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Abstract. Scheduling is one of the most often addressed optimization problems in DSP compilation, behavioral
synthesis, and system-level synthesis research. With the rapid pace of changes in modern DSP applications
requirements and implementation technologies, however, new types of scheduling challenges arise. This paper
is concerned with the problem of scheduling blocks of computations in order to optimize the efficiency of their
execution on programmable embedded systems under a realistic timing model of their processors. We describe
an effective scheme for scheduling the blocks of any computation on a given system architecture and with a
specified algorithm implementing each block. We also present algorithmic techniques for performing optimal
block scheduling simultaneously with optimal architecture and algorithm selection. Our techniques address the
block scheduling problem for both single- and multiple-processor system platforms and for a variety of optimization
objectives including throughput, cost, and power dissipation. We demonstrate the practical effectiveness of our
techniques on numerous designs and synthetic examples.
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1. Introduction

1.1. New Directions for an Ancient Problem

Scheduling has been one of the most popular research topics in DSP synthesis and compila-
tion ever since the (r)evolution of implementation technologies enabled hardware sharing.
Over the years, however, fine-grained scheduling of DSP operations lost some of its impor-
tance due to a variety of reasons. Extensive empirical studies have indicated that different
competing scheduling techniques have relatively small impact on the key design metrics
of the final implementation [11]. Recently developed estimation techniques have also in-
dicated that there is little room for further improvement of scheduling algorithms [5, 32].
More importantly, there has been strong evidence that other behavioral synthesis tasks, in
particular transformations, can have a significantly higher impact than scheduling on the
quality of the final implementation [28].

The rapid pace of modern trends in DSP applications and implementation technologies
has recently revitalized the importance of scheduling by simultaneously imposing new
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sets of design issues, goals, and constraints. The current trend in DSP compilation and
behavioral synthesis is to consider higher levels of abstraction and larger designs. This
trend continues at increasing rate due to both application and implementation factors. The
size of average DSP commercial electronics applications has been doubling each year. At
the same time, the clock frequency and the average size of industrial integrated circuits
have been doubling every three years. Thus, higher levels of hardware sharing become
feasible and economically desirable with each new generation of technology, while at the
same time hardware sharing is becoming increasingly important for satisfying applications
requirements.

As we move toward systems-on-a-chip, DSP scheduling is inevitably changing its focus
from operation-level granularity to task-level granularity. Thus, new scheduling problems
arise that seek to optimize the efficiency of the execution of tasks (or blocks) using re-
alistic timing models for the embedded processor platforms. Tasks may have task-level
state variables shared among them. Such state can be any entity such as memory point-
ers, static variables, processor configuration settings, or a task’s code that persists across
different executions of a task and needs to be swapped out if a conflict arises with sub-
sequently scheduled tasks. Due to this reason, different schedules of the tasks may result
in different amount of context switching time. Therefore, at this level, context switching
time is a new degree of freedom, and its minimization is a prime optimization objec-
tive.

In this paper, we present a collection of algorithmic techniques that generate optimal
block schedules by minimizing the total context switch time. Our schemes yield optimal
block schedules for any given platform and for any choice of algorithms for each task.
Furthermore, our schemes can yield optimal block schedules while simultaneously enabling
the selection of optimal architecture and algorithms for implementing the various tasks.

1.2. Block Scheduling Example

We introduce the block scheduling problem using the simple example described in Ta-
ble 1. Given this table, we wish to find a schedule of blocks that maximizes through-
put on a single-processor system. For the sake of simplicity, we assume that the iter-
ation count for each block is 2, and that the blocks are independent. A block sched-
ule 〈A1, B1,C1, D1, E1, A2, B2,C2, D2, E2〉 takes 431 cycles. A different block schedule

Table 1.A simple instance of the block scheduling problem.

Context Switching Times Between Blocks

Block Processing Time A B C D E

A 30 0 18 20 15 10
B 15 8 0 15 8 7
C 20 12 8 0 22 15
D 10 10 10 18 0 32
E 25 19 8 12 10 0
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〈A1, A2, B1, B2,C1,C2, D1, D2, E1, E2〉, which has the property that different executions
of each task are successively scheduled, takes 306 cycles. Another block schedule with
the property,〈A1, A2, E1, E2,C1,C2, B1, B2, D1, D2〉 takes 248 cycles, however. Since
the order of execution does not affect processing times, only the switching times are to be
considered during schedule optimization. Considering only the switching times, the three
schedules takes 231, 103 and 48 cycles, respectively.

1.3. Paper Organization

The remainder of this paper has five sections. In Section 2 we present our computational
and hardware model. We also briefly consider a simplified version of the general block
scheduling problem in which no data dependencies are considered, and we argue that it is
computationally intractable by a reduction from the well-known Traveling Salesman Prob-
lem (TSP). Section 3 discusses related research. In Section 4, we formulate, analyze, and
solve the block scheduling problem with simultaneous architecture and algorithm selection
and no data dependencies. Our results apply to both single- and multi-processor platforms.
In Section 5, we address the general block scheduling problem with data dependencies on
single-processor platforms. We summarize our results in Section 6.

2. Preliminaries

2.1. Computational and Hardware Model

This paper is concerned with the problem of scheduling computations in order to maximize
the efficiency of their execution on programmable embedded systems. In this section we
describe our computational model, our hardware model, and its associated cost functions.

We model a computation on a given system and a given algorithm implementation for
each block as a directed edge-weighted, vertex-weighted graphG = (V, E,d, p, s) which
is called acomputation dataflow graph. Each vertexu ∈ V denotes acomputational block,
that is, a sequence of computations that are executed given an input. The edges inG encode
data dependencies. Specifically, each edge(u, v) ∈ E denotes that blockv requires the
output of blocku in its computation. Note that the setE is only relevant in Section 5. We
assume that the setE does not introduce cycles in the graphG. The number of iterations
by which an output of blocku must be delayed before it is presented to the inputs of
block v is given by the integerdelay count d(u, v). Each vertex-weightp(u) denotes the
processing time for the block corresponding to vertexu. For each ordered pair of vertices
c(u, v) denotes the time required to switch processing from blocku to block v. In this
model, we assume that the benefit of state-sharing occurs only when the associated tasks
are scheduled successively. The model has a limitation such that state-sharing between
tasks not scheduled successively cannot be exploited.

The lengthL(S) of a given scheduleS for a single processor is given by adding up the
total processing timep(S) and the total switching times(S). Note that the scheduleS is
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an ordered set. The total processing time is given by the sum

p(S) =
∑
u∈S

p(u),

which does not depend on the execution order of the blocks. The total switching time is
given by

s(S) =
∑

{ui ,vj }⊆S
c(u, v),

where the subset notation denotes that the blocksui and vj are executed consecutively
in S. Thus, the order in which blocks are scheduled to execute can affect the switching
cost for the implementation of a computation. Context switching costs are assumed to be
high, and thus no preemption is allowed. The lengthL(S1,S2, . . . ,Sm) of given schedules
S1,S2, . . . ,Sm for m processors, respectively is given by

L(S1,S2, . . . ,Sm) = max
i=1,2,...,m

L(Si ).

In the block scheduling problem, given a computationG with an associated architecture an
an algorithm for executing each block inG, we wish to find a scheduleS of the blocks that
satisfies all data dependencies inG and minimizesL(S). The block scheduling problem can
be augmented to include architecture and algorithm selection. In the augmented problem, we
wish to find an optimal schedule for an optimal selection of architecture and algorithms from
a specified set of alternatives. The augmented block scheduling problem may have several
optimization objectives such as cost of components or power dissipation. For example,
designers may have a choice among platforms with different voltage supply characteristics,
and thus different power dissipation characteristics, assuming that power consumption is
given byV2

dd · CL · α · fclock, whereVdd is supply voltage,CL is switching capacitance,α
is switching activity, andfclock is a clock frequency.

2.2. Equivalence of Block Scheduling Problem and Traveling Salesman Problem

When no data dependencies exist between blocks, the block scheduling problem is equiv-
alent to the Traveling Salesman Problem (TSP). The TSP is formally stated as follows.

Problem: Traveling Salesman Problem

Instance: Given is a set ofn citiesC, ann× n matrix Sof distances between cities inC,
and a positive numberl .

Question: Is there a tour ofC of length l or less, i.e., a permutation(π(1), π(2), . . . ,
π(n)), π(i ) ∈ C, such thatl ≥ sπ(n)π(1) +

∑n−1
i=1 sπ(i )π(i+1)?

When the matrixSis symmetric, i.e.,si j = sji for all i, j , then the TSP is called symmetric.
WhenS is not symmetric, the TSP is referred to as asymmetric.
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The correspondence between the simplified block scheduling problem above and the
asymmetric TSP is straightforward. Each blocku corresponds to a city, and the switching
cost matrixS corresponds to the distance matrix. Thus, the optimum block schedule cor-
responds to a minimal length tour, and vice-versa. In Section 4 we consider the augmented
block scheduling problem with simultaneous algorithm and architecture selection and no
data dependencies. The equivalence of block scheduling and TSP is central to our attack
to this problem.

3. Related Research

In this section we briefly summarize previous research on scheduling and on algorithm and
architecture selection. We also outline the most relevant TSP references.

Scheduling has been widely studied in many areas including hardware/software cosyn-
thesis [6], system-level synthesis [19], behavioral synthesis [7, 23], DSP [26, 33], parallel
processing [10], and hard/soft real-time systems [21, 30]. The majority of the proposed
DSP scheduling techniques has been presented in behavioral synthesis literature [7, 23].
Initial scheduling and transformation techniques for block processing are presented in [1,
3, 16, 34]. Task-level scheduling of a dataflow graph [18] has been actively researched.
Researchers proposed algorithms to minimize the size and memory usage of the code gen-
erated from a dataflow graph specification [1, 2, 25]. Also, algorithm and architecture
selection has been recently recognized as an important system-level synthesis topic [27].

The Traveling Salesman Problem is probably the most widely studied problem in combi-
natorial optimization mostly due to its wide applicability as well as its representative nature
of difficult optimization problems [17]. TSP is known to be NP-complete [9]. A number of
efficient and effective solution techniques have been presented for the symmetric TSP that
come within a few percentage points from the optimum [12]. According to Johnson’s com-
prehensive empirical comparison of symmetric TSP heuristics [12], the most efficient and
effective heuristics are the 3-Opt and the Lin-Kernighan [20] algorithms. Reinelt [31] has
effectively reduced the running times of these schemes by considering onlyO(n) candidate
edges for the tour. Martinet al. [22] have given an effective way to improve the quality of
the solutions obtained by these heuristics at the expense of increasing their running times.

Although a few solution methods have been proposed for the asymmetric TSP, including
a heuristic by Kanellakis and Papadimitriou [14] which modifies the Lin-Kernighan sym-
metric TSP heuristic and a branch-and-bound approach by Miller and Pekny [24], there do
not exist enough experimental data to judge their performance, and the heuristics have very
high time complexity.

4. Block Scheduling with Independent Blocks

In this section we describe our algorithms for the augmented block scheduling problem
with independent blocks and simultaneous architecture and algorithm selection. We first
outline our key underlying assumptions. We then formulate the augmented block scheduling
problem for a variety of objectives, including throughput, cost, and power optimization.
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Finally, we present effective TSP-based heuristics for solving these problems and present
experimental results that support the effectiveness of the proposed schemes.

4.1. Problem Formulations

We assume that there are no data, control, or timing dependencies among blocks. In this
case, only the blocks within a single iteration need to be scheduled, since any number of
block iterations can be scheduled consecutively to generate the zero context switch time
between the iterations of the block. For each block, we assume that there exist a number
of algorithm choices. Also, there exist a number of processor types or implementation
platforms. The switching time between the algorithms of any two blocks is considered as
well as the running times for processing the blocks. Our schemes address two different
design approaches: (i) only one processor is chosen for all blocks (ii) multiple processors
(of possibly different types) are chosen, and each block is assigned to one them.

4.1.1. Throughput Optimization

The block scheduling problem for throughput optimization can be formally stated as follows.

Problem: Block Scheduling for Throughput Optimization with Simultaneous Algorithm
and Architecture Selection

Instance: We are givenn blocks,T different processor types, and a positive constantl .
Each blocki has a choice ofBi different algorithms. For each processor type, we are
given the processing times arrayP for all the available algorithms and the switching
times matrixSbetween the algorithms.

Question: Is there a schedule of blocks, a selection of algorithms and a selection of pro-
cessors such that the resulting schedule length is at mostl?

4.1.2. Cost Optimization under Throughput Requirement

The block scheduling problem for minimum cost with simultaneous selection of algorithms
and architectures is similar to the throughput optimization problem. The only difference is
that the objective is to minimize the cost under a throughput constraint.

Problem: Block Scheduling for Cost Optimization under Throughput Requirement with
Simultaneous Algorithm and Architecture Selection.

Instance: We are givenn blocks,T processor types, a cost arrayC for the processor types,
and positive constantsl andm. Each blocki has a choice ofBi different algorithms.
For each processor type, we are given the processing times arrayP for all the available
algorithms, and the switching time matrixSbetween the algorithms.
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Question: Is there a schedule of blocks, a selection of algorithms and a selection of proces-
sors such that the resulting schedule length is at mostl , and the cost of all the processors
selected is at mostm?

4.1.3. Power Optimization under Throughput Requirement

Power optimization under throughput requirement with simultaneous algorithm and ar-
chitecture selection and voltage scaling can be formulated in a way similar to throughput
optimization. The differences are that the optimization objective is the minimization of the
power consumption under the throughput requirement, and that voltage scaling is performed
in addition to algorithm and architecture selection.

Problem: Block Scheduling for Power Optimization under Throughput Requirement with
Simultaneous Algorithm and Architecture Selection and Voltage Scaling.

Instance: We are givenn blocks,T different processor types with cost arrayC, a clock-
cycle time arrayCCT, an array of power dissipationsP D, an initial voltageV of each
processor type, and positive constantsl andm. Each blocki has a choice ofBi different
algorithms. For each processor type, we are given the running times arrayP for all the
available algorithms and the switching times matrixSbetween the algorithms.

Question: Is there a schedule of blocks, a selection of algorithms, a selection of processors
and a new voltageV ′ such that the resulting schedule length is at mostl and the power
consumption is at mostm?

The power consumption is given byP = αCL V2
dd fclock= αCL V2

dd/CCT, whereCCT is
a clock cycle time. It is known that reduced voltage operation comes at the cost of reduced
throughput [4]. The gate delayG D follows the following formula:G D = k Vdd

(Vdd−Vt )2
where

k is a constant [4], andVt is the threshold voltage. The maximum rate at which a circuit
is clocked monotonically decreases as the voltage is reduced. The maximum clock cycle
timeCCT(V ′) at a voltage levelV ′ relative to the maximum clock cycle timeCCT(V) at a
voltage levelV is given by

CCT(V ′) = V ′/(V ′ − Vt )
2

V/(V − Vt )2
· CCT(V) = V ′(V − Vt )

2

V(V ′ − Vt )2
· CCT(V).

The power consumptionP(V ′) at a voltage levelV ′ relative to the power consumption
P(V) at a voltage levelV is given by

P(V ′) = V ′(V ′ − Vt )
2

V(V − Vt )2
· P(V).

4.2. TSP Implementation Issues

At the heart of all our schemes lies a block scheduler that is implemented efficiently using
TSP heuristics. In this section we describe a few issues related to our implementations of
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these heuristics. All our schemes transform an asymmetric TSP into a symmetric one using
the technique proposed by Jonker and Volgenant [13]. We are thus able to apply directly
efficient and effective heuristics for the symmetric TSP.

The transformation into symmetric TSP is performed as follows. Let TSP(C, S) denote
an asymmetric TSP with a set ofn cities C = 1,2, . . . ,n on a distance matrixS. Let
TSP(C′, S′) denote the transformed symmetric TSP problem. Each cityi in C is converted
into two cities,i andi + n, in C′. If |i − j | = n, i.e., the two citiesi and j in C′ are from
the same city inC, s′i j = −M , whereM is a very large positive number. If (i ≤ n and
j ≤ n) or (i > n and j > n), s′i j = ∞. Otherwise,s′i j = si j if i > j ands′i j = sji if
i < j . It is shown in [13] show that any optimal solution of the transformed symmetric
TSP corresponds to an optimal solution of the original asymmetric TSP. Feuer and Koo [8]
have successfully applied a similar transformation to the scan chain ordering problem.

Recent studies [12] suggest that the most efficient and effective heuristics for the sym-
metric TSP are 3-Opt and Lin-Kernighan [20] algorithms. These algorithms apply a greedy
global optimization strategy which iteratively constructs an improved new solutions′ from
the previous solutions by making local changes tos. If no s′ can be found, the solutions
is returned as a local optimum. Martinet al. [22] have given an effective scheme, called
the large-step Markov chain (LSMC), that improves the quality of these solutions. This
heuristic is now considered to be the “champion” for symmetric TSP. LSMC starts with
an arbitrary initial local minimum and keeps improving on it by “perturbation and local
optimization” cycles. In our software implementation, we have used the LSMC heuristic
with Reinelt’s fast, nearest-neighbor based implementation of the 3-Opt local optimization
engine [31]. The quality of the TSP tour can be traded off with running time by adjusting
the number of the 3-Opt local optimization algorithms. In all our runs, we used the LSMC
heuristic with 10 iterations of 3-Opt local optimization algorithms.

4.3. Block Scheduling on Single Processor

4.3.1. Algorithms

We have developed an iterative improvement algorithm based on the efficient implementa-
tion of a wide variety of TSP heuristic. Our throughput optimization heuristic is given by
the pseudo-code in Figure 1. Our heuristic for cost optimization under a throughput con-
straint is described in Figure 2. Our heuristic for power optimization under a throughput
constraint is given by the pseudo-code in Figure 3. In all experiments, the thresholdt was
chosen to be 100.

4.3.2. Experimental Results

We have constructed 4 different sets of 12 tasks from the 16 real-life tasks described in [29].
The tasks are the following: two GE controllers, two Honda controllers, a wavelet filter,
four audio filters, a 8×8 discrete cosine transform, an NEC digital-to-analog converter, two
components of modems, a LMS audio formatter, an echo canceler, and a linear controller
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Figure 1. Heuristic for throughput optimization.

Figure 2. Heuristic for cost optimization under throughput constraint.

Figure 3. Heuristic for power optimization under throughput constraint.

for automotive motion control. For each task, we have used the number of operations
as the approximation of the running time. The context switching times are approximated
such that they are proportional to memory requirement, the switching between similar tasks
costs little overhead and the switching between different tasks requires a significant amount
of overhead. The context switching costs are distributed between 10 and 173. We also
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applied our algorithms on randomly generated computation graphs with 10, 25, 50, 75,
and 100 blocks. We assumed 5 processor types with randomly chosen parameters and 5
algorithm choices for each block. Table 2(a) gives the processor specifications. For each
processor type, processing and switching times were chosen in the range from 1 to 100,
cost was chosen between 100 and 200, clock-cycle time was chosen in the range from 5.0 to
10.0, initial voltages were chosen between 3.0 and 5.0, and power dissipation was between
5.0 and 10.0. The threshold voltage was assumed to be 0.7. For each processor type, in
addition to its specification, we give a lower bound on the length of any schedule with a
single iteration. This bound is derived by summing up the smallest processing times of the
blocks and the smallest switching times of all block pairs.

Table 2(b)–(d) illustrates the effectiveness of our TSP-based heuristics on the 50-block
computation, a representative example among the ones we experimented with. We com-
pared the effectiveness of our algorithms with the best among 100 random solutions that were
generated for the problem. For this specific example, the average improvement for through-
put and power was a factor of 2.9 and 2.4, respectively. For cost optimization under through-
put requirement, no random solution satisfied the upper bound on the schedule length.

Tables 3 and 4 summarize the experimental results for all real-life design examples and
all randomly generated computations, respectively. For each block count, we generated 10
random computations.

4.4. Block Scheduling on Multiple Processors

4.4.1. Algorithms

We developed an exhaustive-enumeration algorithm for cost optimization under throughput
requirement that was based on TSP heuristics and lower-bound estimations. Similarly to the
lower-bound estimation technique for block scheduling on a single processor, we designed
a simple and effective lower-bound estimation technique for throughput optimization on
multiple processors. For each block, we choose an algorithm with the smallest sum of
processing and switching times over all processor types. A lower bound on the length of a
schedule for the multiple-processor block scheduling problem can be obtained by dividing
the sum of the processing and switching times for the best algorithms by the number
of processors. Using this lower-bound, we can prune infeasible branches of the search.
The heuristics for throughput optimization and for cost optimization under throughput
requirement are given in Figures 5 and 4, respectively. The thresholdt was chosen to be
10, and the value ofk was set to 5 to allow escaping from local minima. These values were
determined based on empirical observation obtained from extensive experimentations.

4.4.2. Experimental Results

We generated random computations with 10, 25, 50, 75, and 100 blocks. For each block
count, we generated 10 computations graphs. As in the single-processor experiments, we
assumed 5 processor types and 5 algorithm choices for each block. Running and switching
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Table 2. Experimental results for a computation with 50 blocks on a single
processor. In (a), LB stands for lower-bound. In (c), no random solution
satisfied maximum schedule length constraint. In (d), sample period was
50,000 time units.

Processor Type

#1 #2 #3 #4 #5

Cost 171 126 165 119 155
Clock-cycle time 9.1 10.0 7.1 7.4 5.9

Initial voltage 4.2 5.0 4.3 4.3 4.2
Power dissipation 8.4 6.9 6.4 9.7 5.8

LB on schedule length 1701 1481 1311 1480 1657

(a) Processor specifications.

Random Solution Heuristic Solution

Processor Type #2 #3
Schedule length 4304 1476

(b) Throughput optimization results.

Requirement 1900 1800 1700 1600 1500
Schedule length 1653 1653 1653 1476 1476

Cost 119 119 119 165 165
Processor type #4 #4 #4 #3 #3

(c) Cost optimization under throughput requirement.

Random Heuristic
Solution Solution

Processor type #5 #3
Scaled clock-cycle time 11.09 33.88

Initial voltage 4.2 4.3
Scaled voltage 2.77 1.75

Scaled power dissipation 2.53 1.06
Total energy consumption 126590.44 53124.29

Schedule length 4508 1476

(d) Power optimization under throughput requirement.

Table 3.Average improvement factors for synthetic examples on a single processor.

Blocks Throughput Improvement Cost Improvement Power Improvement

10 2.8 2.9 2.1
25 3.1 3.5 2.4
50 2.9 3.4 2.3
75 2.7 2.9 2.2

100 3.2 3.7 2.6
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Table 4.Average improvement factors for real-life designs on a single processor.

Throughput Improvement Cost Improvement Power Improvement

Set 1 2.1 2.3 1.8
Set 2 2.0 2.2 1.7
Set 3 1.9 2.1 1.7
Set 4 2.2 2.5 1.9

Figure 4. Heuristic for throughput optimization on multiple processors.

Figure 5. Heuristic for cost optimization under throughput requirement on multiprocessors.

times were randomly chosen in the range from 1 to 100, and the costs of the processors were
chosen between 100 and 200. Table 5 gives cost optimization results under a throughput
requirement for the example computation with 50 blocks. The results for all examples are
illustrated in Table 6. Random solutions were generated by picking the best among 100
random schedules of blocks to processors which were allocated by exhaustively enumerating
all allocation possibilities in increasing cost order. Under various throughput requirements,
the average improvement obtained over all examples was a factor of 3.1.
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Table 5.Results of cost minimization for 50-blocks computation
on multiple processors: IF – improvement factor.

Cost Schedule Length

Sample Period Random Opt IF Random Opt

500 1408 416 3.38 458 486
600 1040 312 3.33 577 595
750 766 208 3.68 738 749
850 684 208 3.29 845 749

1000 520 208 2.5 970 749
1500 312 104 3.0 1472 1389

Table 6. Average cost im-
provement factors on multiple
processors over all examples
generated.

Blocks Cost Improvement

10 2.6
25 2.8
50 3.3
75 3.1

100 3.5

5. Block Scheduling with Dependent Blocks

In this section we address the block scheduling problem for throughput optimization with
data dependencies. We assume that the given computation dataflow graph is acyclic. As
in the case for independent blocks, only the blocks within a single iteration need to be
scheduled, since any number of block iterations can be scheduled consecutively to generate
the zero context switch time between the iterations of the block. However, as a preprocessing
step, we remove all the dependencies associated with edges that have delay greater than or
equal to the iteration count. We focus on single processor platforms without considering
algorithm and architecture selection.

5.1. Problem Formulation

The block scheduling problem for throughput optimization can be formally stated as follows.

Problem: Throughput Optimization

Instance: We are given an iteration countI , n blocks with dependencies described by a
computation dataflow graphG, the processing times arrayP for all the blocks, the
context switching times matrixC between the blocks, and a positive constantl .
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Question: Is there a schedule of blocks such that data dependencies are satisfied and the
schedule length is at most l?

The throughput optimization problem is clearly intractable, since its special case with no
dependency is already intractable. We assume that the given computation dataflow graph
is acyclic. As in the case for independent blocks, only the blocks within a single iteration
need to be scheduled, since any number of block iterations can be scheduled consecutively
to generate the zero context switch time between the iterations of the block. However, as a
preprocessing step, we remove all the dependencies associated with edges that have delay
greater than or equal to the iteration count.

5.2. Verifying Valid Schedules

In this subsection we show how to verify whether a schedule isvalid, that is, whether it
correctly executes a given computation. We first give two necessary and sufficient conditions
for a schedule to be valid. We then describe a simple scheme that checks these conditions.

Given a computationG = (V, E,d, p, s) and scheduleS, the following two conditions
are necessary and sufficient forS to be valid.

(C1) For every computational blocku ∈ V , we must have thatu is in the schedule.

(C2) For every pairu, v in V such that there exists a path fromu to v in G such that
d(u, v) ≤ I , we must have thatu precedesv in the schedule.

The first condition ensures that every computational block computes an output. The second
condition ensures that data dependencies are not violated.

If the scheduleS is finite, conditions C1 and C2 can be verified inO(|S|2) time, where
|S| is the number of blocks in the schedule. Note that|S| = |V |. Verifying condition C1
requires a single scan of the schedule, which can be performed in linear time. In order to
verify condition C2, we first compute the transitive closure onG to determine reachability.
When computing the transitive closure, we compute the delay values of all edges and remove
the edges that have delay greater than or equal to the iteration count. We then perform a
pairwise check of all blocks in the schedule to determine whether the precedence constraint
C2 is satisfied between blocks that are reachable.

5.3. Optimization Algorithm

For the solution of the throughput optimization problem, we have applied a general combi-
natorial optimization technique known as simulated annealing (SA) [15]. The cost function
is the length of the schedule. The initial schedule presented to the SA algorithm is obtained
by a topological sort of the computation dataflow graph. Subsequent solutions are generated
by randomly swapping two blocks in the schedule until we obtain a valid new schedule.
We randomly choose a pair of blocks to swap in a schedule. For all the blocks between the
pair in the schedule, we need to check if they violate any dependency relationship with the
pair. This check can be efficiently performed using the transitive closure of the dataflow
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Table 7.Results of throughput optimization with data de-
pendencies:NB – number of blocks, RS – random solu-
tion, HS – heuristic solution, AIF – average improvement
factor.

Iteration Count

2 3 5

NB RS HS RS HS RS HS

5 529 292 696 394 982 577
8 824 439 1138 633 1489 851

10 1056 569 1388 795 1991 1150
15 1521 800 1912 1062 2844 1663
20 2174 1187 2731 1566 3993 2264

AIF — 1.9 — 1.8 — 1.7

computation graph. To reduce the running time, we have used a window parameterw such
that only a pair of blocks withinw blocks away in the schedule can be selected. As we use
largerw, we get better results with larger running time. We repeat the process until we get a
valid schedule. At any time during the execution of the algorithm, only valid schedules are
allowed. SA escapes local minima by allowing worse solutions to be accepted as new start-
ing solutions with an initially high probability that gradually decreases as the optimization
process continues.

5.4. Experimental Results

We randomly generated computations with 5, 8, 10, 15, and 20 blocks. We considered
iteration counts of 2, 3, and 5. The number of edges in the computation dataflow graph for
a single iteration was# blocks

2 , and the number of edges with a single delay was# blocks
5 . The

processing times and switching times were randomly chosen in the range between 1 and
100. The results of our experiments are given in Table 7. The best of 100 random solutions
are reported and compared with the heuristic solution. Observe that the improvement factor
decreases as the number of iteration count increases, since the percentage of the processing
time over the total execution time becomes higher.

6. Conclusion

This paper addresses the problem of scheduling blocks of computations in order to optimize
the efficiency of their execution on programmable embedded systems under a realistic
timing model of the processor. We leveraged on our approach to the block scheduling
problem to address simultaneous algorithm and architecture selection for both single and
multiple processor implementation platforms. The optimization objectives we considered
were throughput, cost, and power. We demonstrated the effectiveness of our schemes on
numerous examples. The target of our approach is on embedded software, but our results
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can be applied whenever static scheduling is used to map task graphs onto any type of
dynamically reconfigurable hardware.

Notes

In this paper, we use the term “block scheduling” to refer to task scheduling to minimize the
context switch time. Block scheduling is distinct from “block processing”, which performs
vectorization of tasks.
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