
Distributed and Parallel Databases, 17, 179–206, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Dynamic Foundational Architecture for Semantic
Web Services

BRAHIM MEDJAHED brahim@umich.edu
Department of Computer and Information Science, University of Michigan, Dearborn

ATHMAN BOUGUETTAYA athman@vt.edu
Department of Computer Science, Virginia Tech

Recommended by: Ahmed Elmagarmid

Abstract. The combination of Web services and ontologies is gaining momentum as the potential silver bullets
for tomorrow’s Web, i.e., the Semantic Web. We propose an architectural foundation for managing semantic Web
services in dynamic environments. We introduce the concept of community to cater for an ontological organization
of Web services. We develop an ontology called community ontology that serves as a “template” for describing
communities of Web services. We also propose a peer-to-peer approach for managing communities in dynamic
environments.

Keywords: semantic Web, Web services, ontologies, agents

1. Introduction

The world has seen a radical shift in economic, social, and political paradigms because of
the introduction of the Web. The Web has enabled and created a vast array of opportunities
that have transformed and transcended all types of activities. Before the advent of the Web,
there was a general “hunger” for data, i.e., data was not readily or cheaply available. What
we have witnessed since the Web has emerged, is a complete reversal of that trend where
the average user is now literally submerged with too “much” data that is hard to make sense
of. While search engines have tried to alleviate this problem, users are still locked into a
paradigm that forces them to manually sift through already filtered data. The underlying
issue has essentially been finding a strategy to turn Web data into usable information. This
is where the Semantic Web comes into play. The Semantic Web aims at augmenting the Web
with the necessary tools to allow data to be automatically understood by programs [2]. The
building blocks of the envisioned Semantic Web, heavily focused on the use of standards,
have already been laid down.

A key issue that has long been overlooked on the Web is the little or lack of broad
leveraging of the tremendous investments in Web applications developed over the years to
access Web data. These applications are typically customized to access corporate databases.
An effective solution to this issue consists of eliciting programmatic access to these appli-
cations and viewing them as first class objects so they can be reused (outsourced ) and



180 MEDJAHED AND BOUGUETTAYA

combined (composed ). Web services are a technology enabler proposed to materialize this
vision [1, 10]. Web services are a recent addition to the Semantic Web to deal with the glut
of Web applications. More formally, a Web service is a set of related functionalities that can
be programmatically accessed through the Web. Examples of Web services span several ap-
plication domains that include e-government (e.g., e-tax preparation) and B2B e-commerce
(e.g., stock trading) [1, 13]. The maturity of XML-based Web service technologies such
as SOAP, UDDI, and WSDL is one of the key factors contributing to the expected wide
adoption of Web services [1].

Another concept that is taking the spotlight in the envisioned Semantic Web is the concept
of ontology. An ontology is defined as a formal and explicit specification of a shared
conceptualization [2, 7, 14]. Ontologies are increasingly seen as key to enabling semantics-
driven data access and processing. They are expected to play a central role to empower Web
services with semantics. The combination of these powerful concepts (i.e., Web services
and ontologies) has resulted in the emergence of a new generation of Web services called
Semantic Web services. Semantic Web services are poised to be the building blocks of
tomorrow’s Web, i.e., the Semantic Web [10]. Applications “exposed” as Web services
would be understood, shared, and invoked by automated tools.

Semantic Web services have spurred an intense activity in industry and academia to ad-
dress challenging research issues such as the description, selection, monitoring, and com-
position of Web services. The diversity of these issues calls for the design and development
of a Web Service Management System where Web services would be treated as first-class
objects that can be manipulated as if they were pieces of data. The research presented in this
paper is part of a comprehensive framework we are developing for enabling the automatic
composition of Semantic Web services. Web service composition refers to the process of
combining several Web services to provide a value-added service, called composite ser-
vice [1, 10]. Paramount in this framework is the semantics of Web services. The automatic
composition of Web services raises several challenging issues including the meaningful or-
ganization and description of Web services, selection of relevant services, composability of
participant services (i.e., automatically checking whether they can actually work together),
and generating composite service descriptions. Our focus in this paper is on the issue of
organizing, describing, and managing semantic Web services.

The semantic organization and description of Web services is an important requirement
for deploying the envisioned Semantic Web. The number of Web services available on the
Web is increasing fast. Service providers maybe located in different places across the globe.
The large scale, dynamics, and heterogeneity of Web services may hinder any attempt
for “understanding” their semantics and hence managing them. To address this issue, we
propose a Semantic Web centered framework for organizing and describing Web services.
We introduce the concept of community to cater for an ontological organization of Web
services. Services are clustered into communities based on their domain of interest. We
develop an ontology called community ontology that serves as a “template” for describing
communities of Web services. A community provides a set of generic operations that can be
used “as is” or customized by underlying services. Service providers identify the community
of interest and register their service with it. The registration process is handled by a network
of software agents associated to service and community providers. An agent is a piece of



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 181

software capable of acting proactively to accomplish tasks on behalf of its consumers (e.g.,
service providers) [11].

The rest of this paper is organized as follows. In Section 2, we introduce the concept
of community to cater for an ontological organization of the service space. In Section 3,
we describe operational features of communities via generic operations. In Section 4, we
present the technique used for registering Web services with a community. In Section 5, we
propose a peer-to-peer approach for managing communities of Web services. In Section 6,
we describe our implementation. In Section 7, we give a brief survey of the related work.
We finally provide concluding remarks in Section 8.

2. An ontological framework for semantic Web services

While the outcomes of our approach are generic enough to be applicable to a wide range
of applications, we specifically target the area of government social services providing
benefits for senior citizens as a case study. Typically, a large set of services is offered to
help senior citizens including FasTran (transportation), Meals on Wheels (meal deliverers),
Meals Providers (restaurants), Senior Activity Center (social club for senior citizens). The
number of e-government Web services may be large. Some of those services are offered by
specialized agencies such as the Department for the Aging. Others are subcontracted from
outside organizations including state and federal government agencies (e.g., Department
of Health and Human Services), businesses (e.g., restaurants participating in a subsidized
government program), volunteer centers (e.g., used by Meals on Wheels service), and non-
profit organizations (e.g., American Red Cross).

2.1. Ontological support for communities

Combining the emerging Semantic Web concepts of Web services and ontology are at
the core of our approach. To cater for an ontological organization and description of Web
services, we propose the concept of community. A community is a “container” that clusters
Web services based on a specific area of interest (e.g., disability, adoption). All Web services
that belong to a given community share the same area of interest. Communities provide
descriptions of desired services (e.g., providing interfaces for insurance services) without
referring to any actual service.

We define a metadata ontology, called community ontology, for creating communities
of Web services. Metadata ontologies provide concepts that allow the description of other
concepts (communities and Web services in our case) [7]. Figure 1 summarizes the pro-
posed model for semantic Web services. Communities are instances of the community
ontology. They are created by community providers which use the community ontology as
a template. Community providers are generally groups of government agencies, non-profit
organizations, and businesses that share a common domain of interest. For example, the
Department for the Aging and other related agencies, such as the Department of Health,
would define a community that provides healthcare benefits for senior citizens. A commu-
nity is itself a service that is created, advertised, discovered, and invoked in the same way
“regular” Web services are. The providers of a community assign values to the attributes



182 MEDJAHED AND BOUGUETTAYA

Figure 1. The proposed model for Semantic Web services.

and concepts of the community ontology (figure 1: step a). Communities are published in a
registry (e.g., UDDI) so that they can be discovered by service providers (figure 1: step b).
Service providers (e.g., medicare provider) identify the community of interest (figure 1:
step c) and register their services with it (figure 1: step d). A Web service may belong
to different communities. For example a composite service (WS4 in figure 1) may out-
source operations that have different domains of interest (e.g., “healthcare” and “elderly”).
Since these operations belong to two different communities, the composite service is reg-
istered with the “healthcare” and “elderly” communities (C1 and C2 in figure 1). End-users
(e.g., case officers) select a community of interest and invoke its operations. Each invoca-
tion of a community operation is translated into the invocation of a community member’s
operation.

We use the emerging DAML+OIL language for describing the proposed ontology [9].
DAML+OIL builds on earlier Web ontology standards such as RDF and RDF Schema
and extends those languages with richer modeling primitives (e.g., cardinality) [9]. Our
approach is not dependent on DAML+OIL; other Web ontology standards (e.g., OWL)
could be used to describe the community ontology.

2.2. Structure of a community

A community Ci is formally defined by a tuple (Identifieri , Categoryi , G-operationi ,
Membersi ). The identifieri clause contains a unique name and a text description that sum-
marizes Ci ’s features (figure 2). Categoryi describes the area of interest of the community.



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 183

Figure 2. The general structure of a community.

All Web services that belong to Ci have the same category as Ci ’s. Ci is accessible via a
set of operations called generic operations. Those are specified in the G-operationi clause.
Generic operations are “abstract” operations that summarize the major functions needed
by Ci ’s members. Community providers define generic operations based on their expertise
on the corresponding area of interest that is, Ci ’s category. The term “abstract” means that
no implementation is provided for generic operations. Community providers only define
an interface for each generic operation opik . This interface could subsequently be used and
implemented by community members (i.e., actual Web services) interested in offering opik .
We say that those members support or import opik . The execution of opik hence refers to
the execution of an actual operation offered by a member that support opik . The Membersi

clause refers to the list of Ci ’s members. By being members of Ci , Web service providers
“promise” that they will besupporting one or several of Ci ’s generic operations. In this
section, we focus on describing the category clause and community ontology. Details about
generic operations and community members are given in Sections 3 and 4 respectively.

The category of a community Ci is formally defined by a tuple (Domaini , Synonymsi ,
Specializationi , Overlappingi ). Domaini gives the area of interest of the community (e.g.,
“healthcare”). It takes its value from a taxonomy for domain names. For flexibility pur-
poses, different communities may adopt different taxonomies to specify their category. We
use XML namespaces to prefix categories with the taxonomy in which they are defined.
Simply put, XML namespaces provide a method for qualifying element and attribute names
used in XML documents by associating them with URI references. Synonymsi contains a



184 MEDJAHED AND BOUGUETTAYA

set of alternative domain names for Ci . For example “medical” is a synonym of “health-
care”. Values assigned to this attribute are taken from the same taxonomy as the one used
for domains. Specializationi is a set of characteristics of the Ci ’s domain.For example,
“insurance” and “children” are specialization of “healthcare”. This means that Ci provides
health insurance services for children. Communities are generally not independent. They
are linked to each other via inter-ontology relationships. These relationships are specified
in the Overlappingi attribute. Overlappingi contains the list of categories that overlap with
Ci ’s category. It is used to provide a peer-to-peer topology for connecting communities with
“overlapping” categories. We say that categoryi and category j overlap if they are related
to each other. For example, an operation that belongs to a community whose domain is
family may be combined with another operation that belong to a community whose domain
is insurance. This would enable providing health insurance for needy families. It should be
noted that it is the responsibility of the community providers to identify related categories
and assign them to the overlapping attribute.

2.3. Generic operations

A generic operation is defined by a set of functional and non-functional attributes. Func-
tional attributes describe syntactic and semantic features of generic operations. Syntactic
attributes represent the structure of a generic operation. An example of syntactic attribute
is the list of input and output parameters that define the operation’s messages. Semantic
attributes refer to the meaning of the operation or its messages. We consider two types of
semantic attributes: static and dynamic semantic attributes. Static semantic attributes (or
simply static attributes) describe non-computational features of generic operations. Those
are semantic attributes that are generally independent of the execution of the operation.
An example of static attribute is the operation’s category. Dynamic semantic attributes (or
simply dynamic attributes) describe computational features of generic operations. They
generally refer to the way and constraints under which the operation is executed. An exam-
ple of dynamic attribute is the business logic of the operation i.e., the results returned by
the operation given certain parameters and conditions.

Non-functional attributes, also called qualitative attributes, include a set of metrics that
measure the quality of the operation. Examples of such attributes include time, availability,
and cost. Two services providers that support the same generic operation may have different
values for their qualitative attributes. Non-functional attributes model in fact the competitive
advantage that Web services may have on each other.

While defining a community, community providers assign values to part of the attributes
of their generic operations. The rest of the attributes are assigned either by service providers
or third parties during the registration of Web services with Ci . For example the types of
input and output messages (e.g., purchase order, registration confirmation) are define by
community providers. The cost (dollar amount) of executing an operation is service-specific
and hence defined by the service provider. The other qualitative attributes (e.g., response
time, availability) are assigned by third parties (e.g., trusted parties). The way those parties
determine the values to be assigned (e.g., via monitoring) is out of the scope of this paper. It
is worth noting that the values of some attributes may be assigned by both community and



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 185

service providers. For example, the content of input/output messages is given by community
providers. However, service providers may modify this content by adding and/or removing
parameters to input and output messages.

2.4. Community members

Service providers can, at any time, select a community of interest (based on categories) and
register their services with it. The registration process requires giving an identifier (WS-ID),
name, and description for the Web service. The identifier takes the form of a unique UUID.
The description summarizes the main features of the Web service. Service providers specify
the list of generic operations supported by their service through the imported attribute.
We define three techniques for importing generic operations: projection, extension, and
adjustment. Details about these techniques are given in Section 4. The invocation of an
importedoperation is translated into the invocation of an “actual” service operation. The
correspondence between imported and “actual” operations is done through the mapping
attribute. For each imported operation, the provider gives the ID of the corresponding
“actual” operation. It also defines a one-to-one mapping between the imported operation’s
parameters and “actual” operation’s parameters. Defining mappings between parameters
enables the support of “legacy” Web services. Providers do not need to change the message
parameters in their actual service codes.

Assume that a service provider SP offers a given operation op. The following three cases
are then possible: (i) If there is a community Ci that contains a generic operation opik similar
to op, SP would import opik “as is”; (ii) If there is a community Ci that contains a generic
operation opik “closely” similar to op (e.g., op has less input parameters than defined in
opik), SP would import opik using projection, extension, and/or adjustment technique; (iii)
If no community has an operation similar or “closely” similar to op, SP would define a new
community C j that has op as a generic operation and SP’s service as a member. The latter
case is similar to the “traditional” WSDL/UDDI/SOAP model where service providers
create descriptions for their services. The difference is that, in our case, SP instantiates
the attributes and concepts of the community ontology while in the “traditional” model,
providers define their service descriptions from scratch.

3. Operational description of communities via generic operations

As mentioned previously, a generic operation is described at four different levels: syntactic,
static semantic, dynamic semantic and qualitative levels. In this section, we give a detailed
description of generic operation attributes for each of those levels.

3.1. Syntactic attributes

We identify two levels for syntactically describing a generic operation: operation and
message levels. The operation level contains attributes that describe the operation (e.g.,
name, description of the operation). The message levels caters for the syntactic description



186 MEDJAHED AND BOUGUETTAYA

of messages exchanged by the operation (e.g., name, and data type of a message
parameter).

3.1.1. Operation syntax. A generic operation has a unique identifier called G-op-ID. It
takes the form of a Universally Unique ID (UUID). A UUID is an identifier that is unique
across both space and time [1]. The operation also has a name and a text description
thatsummarizes the operation’s features. The binding defines the message formats and
protocols used to interact with the operation. An operation may be accessible using several
bindings such as SOAP/HTTP, and SOAP/MIME. The binding of an operation is assigned
by the service provider. This is in contrast to the rest of syntactic attributes whose values
are pre-defined by community providers. Indeed, the binding attribute is dependent on the
way the generic operation is implemented at the service provider side. A provider may
offer SOAP/HTTP access to a generic operation supported by its Web service while another
provider may prefer to use SOAP/MIME for the same operation.

The mode of an operation refers to the order according to which its input and out-
put messages are sent and received. It states whether the operation initiates interactions
or simply replies to invocations from other services. We define two operation modes:
In/Out or Out/In. One of this values is assigned by community providers to each oper-
ation. In/Out operation first receives an input message by a client, process it (locally or
forward it to another service), and then returns an output message to the client. Out/In
first sends an output message to a server and receives an input message as a result. An
example of In/Out operation is checkEligibilityWIC which checks citizen’s eligibility
for a nutrition program for pregnant women (WIC or Women Infant and Children). As
specified in WSDL standard, some operations may be limited to an input or an output mes-
sage [1]. For example, expirationWIC is an operation that automatically notifies citizens
about the termination of their eligibility period for WIC programs. This operation obvi-
ously does not require any input message. However, such operations may be considered as
In/Out or Out/In operations where the input or output message is empty. Hence, without
loss of generality, we focus in the proposed framework on the aforementioned operation
modes.

3.1.2. Message syntax. Each input or output message contains one or more parameters.
A parameter has a name and data type. We use the set In-Out (G-op-ID) to refer to the list
of input and output parameters’ names. The data type gives the range of values that may be
assigned to the parameter. We use XML Schema’s built-in data types as the typing system.
Built-in types are pre-defined in the XML schema specification. They can be either primitive
or derived. Unlike primitive types (e.g., string, decimal), derived types are defined in
terms of other types. For example, integer is derived from the decimal primitive type.
Although message parameters are predefined by community providers, service providers
have the ability to add new parameters, remove some, or change the content (e.g., data
type) of pre-defined parameters. In Section 4, we give more details about the way service
providers modify the content of operation messages.



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 187

3.2. Static semantic attributes

The static semantics of a generic operation refers to a set of attributes whose content is
independent of the execution of the operation. It should not only specify the semantics of
the operation itself (e.g., what does the operation do) but also the semantics of all messages
handled by the operation. In the rest of this section, we define static semantics at two levels:
the message parameter and operation levels.

3.2.1. Operation semantics. The static semantic of an operation is defined by the following
attributes: serviceability, provider type, consumer type, purpose, and category. Serviceabil-
ity gives the type of assistance provided by the operation. Examples of values for this attribute
are “cash”, “in-kind”, “informational”, and “educational”. TANF (Temporary Assistance
for Needy Families) is an example of welfare program that provides financial support to
needy families. A food stamp is an example of in-kind support available to indigent citi-
zens. Returning the list of senior activity centers is an example of informational support.
Enhancing communication skills of visuallyimpaired people is an example of educational
support. Other types of support may bementioned by assigning the value “other” to this
attribute.

A generic operation may be supported viaone or several provider types. A provider may be
governmental (“federal”, “state”, “local”, and “tribal”) or non-governmental (“non-profit”
and “business”) agencies. For example, nursingHome may be provided by the Department
of Aging (government agency) and Red Cross (non-profit). The consumer type property
specifies the group of citizens (e.g., children, pregnant women) that are eligible to the
operation’s welfare program. Different groups may be eligible for the same benefit. For
example, WIC (Women, Infant, and Children) is a program for pregnant women, lactating
mothers, and children.

Each generic operation performs a certain functionality for a specific area of interest. This
is specified through the purpose and category attributes respectively. An operation inherits
the category of the community in which it is defined. Hence, all operations that belong
to the same community share the same category. The purpose attribute describes the goal
of the operation. It is defined by three attributes: function, synonyms, and specialization.
The function describes the businessfunctionality offered by the operation. Examples of
functionsare “eligibility” and “registration”. Synonyms and specialization attributes work
as they do for categories.

3.2.2. Message semantics. Messages must be semantically described so that they can
be “correctly” interpreted by service providers and consumers. We associate a message
type MT to each message. MT gives a general description of the content represented
by the message. For example, a message may represent a purchase order or an invoice.
Vertical ontologies are the ideal concept to describe the type of message. Vertical ontologies
capture the knowledge valid for a particular domain such as medical, mechanic, chemistry,
and electronic [7]. An example of such ontology is RosettaNet’s PIPs (Partner Interface
Processes) [3].

The message type does not capture the whole semantics of a message. Indeed, it is
important to describe the semantics of each parameter belonging to that message. Message



188 MEDJAHED AND BOUGUETTAYA

parameters are so far represented through their name and data type. While data types
are an important feature of message parameters, they do not capture their semantics. For
example, an eligibility period parameter may be specified in days, weeks, or months.
We identify three attributes to model the semantics of message parameters: business role,
unit, and language. These attributes are pre-defined by community providers. The business
role gives the type of information conveyed by the message parameter. For example, an
address parameter may refer to the first (street address and unit number) or second (city
and zip code) line of an address. Another example is that of a price parameter. It may
represent a total price or price without taxes. Business roles take their values from a pre-
defined taxonomy. Every parameter would have a well-defined meaning according to that
taxonomy. An example of such taxonomy is RosettaNet’s business dictionary [3]. It contains
a common vocabulary that can be used to describe business properties. For example, if the
price parameter has an “extendedPrice” role (defined in RosettaNet), then it represents a
“total price for a product quantity”. For flexibility purposes, different community providers
may adopt different taxonomies to specify their parameters’ business roles. As for categories,
we use XML namespaces to prefix business roles with the taxonomy according to which
they are defined.

The unit attribute refers to the measurement units in which the parameter’s content is
provided. For example, a weight parameter may be expressed in “Kilograms” or “Pounds”.
A price parameter may be in “US Dollars” or “Euro”. We use standard measurement units
(length, area, weight, money code, etc.) to assign values to parameters’ units. If a parameter
does not have a unit (e.g., address), its unit is equal to “none”. The content of a message
parameter may be specified in different languages. For example, a profession parameter
may be expressed in English or Spanish. A translation operation make take as input,
an English word (input parameter) and returns as output, its translation in Urdu (output
parameter). We adopt the standard taxonomy for languages to specify the value of this
attribute. In contrast to the business role whose content is handled only by community
providers, the unit and language attributes may changed by service providers. Service
providers should have the flexibility to support more units and languages than those specified
by community providers. For example, a service provider may decide to support a weight
parameter in both “Kilograms” and “Pounds” although the community providers specified
“Pounds” as the only measurement unit for this parameter. We give below a formal definition
of a message parameter. The definition includes both syntactic and semantic attributes. Each
message (input or output) is defined as a set of such parameters.

Definition 1 (Message parameter). A message parameter P is defined as a tuple (T , R,
U , L) where T is the parameter’s data type (in XML Schema), R is its business role taken
from a taxonomy for business roles, U gives P’s unit of measurement, and L is the set of
languages according to which P may be expressed.

3.3. Dynamic semantics

Dynamic semantics allows the description of attributes related to the execution of generic
operations. Those attributes may relate the execution of an operation opik to the execution of



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 189

other operations (inter-operation attributes) or describe features inherent to the execution of
opik (intra-operation attributes). The execution of an operation opik generally goes through
four major observable states: Ready, Start, Active, and end. The execution of opik is in the
Ready state if the request for executing opik has not been made yet. The Start state means
that opik execution has been initiated. It refers to one of the following events: (i) an input
message is sent to opik if opik’s mode is In/Out; or (ii) an output message has been sent from
opik if opik’s mode is Out/In. We say that opik is in the Active state if opik has already been
initiated and the corresponding request is being processed. After processing the request,
the operation reaches the End state during which results are returned. It refers to one of
the following events: (i) an output message is sent to the client if opik’s mode is In/Out;
or (ii) an input message is received from the server if opik’s mode is Out/In. We define a
precedence relationship between states, noted →t , as follows: S1 →t S2 if S1 occurs before
S2.

3.3.1. Pre-operations. Executing a Web service operation may require going through a pre-
defined process that involvesthe execution of several operations called pre-operations.This
pre-defined process may be dictated by government regulations. For example, senior citizens
must first register with a an Area Agency on Aging via checkRegistration operation
before applying for any welfare program. They may also reflect the business logic of the
Web service. For example, senior citizens must order a meal from a participating restaurant
via the orderMeal operation before requesting its delivery through the mealsOnWheels
operation.

Let us consider two generic operations opik and op jl that belong to the same or different
communities. We say that opik is a pre-operation of op jl if the invocation of op jl is preceded
by the execution of opik . We call opik and op jl source and target operations respectively. An
operation may have several pre-operations. It may also be the source (i.e., pre-operation)
of several operations. We give below a formal definition of the pre-operation relationship.

Definition 2 (Pre-operation). Let opik and op jl be two generic operations. opik is a pre-
operation of op jl if End(opik) →t Ready(op jl).

The definition of a pre-operation relationship includes a source operation opik , target
operation op jl , and the condition and mandatory attributes. The condition is a predicate
over opik’s input and output parameters. op jl can be invoked only if all its pre-operations
reached their End state and their conditions are true. If no condition is specified for a given
pre-operation then the default value is “true”. For example, mealsOnWheels is executed
only if the orderMeal operation has been approved. The mandatory attribute takes boolean
values and specifies whether the executing the source operation is mandatory or optional.
If this attribute is true then the relationship between opik and op jl is obligatory. Otherwise,
it is recommended. For example, senior citizens must have ordered meals from a restaurant
before requesting home delivery from a volunteer center. However, it is recommended to
get the list of participating (participatingRestaurants) restaurants before ordering a
meal. Indeed, users can directly order a meal from a restaurant if they already know that
restaurant’s name.



190 MEDJAHED AND BOUGUETTAYA

3.3.2. Post-operations. The execution of a given operation may trigger the invocation
of other operations called post-operations. For example, a pregnant women that registers
successfully for a food check program women (registerFoodCheck) is required to register
for a nutritional counseling course (registerNutritionCourse). We say that opik is a
post-operation of op jl if the termination of op jl precedes the invocation of opik . We call
op jl and opik source and target operations respectively. An operation may have several
post-operations. It may also be the target (i.e., post-operation) of several operations. Note
that if opik is a pre-operation of op jl then op jl is not necessarily a post-operation of opik .
For example, checkRegistration is pre-operation of orderMeal. However, orderMeal
is not a post-operation of checkRegistration. Indeed, users do not need to order meals
whenever their registration with the Department on the Aging is checked. We give below a
formal definition of the post-operation relationship.

Definition 3 (Post-operation). Let opik and op jl be two generic operations. opik is a post-
operation of op jl if End(op jl) →t Ready(opik).

As for pre-conditions, we associate a condition and mandatory attribute to each post-
operation relationship. A target operation enters the initiation states if at least one of its
source operations has reached its End state and the corresponding condition is true. A post-
operation may also bemandatory or optional. For example, a pregnantwomen that registers
for a food check program women (registerFoodCheck) must also register for nutritional
counseling course by invokingregisterNutritionCourse (mandatory = true). The post-
operation register is optional (mandatory = false). Indeed, citizens do not necessarily
have to register with the Department on the Aging if they are not willing to do so.

3.3.3. Community diagram. Pre and post-operations provide means to specify pre-defined
business processes within a community. In the case of e-government, those business pro-
cesses are mostly driven by government regulations and laws. Several process models have
been proposed in the literature such as Petri-nets, statecharts, and π -calculus. In our ap-
proach, we adopt UML activity diagrams as to model pre-operation and post-operation
relationships within a community [8]. We refer to such diagram as a community diagram.
Activity diagrams are the most widely used process modeling techniques both in conven-
tional interaction technologies (e.g., workflows) and Web services [1]. The reason for their
success is their ease-of-use and simplicity for modeling business processes. Several tools
(e.g., Rational Rose) are available for designing business processes using activity diagrams.
Additionally, the Unified Modeling Language (UML) has become the de facto standard for
representing application architecture and design models. Finally, activity diagrams model
orchestrations by specifying which actions should be performed, from the beginning of the
execution to the end. This seems to be the most natural way in which community and service
providers think of a process [1].

Activity diagrams show the flow of activities in a business process. In our approach, each
activity represents a generic operation. Generic operation within a diagram may belong
to different communities. In this case, the community name prefaces the G-op-IDs. We
refer to such pre/post operations as remote pre/post operations. We depict in figure 3 part
of the diagramfor the elderly community. The filled circle is the starting point of the



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 191

Figure 3. An example of community diagram.

diagram. The filled circle with a border is the ending point. Each edge in the diagram
is labeled with a relationship attribute. This attribute takes one of the values “Pre” or
“Post” to specify whether the edge models a pre or post-operation. For example, the edge
checkRegistration → orderMeal models a pre-operation relationship. It specifies that
users should execute checkRegistration before initiating the execution of orderMeal.
Community diagrams may also indicate that one operation conditionally follows another.
For example, the diamond between the checkRegistration and orderMeal operations
states that the the value returned by the register parameter should be “true” before
invoking orderMeal. The edge registerFoodCheck → registerNutritionCourse
models a post-operation relationship. It mentions that all citizens that successfully apply
for a food check program should register for a nutrition course. Conditional constructs (i.e.,
diamonds) are labeled with a mandatory attribute defined as in Section 3.3.1. Community
diagrams may also model parallelism via fork and join constructs. A fork is represented by
a black bar with one flow going into it and several leaving it. It denotes the beginning of
parallel processing. A join is depicted by a black bar with several flows entering it and one
leaving it. It denotes the end of parallel processing.

3.3.4. Behavior. The behavior of a generic operation opik refers to the outcome expected
after executing opik given a specific condition. It is defined by a set of business logic rules
where each rule Rm

ik has the following format:

Rm
ik =

(
PreParametersm

ik, PreConditionm
ik

)

(
PostParametersm

ik, PostConditionm
ik

)

PreParametersm
ik and PostParametersm

ik are sets of parameters. Each parameter is defined
by name, data type, business role, unit, and language as stated in Definition 1. The elements



192 MEDJAHED AND BOUGUETTAYA

of PreParametersm
ik and PostParametersm

ik generally refer to opik’s input and output parame-
ters. However, they may in some cases refer to parameters that are neither input nor output
of opik . For example, assume that the address of every citizen registered with the Depart-
ment on the Aging is stored in the department’s database. In this case, this parameter should
not be required as input for the orderMeal operation since its value could be retrieved
from the database. PreConditionm

ik and PostConditionm
ik are predicates over the parame-

ters in PreParametersm
ik and PostParametersm

ik respectively. The rule Rm
ik specifies that if

PreConditionm
ik holds when the operation opik starts, then PostConditionm

ik holds after opik

reaches its End state. If PreConditionm
ik does not hold, there are no guarantees about the be-

havior of the operation. Preconditions generally specify relationships between input values.
Similarly, post-conditions generally specify relationships between the returned values. The
following is an example of the pre and post condition of a rule associated with the operation
registerFoodCheck:

PreCondition: (income < 22,090) ∧ (familySize ≥ 2) ∧ (zipCode = 22044)
PostCondition: (approved = true) ∧ (duration = 6)

The rule uses the parameters income (unit = {year, US dollar}), familySize, and zipcode
in the pre-condition. The attributes approved and duration (unit = {month}) are used in
the post-condition. The rule specifies that citizens with a yearly income less than 22,090
US dollars and a minimum household size 2 are eligiblefor food checks and the eligibility
period is 6 months.

3.4. Qualitative properties

Multiple Web services that belong to the same community may import the same generic
operation. It is hence important to define a set attributes that help select the “best” Web
service supporting a given functionality. For this purpose, we define a Quality of Operation
(QoP) model based on a set of qualitative attributes that are transversal to all operations
such as the cost and response time.

The international quality standard ISO 8402 describes quality as “the totality of features
and characteristics of a product or service that bear on its ability to satisfy stated or im-
plied needs” [12, 15]. Wedefine QoP as a set of non-functional attributes that may impact
the quality of the operations imported by a Web service. There are many QoP attributes
important to Web services operations. We organize them into three groups of quantifiable
attributes based on type of measurement performed by each attribute: run-time, business,
and security. Note that other attributes and groups may be added to our QoP model without
altering the generality of our approach.

Run-time attributes. These attributes enable the measurement of properties that are re-
lated to the execution of an operation opik . We identify three run-time attributes: response
time, reliability, and availability. The response time measures the expected delay in seconds
between the moment when opik) enters the Start state (i.e., opik is initiated) and reaches



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 193

the End state (i.e., opik gets or sends the results). Time(opik) is computed using the expres-
sion Timeprocess(opik) + Timeresults(opik). This means that the response time includes the
time to process the operation (Timeprocess) and the time to transmit or receive the results
(Timeresults). The reliability of opik is the ability of the operation to be executed within
the maximum expected time frame. Reliability(opik) is computed based on historical data
about previous invocations of the operation using the expression Nsuccess(opik)/Ninvoked(opik)
where Nsuccess(opik) is the number of times that the operation has been successfully executed
within maximum expected time frame and Ninvoked(opik) is the total number of invocations.
The availability is the probability that the operation is accessible. Availability(opik) is mea-
sured by the expression UpTime(opik)/TotalTime(opik) where UpTime is the time opik was
accessible during the total measurement time TotalTime.

Business attributes. These attributes allow the assessment of an operation opik froma
business perspective. We identify three business attributes: cost, reputation, and regulatory.
The cost gives the dollar amount required to execute opik . The reputation of opik is a mea-
sure of the operation’s trustworthiness. It mainly dependson users’ experiences on invoking
opik . Users are givena range to rank Web service operations (e.g., between 1 and 10). The
lowest value refer to the best ranking. Different users may have different opinions on the
same operation. The reputation of opik is defined by the average ranking given by users to
the operation. Reputation(opik) is computed by the expression

∑n
u=1 Rankingu(opik)/n,

where Rankingu is the ranking by user u and n is the number of the times the opera-
tion has been ranked. The regulatory property is a measure of how well opik is aligned
with government regulations. Regulatory(opik) is value within a range (e.g., between 1
and 10). The lowest value refer to an operation that is highly compliant with government
regulations.

Security attributes. These attributes describe whether the operation opik is compliant
with security requirements. Indeed, service providers collect, store, process, and share in-
formation about millions of users who have different preferences regarding security of
their information. We identify four properties related to security and privacy: encryption,
authentication, non-repudiation, and confidentiality. Encryption is a boolean that indi-
cates whether opik’s message aresecurely exchanged (using encryption techniques) be-
tween servers and clients. Authenticationis a boolean that states whether opik’s consumers
(users and other services) are authenticated (e.g., through passwords). Non-repudiation is
a boolean that specifies whether participants (consumers and providers) can deny request-
ing or delivering the service after the fact. The confidentiality attribute indicates which
parties are authorized to access the operation’s input and output parameters. Confiden-
tiality (opik) contains opik’s input and output parameters that should not be divulged to
external entities (i.e., other than the service provider). If a parameterdoes not belong to
Confidentiality(opik), then no confidentiality constraint is specified on that parameter. As-
sume that confidentiality (opik = {SSN, salary} where SSN, salary are two opik’s input
parameters. The content of this attribute states that those two parameters are kept private
by opik’s provider.



194 MEDJAHED AND BOUGUETTAYA

4. Registering Web services with communities

Registering A Web service with a community refers to the process of importing generic
operations. The invocation of an imported operation is translated into the invocation of an
“actual” service operation. The correspondence between imported and “actual” operations
is done through the mapping attribute. For each imported operation, the provider gives the ID
of the corresponding “actual” operation. It also defines a one-to-one mapping between the
imported operation’s parameters and “actual” operation’s parameters. Defining mappings
between parameters enables the support of “legacy” Web services. Providers do not need
to modify the message parameters in their actual service codes.

4.1. The Web service registration process

The registration process is handled by a network of software agents associated to service
and community providers. Member and community agents (MA j and CAi ) are attached to
each service and community provider (SP j and CPi ) respectively (figure 4). MA j handles
the registration of SP j ’s Web services with the community Ci . SP j registers its service
WS-ID using the following registration statement:

Register Service WS-ID With Community Ci

Name service-name
Description service-description
[Imported Generic G-op-ID

<importing statements>
Mappings With Actual Op-ID

[G-op-ID.<parameter> Maps To Op–ID.<parameter>]+]+

Figure 4. The web service registration process.



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 195

The clauses in the aforementioned statement correspond to the different attributes defined
for service members within the community ontology. The <importing statements> is a
sequence of statements for importing generic operation. A Web service may import several
generic operations as stated by the “+” iteration symbol.

MA j parses the registration statement and sends a registration message SP Register(WS-
ID,name,desc,imported) to CAi (figure 4, step (a)). The message includes the service ID
(WS-ID), name, description, and the list of imported operations. The imported set is equal to
{(G-op-ID,mappings,AttSet,NotImpSet)}. It includes the mappings of G-op-ID (ID of the
imported operation) with actual service operation. AttSet is the set of G-op-ID’s attributes
with their values as assigned by SP j . It is defined by the set {(attribute,value)}. NotImpSet
is the list of non-imported attributes. MA j maintains a Communities List CL j and Rule Base
RB j . CL j is the list of communities with which SP j ’s Web services are registered. Each
entry in this list contains the G-op-ID of an imported operation, the WS-ID of the service
that imported it, and the ID (CA-ID) of the community agent CAi . To enable fast access to
CL j , we sort it on the G-op-ID column using Counting Sort algorithm [6]. RB j contains a
set of rules that enable MA j to react to changes issued by community providers.

Upon reception of the registration message, CAi updates the content of Ci ’s members
list MLi (figure 4, steps (c) and (d)). Each entry in MLi contains the ID of the imported
operation (op-ID), the ID of the importing service (WS-ID), the ID of WS-ID’s agent (MA-
ID), WS-ID’s status (“available ”, “unavailable”, or “unsubscribed”), and the list NotImp
of G-op-ID’s attributes not imported by WS-ID. The NotImp column is assigned with the
content of NotImpSet included in the registration message. We sort MLi on the op-ID column
using Counting Sort algorithm to enable fast access to MLi [6].

Figure 5 gives the algorithm executed by a community agent C Ai and member agent
M A during registration. SP Register(WS-ID,name,desc,imported) describes the actions
executed by CAi as a reaction to a registration message sent by M A. The Insert Member()
function allows the insertion of a new member in Ci ’s description. Insert ML() function
allows the insertion of a new entry in the MLi list for members.

Figure 5. Service registration: Member and community agent algorithms.



196 MEDJAHED AND BOUGUETTAYA

4.2. Importing generic operations

Service providers use generic operations as “templates” to define their operations. A Web
service may offer all or some of the generic operations defined within a community. The
provider specifies the G-op-IDs of the operations imported by its service. By adopting
a generic operation, the service provider “promise” to abide by all attributes (syntactic,
semantic, and behavioral) of that operation except those changed explicitly during importa-
tion. Providers may customize generic operations to best fit their capabilities via importing
statements. Customization has the important advantage of enabling flexible and personal-
ized Web service descriptions. It is important to note that customization process does not
affect the description of generic operations. Two service providers may import the same
generic operation in different ways.

We define three importing statements: projection, extension, adjustment. Importing state-
ments are defined within member agents. Projection, extension, and adjustment may be
combined to define imported operations. For example, a service provider may use projec-
tion and extension to remove existing parameters from a generic operation and add new
ones.

Projection. A generic operation G-op-ID imported by projection uses a subset of the in-
put/output parameters defined in G-op-ID. The rest of message parameters are not imported
by the service and hence, are included in the NotImpSet sent by the member agent to the
community agent. Assume that a checkRegistrationAAA operation includes register
(boolean) and registrationDate (date) as output parameters. A service provider may
customize this operation by keeping only the register parameter if it is not interested in
returning citizen’s registration date. In what follows, we give the general form of a Project
statement. The input and output clauses give the subset of G-op-ID’s parameters supported
by the imported operation:

Project G-op-ID
Input <list-of-parameter-names>
Output <list-of-parameter-names>

The AttSet submitted with the registration message takes the form {(att,value)} where att
is a projected parameter and the content of value is “null” since no new value is assigned to the
input or output parameter. We refer to AttSet.Attributes as the list of projected parameters.
The list of not imported attributes NotImpSet is defined by the expression (In(opik) ∩
Out(opik)) − AttSet.Attributes.

Extension. An imported operation defined by extension adds input and/or output param-
eters to the corresponding generic operation. The new parameters and their values are
included in the registration messages sent by the member agent to the community agent.
For example, a service provider (e.g., a volunteer center) may extend the mealsOnWheels
operation by adding the deliverer’s cell phone number as an output parameter. Service
providers must assign values to the attributes of each new message parameters, namely data
type, unit, business role, and language. Below is the general form of an extension statement:



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 197

Extend G-op-ID
Input [(<name>, <data-type>, <unit>, <business-role>, <language>)]∗

Output [(<name>, <data-type>, <unit>, <business-role>, <language>)]∗

The AttSet submitted with the registration message takes the form {(att,value)} where att
is a new attribute added by the extension statement and value = (<name>, <data-type>,
<unit>, <business-role>, <language>). The list of not imported attributes NotImpSet is
empty since all message parameters are imported.

Adjustment. The aim of an adjustment statement is to modify the content of a generic
operation’s attributes. Service providers may assign values to attributes whose content is
undefined (e.g., qualitative attributes) or change the content of previously assigned attributes
(e.g., language attribute). Adjustment is done by adding a value to an attribute (Add clause)
or deleting an existing value from it (Delete clause). For example, service providers may
modify the language attribute if their operation supports a language different from the
one specified by community providers. The Add and Delete clauses may be combined to
remove and add values to an attributes. The new and deleted values are included in the
registration messages sent by the member agent to the community agent. The general form
of an adjustment statement is given below:

Adjust G-op-ID
Add [<value> To <attribute>]∗

Delete [<value> From <attribute>]∗

The AttSet submitted with the registration message takes the form{(att,[“+”/“−”],value)}
where att is an attribute modified by the adjustment statement. The value is preceded by a
“+” or “−” symbol depending on whether that value is added or deleted from att respec-
tively. The list of not imported attributes NotImpSet is empty since all message parameters
are imported.

5. A peer-to-peer approach for managing communities

Communities and their members operate in a highly dynamic environment where changes
can be launched to adapt to actual business climate (e.g., economic, politic, organizational).
Changes are initiated by community or service providers. At the community providers side,
generic operations may be dynamically added, deleted, and modified. If a generic operation
G-op-ID is deleted or modified, then all members that are supporting G-op-ID should be
notified to ensure global consistency. At the service provider side, a Web service may cancel
its membership with a community, make its operations temporarily unavailable, or modify
the definition of its imported operations. The community provider should in this case be
notified to avoid references to inexistent or obsolete imported operations.

In our approach, all changes are introduced through member and community agents.
Agents automatically interact with their peers to manage changes. We consider two types
of changes based on the party that launched them: community or service providers.



198 MEDJAHED AND BOUGUETTAYA

Figure 6. Propagating changes initiated by a community provider to its members.

5.1. Propagating changes initiated by community providers

Community providers (CPs) may modify the definition of their generic operations (figure 6).
For example, they may change the pre-operations attribute to reflect new government reg-
ulations. For this purpose, each CPi executes a Modify statement defined in its CAi agent
(figure 6, step 1). The statement includes the G-op-ID of the operation to be modified by
CPi and a ModifySet that contains the list of attributes to be modified along with their
new content. ModifySet is defined by the set {(<attribute>,[“+”/“−”],<value>)}. We
use the notation ModifySet. Att to refer to the set of modified attributes. CAi will then
access the service registry and update Ci ’s description by changing the content of Modify-
Set.Att’s attributes (figure 6, step 2). In the third step, CAi accesses MLi list to determine
the list L of members subscribed with CPi ’s changes. A member WS-ID is subscribed
with CPi ’s changes if WS-ID imports G-op-ID and at least one attribute in ModifySet.Att is
imported by WS-ID. CAi assigns the value “unavailable” to the status of each subscribed
member. This prevents references to members that imported “obsolete” generic operations
(figure 6, step 3). Finally, CAi sends a CP-Modify(G-op-ID,WS j ,ModifySet) notification to
each subscribed member’s MA j (figure 6, step 4). We give below a formal definition of a
subscription:

Definition 4 (Subscription). Let Ci be a community and WS j be a member that imported an
operation opik . WS j is subscribed with changes specified in CP-Modify(G-op-ID,ModifySet)
if (i) G-op-ID = opik and (ii) ModifySet.Att – MLi [k].NotImp �= ∅ where k is the entry
corresponding to G-op-ID and WS j .

Because pre and post-operations for a given operation opik may belong to different com-
munities, we associate two “dual” subscription lists PPCSi and PPMSi to each community
agent CAi . These lists are used to notify relevant parties (communities and members) about



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 199

Figure 7. Propagating changes initiated by community providers to their peers.

changes that are related to remote pre and post-operations. PPCSi (Pre and Post-operation
Community Subscription) contains the list of communities C j that use an operation opik of
Ci as a remote pre or post-operation. Each entry in PPCSi contains the ID (op-ID) of opik

and the ID of C j ’s agent (CA-ID). Such entry is created at C j ’s definition time; at that time,
CA j sends a CP-PP-subscribe-CP(op-ID) to CAi (CP stands for Community Provider and
PP for Pre/Post operation). PPCSi is used to notify C j about changes that occur in opik .
Each time CPi executes a Modify statement on opik , CAi accesses PPCSi list and sends a
notification CP-PP-Alert-CP(opik) to each community agent CA j that uses opik as a remote
pre or post-operation (figure 7). We sort PPCSi on the op-ID column using Counting Sort
algorithm to enable fast access to the list [6]. Once the CP-PP-Alert-CP(opik) message is
received by CA j , CA j notifies C j ’s members using the PPMS j list.

PPMS j (Pre and Post-operation Member Subscription) contains the list of C j ’s members
that use the operations opik of other communities Ci as remote pre or post-operations. This
list is created at C j ’s definition time. It is used to notify members about changes that occur
in their pre and post-operations. Each entry in PPMS j contains the ID (CA-ID) of the
community agent CAi , the ID (PP-ID) of the remote pre or post-operation opik , and the ID
(MA-ID) of the agent of a C j ’s member that uses opik as a remote pre or post-operation. CA j

accesses the PPMS j list and sends a notification message CP-PP-Alert-SP(opik) (SP stands
for Service Provider) to each member agent MA-ID that uses opik as a remote pre-operation
(figure 7). We sort PPMSi on the CA-ID column using Counting Sort algorithm to enable
fast access to the list [6]. To prevent references to members that imported “obsolete” generic
operations, CA j assigns the value “unavailable” to the status of MA-ID entries in ML j list.



200 MEDJAHED AND BOUGUETTAYA

Figure 8. Generic operation modification: Community agent algorithm.

We only consider entries in which MA-ID imported operations that have opik as a remote
pre or post-operation.

C j ’s provider may remove the remote pre/post operation opik from its generic oper-
ation definitions. To propagate this change, CA j removes from PPMS j the entry that
corresponds to CAi and opik . CA j also sends a CP-PP-Remove-CP(opik) to CAi . Upon
reception of this message, CAi removes from PPCSi the entry corresponding to CA j and
opik . CAi will hence send no CP-PP-Alert-CP(opik) messages to CA j since C j does not
use opik as a remote pre or post operation. Figure 8 summarizes the algorithm executed
by C Ai for managing the modification of generic operations. The Update Member() func-
tion allows the update of the description of a community description within the service
registry.

5.2. Propagating changes initiated by service providers

The provider of a Web service WS-ID may initiate changes that should be sent to their
communities (figure 9). A community Ci is notified about a change if the change is made
on an operation imported from Ci . All changes are introduced through member agents and
automatically forwarded to community agents which reflect those changes at the community
level. We define the following service providers changes:

• Modifying operations. WS-ID’s provider may modify attributes (e.g., remove a message
parameter) of a previously imported operation through modification statements defined
in WS-ID’s agent MA (figure 9, step 1). A modification statement includes the G-op-ID



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 201

Figure 9. Propagating changes initiated by service providers.

of the operation to be modified, WS-ID of the service that imported it, and the importing
statement I-statement used to do the modification. Once MA gets a modification state-
ment, it sends an SP-Modify(G-op-ID,WS-ID,IType,ModifySet) message to Ci ’s agent
CAi (figure 9, step 2). ModifySet is defined as in CP-Modify() messages. IType gives the
type of I-statement (“projection”, “extension”, “adjust add”, and “adjust delete”). Upon
reception of the SP-Modify() message, CAi updates Ci ’s description (figure 9, step 3).
If the message concerns a projection statement, CAi updates the NotImp column in the
MLi ’s entry that correspond to G-op-ID and WS-ID (figure 9, step 4). It assigns the content
of ModifySet.Att to this column. If the message concerns an “adjust delete” statement on
a remote pre or post operation op jl , then CAi removes the entry in PPMSi corresponding
to CA j , op jl , and WS-ID’s agent. If the message concerns an “adjust add” statement on a
remote pre or post operation op jl , then CAi adds a new entry in PPMSi with the values
CA j , op jl , and WS-ID’s agent MA-ID.

• Freezing operations. An imported operation may be “available”, “unavailable” (e.g.,
due to network problem), or “unsubscribed”. WS-ID’s provider may temporarily make an
imported operation G-op-ID operation by executing the Freeze statement (figure 9, step a)
defined in MA. The statement includes the G-op-ID of the operation to be frozen and the
WS-ID of the service that imported it. As a consequence, MA sends an SP-Freeze(G-op-
ID,WS-ID) message to CAi (figure 9, step b). CAi then assigns the “unavailable” value
to the status column of the MLi ’s entry that correspond to G-op-ID and WS-ID (figure 9,
step c).

• Resuming operations. WS-ID’s provider may re-activate an operation G-op-ID that has
previously been frozen through the Resume statement defined in nMA. The statement in-
cludes a reference to WS-ID and G-op-ID. As a consequence, MA sends an SP-Freeze(G-
op-ID,WS-ID) to G-op-ID’s community agent CAi (figure 9, step b). CAi then assigns the
“available” value to the status column of the MLi ’s entry that correspond to G-op-ID
and WS-ID (figure 9, step c).



202 MEDJAHED AND BOUGUETTAYA

• Unsubscribing operations. WS-ID’s provider may decide not to support an imported
operation any more. For that purpose, it executes MA’s Unsubscribe statement (figure 9,
step 1). MA informs CAi about this change (figure 9, step 2) by sending an Unsubscribe(G-
op-ID,WS-ID) message to it. CAi then updates Ci ’s description (figure 9, step 3). It also
assigns the “unsubscribed” value to the status of the MLi ’s entry that correspond to G-
op-ID and WS-ID (figure 9, step 4). CAi periodically checks the status column in MLi

and remove all entries associated with unsubscribed operations.

Figures 10 and 11 depict the algorithm executed by community and member agents
for managing changes initiated by service providers. The Lookup Community() function
(lines 14) is executed on the communities list CL. It returns the C Ai ’s ID of the community
Ci to which the operation G-op-ID belongs.

Each member’s agent MA j also needs to react to change notifications sent by a community
agent via CP-Modify(G-op-ID,WS j ,ModifySet) or CP-PP-Alert-SP(opik) messages. The
actions to be performed by MA j as a result of change notification are captured using
ECA (Event Condition Action) rules [5]. Briefly, the basic semantics of an ECA rule is as
follows: when an event occurs, an action is executed if the corresponding condition is true.
Event-driven systems are becoming the paradigm of choice for organizing many classes
of loosely coupled and dynamic applications. Members react to changes using their own
change control policies via local rule specified in their agent. Hence, the reaction to changes
can be customized to the peculiarities of each member. Below is an example of ECA rule
specified within a member agent:

Figure 10. Changes issued by service providers: Member agent algorithm.



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 203

Figure 11. Changes issued by service providers: Community agent algorithm.

Rule R1

Event CP-Modify(G-op-ID,WS j ,ModifySet)
Condition Source = C1 ∧ pre-operations ∈ Modify.Att
Action <notify the service provider to change its internal business logic>;

send Resume(G-op-ID,WS j ) message to source

R1 states that whenever the member receives a change notification issued by C1’s provider
and if the change concerns the pre-operations attribute, the service provider should reflect the
change by modifying its internal business logic. The member agent then sends a Resume(G-
op-ID,WS j ) message to C1’s agent. The message is a confirmation that the member has
locally reflected the changes done by C P1. Figure 12 summarizes the change reaction
algorithm executed by member agents.

6. Implementation

We provide a prototype implementation of the proposed approach using Web service stan-
dards such as SOAP and UDDI (figure 13). Users access the Semantic Web Service Manager
through a graphical interface (implemented in HTML/Servlet). We identify two types of
users: community providers and service providers. All users’ requests are received by the
request handler which forwards them either to the community builder or service registrar
depending on their type.



204 MEDJAHED AND BOUGUETTAYA

Figure 12. Reaction to changes issued by community providers: Member agent algorithm.

Figure 13. Architecture.

If the request is for creating a community (issued by community providers), it is handled
by the community builder. Community providers define a community either by sending an
XML document that instantiates the community ontology or by filling out a form via the
graphical interface. In both cases, the community builder creates an entry for the community
in the UDDI registry. We implement the UDDI with Systinet’s WASP UDDI Standard 3.1.
Cloudscape 4.0 database is used to create the registry for the UDDI. All communications are
encapsulated in SOAP envelopes. Apache SOAP provides the tools necessary for deploying
SOAP messaging. Every community is represented in the registry by a tModel [1]. We
have designed specific tModels for communities. The community tModel contains a URL
pointer to the description of the community. When defining a community, an agent called
community agent (implemented using IBM Aglets) is downloaded from the community
agents repository to the community provider’s site. All subsequent access (e.g., modify a
community) to the community are done through the community agent.



DYNAMIC FOUNDATIONAL ARCHITECTURE FOR SEMANTIC WEB SERVICES 205

The second type of requests concerns the discovery of communities. These requests are
issued by service providers to inquire about communities of interest. They are received by
the community discoverer which implements UDDI Inquiry Client using WASP UDDI API.
Once a community is discovered, the service provider may submit a request for registration
with this community. Such a request is forwarded to the service registrar which creates an
entry for the Web service in the UDDI registry. The Web service is represented by a tModel
in the registry. We have also designed tModels for community members called member
tModel. As a result of the registration process, a member agent (implemented using IBM
Aglets) is downloaded to the service provider’s site. The member agent is then responsible
for handling all subsequent requests issued by the service provider. The deployment of
community and member agents caters for a peer-to-peer and distributed architecture for
managing communities and Web services.

7. Related work

Standardization efforts including UDDI (Universal Description, Discovery, and Integration)
and WSDL (Web Services Description Language) are underway to support Web services [1].
The main impediment of current Web service standards is their limited support for seman-
tics. A major effort towards enabling semantic Web services is DAML-S (DARPA Agent
Markup Language) [10]. DAML-S defines a semantic markup of Web services based on
ontologies. Several features distinguish the approach proposed in this paper from DAML-S.
First, DAML-S proposes an ontology for Web services not for community of Web services.
Our approach provides means for the semantic description of Web services and their on-
tological organization into communities. Second, the static semantics in DAML-S mostly
focuses on describing operations’ features. We define a broader view of static semantics by
describing semantics both at the operation and message levels. Third, DAML-S gives little
support for the dynamic semantics of Web services. It does not allow the specification of
pre-operations and post-operation which are particularlyimportant for enabling the auto-
matic generation of business processes. Additionally, the notion of behavior and business
logic is not explicitly defined. Fourth, DAML-Sproviders define their service operations
from scratch. In our approach, providers inherit the functionalities of a community simply
by registering their services with it. They may also personalizethat community to best fit
their capabilities.

WSMF (Web Service Modeling Framework) combines the concepts of Web services and
ontologies to cater for semantic Web enabled services [4]. WSMF is still in its early stage.
The techniques for the semantic description of Web services are still ongoing. Furthermore,
WSMF does not address the issue of organizing semantic Web services.

8. Conclusion

In this paper, we propose an ontological framework to cater for a meaningful organization
and description of Web services. We introduce the concept of community to cluster Web ser-
vices based on their domain of interest. We develop an ontology called community ontology



206 MEDJAHED AND BOUGUETTAYA

that serves as a “template” for describing communities and Web services. The proposed
framework lays the foundation for the automatic selection and composition of semantic Web
services. We are currently defining a composability model that would automatically check
whether Web services “can” be combined together. The model would compare different
features of Web services including syntactic, semantic (static and dynamic), behavioral,
and qualitative properties.

Acknowledgment

The second author’s research is partly supported by the National Institutes of Health’s NLM
Grant 1-R03-LM008140-01.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts, Architecture, and Applications,
Springer Verlag, June 2003, ISBN: 3540440089.

2. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific American, May 2001.
3. C. Bussler, B2B Integration, Springer Verlag, May 2003, ISBN: 3540434879.
4. C. Bussler, D. Fensel, and A. Maedche, “A conceptual architecture for semantic Web enabled Web services,

SIGMOD Record, vol. 31, no. 4, 2002.
5. C. Collet, T. Coupaye, and T. Svensen, “Naos: Efficient and modular reactive capabilities in an object-oriented

database system,” in VLDB Conf., Santiago, Chile, September 1994.
6. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.Stein, Introduction to Algorithms, MIT Press, 2001.
7. D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer

Verlag, Sept. 2003, ISBN: 3540003029.
8. Object Management Group, Unified Modeling Language Specification. http://www.omg.org/technology/

documents/formal/uml.htm, 1999.
9. I. Horrocks, “DAML+OIL: A description logic for the Semantic Web,” IEEE Data Engineering Bulletin,

March 2002.
10. S.A. Mclraith, T.C. Son, and H. Zeng, “Semantic Web services,” IEEE Intelligent Systems, March 2001.
11. C. Petrie and C. Bussler, “Service agents and virtual enterprises: A survey,” IEEE Internet Computing, vol. 7,

no. 4, 2003.
12. S. Ran, “A model for web services discovery with QoS,” SIGecom Exchanges, vol. 4, no. 1, 2003.
13. S. Tsur, S. Abiteboul, R. Agrawal, U. Dayal, J. Klein, and G. Weikum, “Are Web services the next revolution

in e-commerce? (Panel),” in VLDB Conference, Sep. 2001.
14. G. Weikum (ed.), Special Issue on Organizing and Discovering the Semantic Web, IEEE Data Engineering

Bulletin, March 2002.
15. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng, “Quality driven Web services composi-

tion,” in Twelfth International World Wide Web Conference, Budapest, Hungary, May 2003.


