance Advantages of Integrating
Message Passing in Cache-Coherent Multiprocessors, Technical report, Stanford University
(December 1993).

39. D. Perkovic and P. Keleher, Responsiveness without Interrupts, Proc. of the 1999 Intl.
Conf. on Supercomputing (ICS-99), pp. 101–108 (June 1999).

40. I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood, Fine-
Grain Access Control for Distributed Shared Memory, Proceedings of Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, pp. 297–306 (October 1996).

41. D. J. Scales and M. S. Lam, An Efficient Memory Layer for Distributed Memory Machi-
nes, CSL-TR-94-627, Computer Systems Laboratory, Stanford University (1994).

42. S. Ahuja, N. Carriero, and D. Gelernter, Linda and Friends, Computer, 19(8):26–34
(August 1986).

43. D. Yeung, J. Kubiatowitcz, and A. Agarwal, MGS: A Multigrain Shared Memory
System, Proceedings of the Twenty-Third International Symposium on Computer Architec-
ture, pp. 44–55 (May 1996).

44. J. Protić, M. Tomas̆ević, and V. Milutinović, Distributed Shared Memory: Concepts and
Systems, IEEE Parallel and Distributed Technology, 63–79 (1996).

CAS-DSM: A Compiler Assisted Software Distributed Shared Memory 121

45. S. Dwarkdas, A. L. Cox, and W. Zwaenepoel, An Integrated Compile-Time/Run-Time
Software Distributed Shared Memory System, Proc. of Sixth Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pp. 186–197, San Jose, CA
(October 1996).

46. T. Mowry and A. Gupta, Tolerating Latency Through Software-Controlled Prefetching in
Shared-Memory Multiprocessors, Journal of Parallel and Distributed Computing 12:87–106
(1991).

122 Manoj, Manjunath, and Govindarajan

	INTRODUCTION
	MOTIVATION
	3. CAS-DSM BASE FRAMEWORK
	4. OPTIMIZATIONS
	IMPLEMENTATION
	PERFORMANCE EVALUATION OF CAS-DSM.
	7. RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS

