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Abstract. A method for demonstrating and enumerating uniformly efficient (permutation-optimal) trellis decoders
for self-dual codes of high minimum distance is developed. Such decoders and corresponding permutations are
known for relatively few codes.

The task of finding such permutations is shown to be substantially simplifiable in the case of self-dual codes in
general, and for self-dual codes of sufficiently high minimum distance it is shown that it is frequently possible to
deduce the existence of these permutations directly from the parameters of the code.

A new and tighter link between generalized Hamming weights and trellis representations is demonstrated: for
some self-dual codes, knowledge of one of the generalized Hamming weights is sufficient to determine the entire
optimal state complexity profile.

These results are used to characterize the permutation-optimal trellises and generalized Hamming weights for
all [32,16,8] binary self-dual codes and for several other codes. The numbers of uniformly efficient permutations
for several codes, including the [24,12,8] Golay code and both [24,12,9] ternary self-dual codes, are found.
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1. Introduction

Representations of block codes by trellises allow computationally efficient soft decision
decoding for the codes via the Viterbi algorithm. Given a code, there are very many different
trellises that represent it, of widely varying complexity. It thus becomes important to choose
the trellis that represents the code most efficiently, i.e., that minimizes the complexity.

For any fixed linear block code, i.e., if we take the code to be distinct from codes
that are equivalent to it, an essentially complete solution to this problem is known. A
unique “minimal trellis” can be found efficiently from any generator matrix, and this trellis
minimizes complexity under a wide range of possible complexity criteria.

For many purposes, however, there is no useful distinction between two equivalent codes.
This is particularly so in the main case where a trellis representation is of interest: using the
trellis for Viterbi decoding over a memoryless channel. In this case the performance of the
code is identical to that of any equivalent code. Thus the important question becomes how
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to choose the permutation of the code whose minimal trellis has the smallest complexity.
This is a very much harder problem, and remains open. Optimal permutations, in the strong
sense we consider in this paper (uniform efficiency), are known for very few codes.

The derivation of optimal trellis structure is strongly related to the purely combinato-
rial problem of determining the generalized Hamming weights: the most common way to
demonstrate that a trellis is permutation-optimal is to find the generalized Hamming weights
and then to demonstrate chains of subcodes ordered by inclusion that have parameters de-
termined by the generalized Hamming weights.

In this paper, we consider the permutation problem for self-dual codes of high minimum
distance. Numerous simplifications of the general problem appear. We demonstrate a new
simplification that in some cases allows us to determine and characterize uniformly efficient
permutations quickly, and to count the number of such permutations. In particular, we
derive uniformly efficient permutations for each of the eight inequivalent extremal binary
self-dual codes of length 32. Of these, such permutations for the Reed-Muller code r32 and
the quadratic residue code q32 were previously known, though without proof of uniform
efficiency in the case of q32. Uniformly efficient permutations are also derived for several
other extremal self-dual codes of length up to 48. Where they are not already known, the
full generalized Hamming weight hierarchies are also determined for these codes.

An outline of the paper is as follows. In Sections 2 and 3 we summarize previous work
in this area, and review the necessary definitions and facts about the trellis structure of
block codes. In Section 4 we demonstrate results that substantially simplify the problem
for the special case of self-dual codes of high minimum distance. In Section 5 we apply
these results to various classes of self-dual codes, including a complete classification of the
optimal trellises for extremal self-dual codes of length 32, and a new characterization of
uniformly efficient permutations for the [48,24,12] quadratic residue code.

2. Background

The representation of block codes by a trellis was introduced in Bahl et al. [1] in 1974, and
has subsequently attracted an enormous amount of interest. For a full history we refer to the
tutorial paper of Kiely et al. [21], the chapter by Vardy [35] and the book by Lin et al. [25].

The permutation problem above, i.e., the problem of finding a permutation that minimizes
a given element of the state complexity profile for a general linear block code, was shown
to be NP-hard by Horn and Kschischang [18]. Optimum (uniformly efficient) permutations
are known for some codes, e.g., the [24,12,8] Golay code [15], the [48,24,12] quadratic
residue code [2,10], and the [16,7,6] lexicode [23]. The most general result is that all binary
Reed-Muller codes have as one uniformly efficient permutation the natural binary ordering
[20]; this and the family of maximum distance separable are the only nontrivial infinite
families of codes for which uniformly efficient permutations are known. (MDS codes have
complexity independent of the coordinate ordering [27].) Berger and Be’ery [2] give a
construction that is applicable to BCH and quadratic residue codes, find a permutation for
the [32,16,8] quadratic residue code that we will demonstrate is uniformly efficient, and
find a new uniformly efficient permutation for the [48,24,12] quadratic residue code, among
others.
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Encheva and Cohen [13,14] have found uniformly efficient permutations where these
exist for binary and ternary self orthogonal codes of length up to 20 and binary self-dual
codes of length up to 24.

The problem of determining the state complexity profile is strongly related to, though not
exactly equivalent to, the problem of determining the generalized Hamming weights of the
code, in a sense we review in Section 2.3. The problem of generalized Hamming weights
has received much independent attention, which is reviewed and summarized in [29,32].
For the codes we consider where these are unknown, we find the full set of generalized
Hamming weights.

2.1. Trellises

We assume that the reader is familiar with the basic facts about trellises; a comprehensive
description is given by Vardy [35]. We follow the notation used in this reference throughout.

Given any generator matrix for C , a minimal trellis may be constructed efficiently using
any of several different constructions; we refer again to Vardy [35] for details. Trellis
diagrams will not therefore be given explicitly in what follows.

2.2. Dimension/Length and Length/Dimension Profiles

The i th past subcode and future subcode are denoted by Pi and Fi , respectively, and their
dimensions are denoted by pi and fi , respectively. The code consisting of all codewords
that are zero outside a set J is denoted CJ .

For any code C , the following relation holds [31]:

dim((C⊥)I−J ) = n − k − |J | + dim(CJ ). (1)

The state complexity of a code, with ordering assumed fixed, is given by [35]

si = k − pi − fi . (2)

The dimension/length profile (DLP) of C is the sequence [15] k(C) = {ki (C), 0 ≤ i ≤ n}
whose i th component ki (C) is the maximum dimension of any subcode CJ of C with |J | = i :
ki (C) = maxJ :|J |=i {dim(CJ )}, 0 ≤ i ≤ n. The length/dimension profile (LDP) of C is the
sequence [15] d(C) = {dr (C), 1 ≤ r ≤ k} whose r th component dr (C) is the minimum
support size of any subcode CJ of C with dimension r : dr (C) = minJ :dim(CJ )=r {|J |}, 0 ≤
r ≤ k. These numbers are also called the generalized Hamming weights of the code by Wei
[36].

The LDPs of the code and its dual code are related according to Wei’s duality relation
[36]

{dr (C) : 1 ≤ r ≤ k} = {1, 2, . . . , n} − {n + 1 − dr (C
⊥) : 1 ≤ r ≤ n − k}. (3)

Codes of different dimensions cannot have the same DLPs or LDPs. We will say that the
LDPs of codes C1 and C2 match if we have di (C1) = di (C2) for 0 ≤ i ≤ min(dim(C1),

dim(C2)).
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The generalized Hamming weights obey the generalized Griesmer bounds [29, pp. 35–
36]:

n ≥ dr (C) +
k−r∑
i=1

⌈
(q − 1)dr (C)

qi (qr − 1)

⌉
. (4)

With r = 1 this reduces to the Griesmer bound

n ≥ gq(k, d) ≡
k−1∑
i=0

⌈
d

qi

⌉
. (5)

It is known that a code that meets the Griesmer bound with equality also meets the gener-
alized Griesmer bound with equality for all r [17], [29, pp. 36–38].

A code is said to satisfy the chain condition if it is equivalent to a code in which pi (C) =
ki (C) for 1 ≤ i ≤ n.

Several classes of codes are known to satisfy the chain condition. These include all codes
that meet the Griesmer bound with equality, and all codes of length one greater than the
Griesmer bound [17], [29, p. 40].

A code is said to satisfy the double chain condition if it is equivalent to a code in which
pi (C) = ki (C) and fi (C) = kn−i (C) for all i .

The double chain condition is also known as the two-way chain condition (TCC) [11–13].

2.3. Trellis Complexity Over Permutations

The state complexity profile of a code π(C) obtained by permuting the coordinates of C
is not in general the same as the state complexity profile of C . A permutation is said to
be componentwise optimal, or uniformly efficient,1 if at each time the state complexity
of the corresponding permuted code is no higher than for any other permutation, i.e., the
permutation π∗ is uniformly efficient if and only if sπ∗

i ≤ sπ
i for all 0 ≤ i ≤ n and all

permutations π . Such a permutation may or may not exist [21]. Often the goal is to find
a permutation that minimizes the maximum value of si over the range 0 ≤ i ≤ n, the
“absolute state complexity,” and sometimes any permutation achieving this minimum is
termed optimal. In this paper we will concentrate exclusively in the stronger definition of
optimality given above, i.e., uniform efficiency.

Uniform efficiency is a relative concept, and it may be that even a uniformly efficient per-
mutation of a given code has too high a trellis decoding complexity for a given application.
On the other hand, any uniformly efficient permutation of a self-dual code also minimizes
other measures of complexity, such as total number of edges or total number of mergers [21].

Our goal in counting the number of uniformly efficient permutations is primarily one
of classification. However, there are some reasons why not all uniformly efficient permu-
tations are equally desirable, including state connectivity, parallel structure, regularity and
symmetry, as discussed by Lin et al. [25, Section 10.3]. For example, one desirable property
is that the decoder should be reversible, i.e., symmetric about the central time index [35]. In
distinguishing between decoders in the several categories that result, a first step is to know
the size of the set of all uniformly efficient permutations.
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Taking minima in (2) gives the DLP lower bound on state complexity [15]:

si (π(C)) ≥ k − ki − kn−i , (6)

for all i , where π is any permutation.
The DLP lower bound can be attained for all i if and only if the double chain condition is

satisfied; a code meeting the DLP bound must have a uniformly efficient permutation. The
converse is not true [21]. The state complexity profile of a uniformly efficient permutation
will be called the optimum state complexity profile of C .

A code is said to be uniformly concise over a class Q of codes if at each time its state
complexity is no higher than for any code in Q. This is a modification of the definition
introduced by Kiely et al. [21].

2.4. Other Comments

2.4.1. Second Hamming Weight

Often it is possible to determine the second Hamming weight (and by extension, third and
higher Hamming weights) by applying the residual code argument [33]. If C is an [n, k, d]
binary code (resp. binary doubly-even code), and there is no [n − d, k − 1, �d/2� + 1]
binary code (resp. binary singly-even code), then d2(C) = d + �d/2�. Taking the residual
code [33, p. 46] with respect to any codeword of weight d gives an [n − d, k − 1, ≥�d/2�]
code. If the original code is doubly-even the residual code will be at least singly even. When
the nonexistence condition above holds, we may conclude that the minimum distance of
the residual code is exactly �d/2�. Adjoining �d/2� positions holding a minimum weight
codeword of the residual to the original d positions deleted to form the residual then gives
a subspace of dimension 2.

2.4.2. Shortened Codes

We must often deal with codes that are shortened versions of codes whose properties
with respect to Hamming weight hierarchy and chain condition are well understood. From
Forney’s development [15] we have the following relations in this case. Given a code C
that achieves the DLP bound (6), consider the code Cr obtained by shortening C on the last
r positions, when C is in uniformly efficient order. A necessary condition for C to satisfy
the DLP bound is that pi (C) = ki (C) for 0 ≤ i ≤ n. The shortened code therefore has
pi (Cr ) = pi (C) = ki (C) = ki (Cr ) for 0 ≤ i ≤ n − r . We can conclude that

(a) Cr satisfies the chain condition; and

(b) the LDP of Cr matches the LDP of C .

We also remark that shortening on any r positions of a code invariant under an r -fold
transitive group produces a code that has properties (a) and (b).
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3. Trellis Structure for Self-Dual Codes: Known Results

Several simplifications are known for the case of self-dual codes. The relation (1) becomes

dim C[n]\J = n/2 − |J | + dim CJ ;
this is a version of Koch’s balance theorem for self-dual codes [22,28] by which dim Ca −
|a|/2 = dim Cb − |b|/2 where a and b partition n. Taking J = [i], this becomes

fi = n/2 − i + pi (7)

for 0 ≤ i ≤ n.
The balance principle (7) implies that pi+1 − pi = fi − fi+1, so with (2), we have

si+1 − si ∈ {−1, 1} for a self-dual code. The state complexity profile thus starts with s0 = 0
and increases or decreases by one with each time unit.

The Wei relations (3) reduce for a self-dual code to

{dr (C) : 1 ≤ r ≤ k} = {1, 2, . . . , n} − {n + 1 − dr (C) : 1 ≤ r ≤ n − k}. (8)

Thus for any self-dual code of length n, the LDP contains exactly one of the numbers
{i, n + 1 − i} for each i ∈ [1, n].

While a code in general may have a permutation that is uniformly efficient but does not
meet the DLP bound, this cannot happen for self-dual codes, since if si is minimized for
every i , then pi and fi are maximized.

The following observation is a key starting point for this paper. We include it in the
section on known results, as the basic elements all appear in the paper of Forney [15], and
it can also be seen as an adaptation of Theorem 5.10 in Vardy’s review [35]. However, we
have not been able to find a definite attribution for the result in the form below.

From (7), we see that any ordering that maximizes all pi ’s simultaneously will also
maximize all fi ’s simultaneously, and hence, from (2), minimize all si ’s simultaneously.
Thus we have the lemma:

LEMMA 1. A self-dual code satisfies the double chain condition if and only if it satisfies the
chain condition. An ordering of such a code is uniformly efficient if and only if the code is
in chain condition order.

4. Main Results

From Lemma 1, to determine whether a self-dual code meets the double chain condition, we
need only check for the chain condition. On the other hand, codes at or near the Griesmer
bound automatically satisfy the chain condition, so in certain cases we may deduce the
existence of a uniformly efficient permutation directly from the parameters of the code.

In this form the idea has limited applicability, as almost all self-dual codes have lengths
that greatly exceed the Griesmer bound. Our main result, Theorem 1, extends this to include
many more interesting codes, by working with past and future subcodes simultaneously.
The idea is to find an ordering in which the pi ’s are maximized for 0 ≤ i ≤ m, and the fi ’s
are maximized for m < i ≤ n, for some m. Our main result is then the following:
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THEOREM 1. Let C be a length n self-dual code. Let n1 and n2 be two non-negative integers
such that n1 + n2 = n. Assume that some permutation of C has a generator matrix given
by

G =

G1 0

0 G2

E F


 , (9)

where C1 = 〈G1〉 and C2 = 〈G2〉 have lengths n1, n2, respectively. If C1 and C2 have LDPs
that match the LDP of C and each satisfy the chain condition then:

(i) C has a uniformly efficient ordering.

(ii) An ordering for the code is uniformly efficient if and only if the resulting code has
generator matrix of the form

G ′ =

G ′

1 0
0 τ(G ′

2)

E ′ F ′


 (10)

where C ′
1 = 〈G ′

1〉 and C ′
2 = 〈G ′

2〉 have LDPs that match the LDP of C and are each in
chain condition order, and τ(·) is the reverse permutation.

Proof. We take C1 in chain condition order and C2 in the reverse of chain condition order.
For i ≤ n1, since C1 satisfies the chain condition, we have pi (C) ≥ pi (C1) = ki (C1) =
ki (C), where the last equality follows from the assumption that the LDP of C1 matches
the LDP of C . Since pi (C) ≤ ki (C) by definition, we conclude that equality holds. From
(7), maximizing pi will maximize fi , so we then have fi (C) = kn−i (C). Then (2) gives
si = k − ki − kn−i .

If i ≥ n1, since C2 is in the reverse of chain condition order, we have fi (C) ≥ fi (C2) =
kn−i (C2) = kn−i (C). Thus fi (C) attains its maximum for each i > n1. Again from (7)
we have pi (C) = ki (C) and thus si = k − ki − kn−i . Thus C has a uniformly efficient
permutation.

For the converse, if C ′
1 fails to match the LDP of C , or is not in chain condition order,

then there exists at least one time index i ≤ n1 such that pi (C) ≤ ki (C) − 1, and hence
si ≥ smin

i + 2, and the permutation is not uniformly efficient; similarly for C ′
2.

Remark. Note that if we know any optimal split between left and right parts, we need only
order the past subcode G1 and future subcode G2 to achieve the chain condition, and need
not consider the glue vectors E and F at all.

4.1. The Griesmer Bound Subcode Case

All conditions in Theorem 1 are automatically satisfied in one special case. This is thus
the easiest case to apply, involving only a check of the central component kn/2 of the DLP.
Recall that gq(k, d) = ∑k−1

i=0 �d/qi� is the Griesmer bound function.
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THEOREM 2. Let C be a self-dual code over Fq . Suppose kn/2(C) is such that n/2 =
gq(kn/2, d). Then:

(a) the code has a uniformly efficient permutation;

(b) the code achieves the DLP bound;

(c) the code is uniformly concise over the class of [n, k, d] self-dual codes;

(d) the optimum state complexity profile is si = i − 2g−1
q (i, d) for i ≤ n/2, and sn−i = si ,

where g−1
q (i, d) = max{ j | i ≥ gq( j, d)};

(e) a permutation is uniformly efficient if and only if it is of the form

G =

G1 0

0 τ(G2)

E F


 , (11)

where C1 = 〈G1〉 is a length n/2, distance d code that meets the Griesmer bound with
equality, and is in chain condition order; and where G2 generates a code with the same
parameters as C1, and is in chain condition order; and where τ(G2) is the column
reverse of G2.

Proof. The condition on kn/2 implies that we can permute the code to the form (10) where
C1 is an [n/2 = gq(kn/2), kn/2, d] code; by the balance principle (7) the future subcode
C2 must then have the same parameters. Since C1 and C2 meet the Griesmer bound with
equality, they also meet the Griesmer bound for all generalized Hamming weights [29,
pp. 36–38] and each component of the LDP of each is the minimum possible for the given
minimum distance. Since a code cannot have higher generalized Hamming weights than
one of its subcodes, C1 and C2 must therefore have LDPs that match the LDP of C . Then
the properties above are consequences of Theorem 1.

Remark. In many cases, codes meeting the Griesmer bound with equality are unique up
to equivalence, from results of van Tilborg [34] and Helleseth [16]. In this case G2 = G1

or a permutation thereof in part (c) above. In addition, the number of uniformly efficient
permutations of the code, out of all n!, is

akn/2,n/2 n2
c, (12)

where ai, j is the number of subcodes of dimension i and effective length j , and nc is the
number of permutations of the [n/2, kn/2, d] code in chain condition order.

We may usually find nc in terms of the parameters of the code. We assume the code is
binary for simplicity. If taking a residual with respect to any minimum weight codeword of
an [n, k, d] code gives the same [n − d, k − 1, d1] code up to equivalence, then the number
of chain condition orderings for the longer code is ad · d! · n(1)

c , where ad is the number of
codewords of minimum weight of the longer code, and n(1)

c is the number of chain condition
orderings of the residual code. The chain of residuals formed by starting with a code at the
Griesmer bound usually produces unique codes at each step, and when this applies we find
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by iterating this idea that

nc =
k−1∏
i=0

ai
min · (�d/2i�)! (13)

where ai
min is the number of minimum weight codewords in the i th code in the chain.

5. Trellis Structure of Given Self-Dual Codes

5.1. Binary Self-Dual Codes of Length ≤ 24

The permutation problem for self-dual codes of length up to 24 is well studied [13,20,27]
In particular, Encheva and Cohen [12] establish the existence or nonexistence of a double
chain condition permutation for every such code, not just for the extremal ones. Here we
consider only the self-dual codes of highest minimum distance, and for this case we develop
new characterizations of the resulting uniformly efficient permutations, where they exist,
and determine the number of such permutations.

We illustrate the approach using the binary [12,6,4] code and then summarize the results
obtained for other codes.

5.1.1. The [12,6,4] Code

For the [12,6,4] self-dual code, the weight enumerator is 1 + 15x4 + 32x6 + 15x8 + x12.
By taking residuals as in Section 2.4.1, we find that d2 = 6, i.e., k6 = 2, and we may
apply Theorem 2 to conclude that the code has a uniformly efficient permutation, and that a
permutation is uniformly efficient if and only if the permuted generator matrix of the form
(10) where C1 and C2 are [6,2,4] codes containing the codeword 111100.

To find the number of uniformly efficient permutations, we need the coefficient a2,6.
When the past code is a [4,1,4] code, the future code is an [8,3,4] self-complementary code.
Its weight enumerator is then determined as 1+6x4+x8, from which the weight enumerator
of its dual is 1 + 4x2 + 22x4 + 4x6 + x8. Then, as each [6,2,4] code contains 3 codewords
of weight 4, we have a2,6 = 15 · 4/3 = 20. For the (unique) [6,2,4] code, the number of
chain condition permutations is 3 · 4! · 2!. Then (13) shows that the number of uniformly
efficient permutations for the [12,6,4] code is 20(3 · 4! · 2!)2 = 210 · 34 · 5. The group of this
code has order 29 · 32 · 5 [5], and thus there are 18 distinct equivalent codes in uniformly
efficient order.

5.1.2. Other Binary Self-Dual Codes of Length ≤ 24

In the [12,6,4] case above, we were able to determine both the fact that n/2 = g2(kn/2, d)

and the coefficient akn/2,n/2 directly from the parameters of the code. This is sometimes
possible for other codes also; if not we use results from known classifications of self-dual



24 CHEN AND COFFEY

Table 1. Binary codes of length ≤ 24.

Code Result n1 Total Permutations Distinct Codes

[8, 4, 4] Thm. 2 4 27 · 32 · 7 6
[12, 6, 4] Thm. 2 6 210 · 34 · 5 18
[14, 7, 4] Thm. 2 7 29 · 34 · 72 36
[16, 8, 4] Thm. 2 8 215 · 34 · 72 36 (2e8)

Thm. 1 8 215 · 34 · 5 · 7 18 (d+
16)

Thm. 1 8 215 · 34 36 (2d+
8 )

[18, 9, 4] NA — — —
[20, 10, 4] NA — — —
[22, 11, 6] Thm. 1 10 219 · 38 · 53 · 7 · 11 37324800
[24, 12, 6] Thm. 1 12 — —
[24, 12, 8] Thm. 2 12 222 · 38 · 53 · 73 · 11 · 23 1219276800

codes. In Table 1 we collect results obtained from Theorems 1 and 2 for all binary self-dual
codes of length up to 24.

We summarize the derivation of these results below.
I. The [8,4,4] code. This is one of only two binary self-dual codes for which the elementary

approach using Lemma 1 works: the code meets the Griesmer bound with equality and thus
must satisfy the chain condition. The LDP, and hence the state complexity, is determined
from the fact that equality holds in the Griesmer bound.

II. The [14,7,4] code. It is known [30] that the only such code consists of two copies of
the [7,3,4] simplex code glued by the all-ones word. Then k3 = 7, and Theorem 2 applies.
Since the Griesmer bound is met with equality, the state complexity is determined from part
(d) of Theorem 2 as s = {0, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 0}. From the construction, we
have a3,7 = 2, and thus the number of uniformly efficient permutations is 2 · (7 · 4! · 3 · 2!)2.
Dividing by the order of the group, 1682 ·2, we have 36 distinct codes in uniformly efficient
order.

III. The [16,8,4] codes. There are three self-dual [16,8,4] codes. Two of these are doubly-
even: 2e8, and d+

16 [5]. The singly-even code is 2d+
8 [5].

By definition, 2e8 contains e8, and a4,8(2e8) = 2. We can then apply Theorem 2 to this
code, getting the state complexity profile s(2e8) = {0, 1, 2, 3, 2, 3, 2, 1, 0, 1, 2, 3, 2, 3, 2,

1, 0}.
A [16,8,4] self-dual code containing a [7,3,4] past subcode has a [9,5,4] code as future

code. This meets the Griesmer bound with equality and thus in particular has d4 = 8, i.e.,
the code also contains e8

From the known groups it is then easy to show, using the mass formula [5], that e8 does
not belong to d+

16. Thus the code d8, which is a subcode of d16 and has LDP {4, 6, 8}, must
match the LDP of d+

16. Also d8 is the unique [8,3,4] code that does not contain e7. Then we
may apply Theorem 1 to conclude that d+

16 has a uniformly efficient permutation, and that
a permutation is uniformly efficient if and only if it is of the form (10) with C1 and C2 both
equal to d8 in chain condition order. The state complexity may be recovered from the LDP
of d8 as s(d+

16) = {0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, ...}. It is known [5] that a3,8(d
+
16) = 70. The

number of chain condition orderings of d8 is 6 · 4! · 3 · 2! · 2!.
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For the singly-even code 2d+
8 , it can be shown that the code does not contain e7, and as it

does contain d8 the same reasoning as in the case of d+
16 applies. We conclude that the code

contains a uniformly efficient permutation with the same state complexity as d+
16. It can be

shown that a3,8(2d+
8 ) = 2, from which the number of uniformly efficient permutations can

be derived, as in Table 1.
IV. The [18,9] codes. There is no [18,9,6] self-dual code. Neither Theorem 1 nor Theorem

2 applies to the [18,9,4] codes. In fact, Encheva and Cohen [13] have shown that exactly
one of these two codes satisfies the double chain condition, so there can be no argument
that decides this property directly from the code parameters.

The main results apply to self-dual codes with sufficiently high minimum distance. The
notion of “sufficiently high” does not exactly coincide with extremality; there are extremal
codes for which the results do not apply, as in the case of the [18,9,4] codes, and non-extremal
codes in which they do apply, as in the case of the [24,12,6] code.

There is an [18,9,6] formally self-dual code, the extended quadratic residue code. This,
however, does not suffice: the key to Theorem 1 is the balance principle (7), which does
not necessarily apply to formally self-dual codes. In the case of the [18,9,6] code, the
generalized residual lemma shows that d2 = 9, i.e., k9 = 2. Thus n/2 = g2(kn/2, d) and the
main condition of Theorem 2 holds. However, Kiely et al. [21] and Encheva [12] showed
that this code does not satisfy the double chain condition.

The length of the code exceeds the Griesmer bound by one, and thus by the result of
Helleseth et al. [17] the code must satisfy the chain condition. This shows that formally
self-dual codes that satisfy the chain condition do not necessarily satisfy the double chain
condition; thus Lemma 1 does not extend to this case.

V. The [22,11,6] code. Here d2 ≥ 10, as the [9,2,6] code is not self-orthogonal. Taking
residuals shows that d2 = 10; then with a [10,2,6] code as past code, the future code is
a [12,3,6] code, which exceeds the Griesmer bound by one and thus satisfies the chain
condition. Its LDP, {6, 10, 12}, matches the LDP of the overall code. Theorem 1 applies.
A similar development shows that a2,10 = 2310, and the number of chain condition orders
of the unique self-orthogonal [12,3,6] code is 4 · 6! · 3 · 4! · 2!, from which the number of
uniformly efficient permutations in Table 1 results.

VI. The [24,12,8] Golay code. The trellis structure of the [24,12,8] Golay code is par-
ticularly well understood. A uniformly efficient permutation was found by Muder [27].
A question posed by McEliece (unpublished) asks for the number of uniformly efficient
permutations, which we provide in this section.

First, we note that the code exceeds the Griesmer bound by one in length. Thus, by
Lemma 1 the code must satisfy the double chain condition. Note that this argument by itself
does not provide the state complexity of such a permutation.

By taking residuals, we find that d2(C) = 12, i.e., k12 = 2. Then using the Wei relations,
the full LDP can be calculated, as in Pless et al. [29], as d(C) = {8, 12, 14, 16, 18, 19, 20, 21,

22, 23, 24}; of course this was also obtained by Muder [27].
Since 12 = g(k12, 8), we can again apply Theorem 2. We conclude that the extended

Golay code has a uniformly efficient permutation, with optimum state complexity profile
{0, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, . . .}. A permutation is uniformly efficient if and only if
it is of the form (10) in which C1 = C2 = [12,2,8], with each containing the codeword
(1804).
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A set of 12 positions holding three codewords of the Golay code is an X12 in the notation
of Conway and Sloane [8]; thus a2,12(C) = |X12| = 35420. The number of permutations of
the [12,2,8] code containing the codeword (1804) is 3 · 8! · 4!, so the number of uniformly
efficient permutations out of all 24! is 35420(3 · 8! · 4!)2, i.e., a fraction of approximately
4.81 × 10−7 of all permutations. Dividing by |Aut(G24)| = 244823040 [26, p. 639] gives a
total of 1219276800 distinct codes in uniformly efficient order.

An alternative approach is to apply Theorem 1 with n1 = 8 and n2 = 16. With C1 the
[8,1,8] code, C2 is the [16,5,8] code. Theorem 2 applies.

5.1.3. Shortened Golay Codes

The following observations are useful in Section 5.5. From Section 2.4.2 and the results
above, an i-shortened Golay code for i ≤ 5 must have an LDP that matches the LDP of the
Golay code, and must satisfy the chain condition.

There are exactly two distinct [18,6,8] codes up to equivalence, and these may obtained
by shortening the [24,12,8] Golay code on either an S6 or a U6 [9]. Since the length exceeds
the Griesmer bound by one, each code satisfies the chain condition. However, only the LDP
of the S6-shortened code matches the LDP of the Golay code; that it does so follows again
from Section 2.4.2. A 5-dimensional subcode of the Golay code of support size 16 has as
complement a codeword of weight 8, i.e., an S8. To achieve d5 = 16, we must shorten on a
6-dimensional subset of this set of 8 positions, i.e., on an S6. The LDP of the U6-shortened
[18,6,8] code can be shown to be {8, 12, 14, 15, 17, 18}. (The statement in [29, p. 39], that
the generalized Hamming weight hierarchies of codes that exceed the Griesmer bound by
one are known, is therefore inaccurate, if ‘known’ is interpreted as ‘completely determined.’)

5.2. Ternary Self-Dual Codes of Length ≤ 24

Ternary self-dual codes of length ≤ 20 have previously been studied by Encheva and
Cohen [14], who classify for each such code, again not necessarily extremal, whether there
exists a uniformly efficient permutation or not. Again we provide a different derivation
for all such codes of sufficiently high minimum distance, and enumerate all uniformly
efficient permutations where our results apply, for codes of length up to 24. The results are
summarized in Table 2. To determine the number of distinct codes in each case, we have
used information on the groups of these codes from [6,24].

I. The [12,6,6]3 Golay code. This code meets the Griesmer bound with equality. Thus
from Lemma 1 there is at least one uniformly efficient permutation, with state complexity
s = {0, 1, 2, 3, 4, 5, 4, 5, 4, 3, 2, 1, 0}. A permutation is uniformly efficient if and only if it
contains a minimum weight codeword in the first six positions.

II. The [16,8,6]3 code. A past [6,1,6]3 code corresponds to a future [10,3,6]3 code. This
exceeds the Griesmer bound by one, and thus satisfies the chain condition; since there is no
[10,3,7]3 code, this future code matches the LDP of the [16,8,6]3 code. Theorem 1 applies.
Alternatively, we find further by taking residuals that a2,8 = 224 · 6/8 = 168, from which
Theorem 2 applies, and from which we may enumerate the uniformly efficient permutations.
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Table 2. Ternary codes of length ≤ 24.

Code Result Total Permutations Distinct Codes

[12,6,6]3 Thm. 2 210 · 35 · 52 · 11 720
[16,8,6]3 Thm. 2 217 · 35 · 52 · 7 129600
[20,10,6]3 NA — —
[24,12,9]3 Thm. 2 226 · 310 · 53 · 72 · 11 · 23 220 · 39 · 53 · 72 (Q24)

219 · 39 · 52 · 72 · 23 (P24)

III. The [24,12,9]3 codes. This case is particularly interesting, as there are two codes
with these parameters. We demonstrate that each has exactly the same number of uni-
formly efficient permutations out of all 24!; this illustrates the point that Theorems 1 and 2
yield information about uniformly efficient permutations that does not depend on detailed
knowledge of the generator matrix of the code.

Any ternary self-dual code must have all codeword weights divisible by 3, and the
weight enumerator of any [24,12,9]3 self-dual code is therefore determined, with 4048
codewords of weight 9 [24]. With a [9,1,9] past subcode, the future code is [15,4,9]3,
again with all codeword weights divisible by 3, and as its dual has distance at least 3,
the weight enumerator of the future code is also fixed, as 1 + 50x9 + 30x12. Its dual
has weight enumerator 1 + 40x3 + · · ·. Then d2 = 12, and Theorem 2 applies. We have
a2,12 = 4048 · 40/8 = 20240, and a total of a2,12n2

c = 20240(4 ·9! ·3!)2 uniformly efficient
permutations of each code. The groups have different sizes [24] and so the number of distinct
codes in uniformly efficient order is different.

5.3. The [32,16,8] Self-Dual Codes

There are 85 inequivalent self-dual, doubly-even [32,16] codes, which have been classified
by Conway and Pless [5]. Five of these have minimum weight 8, namely, an extended
quadratic residue code q32, a Reed-Muller code r32, and three other codes, denoted as 2g+

16,
8 f +

4 , and 16 f +
2 . In addition, there are also exactly three inequivalent self-dual, singly-even

[32,16,8] codes [7] and they can be obtained from r32, 2g+
16 and 8 f +

4 . These will be denoted
by s-r32, s-2g+

16, and s-8 f +
4 .

It will emerge that the generalized Hamming weights of these codes differ. In this section,
we demonstrate that all must have uniformly efficient permutations, though with a variety of
optimal state complexity profiles. We then compute which state complexity profiles belong
to which codes. We do not know the relevant ai, j for any of these codes, so cannot compute
the number of uniformly efficient permutations.

THEOREM 3. A [32,16,8] doubly-even self-dual code must have a uniformly efficient
permutation.

Proof. Let C be any such code. If d5(C) = 16, we may apply Theorem 2 to conclude
that the code has a uniformly efficient permutation; we may calculate the resulting state
complexity profile from part (d) of Theorem 2.
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If d4(C) = 15 but d5(C) > 16, we may write the generator matrix in the form (10)
where G ′

1 generates a [15,4,8] code and G ′
2 a [17,5,8] code by the balance principle (and so

d5 = 17). The [17,5,8] code must have dual distance greater than 1, as 16 is not in the LDP,
and then linear programming shows that the dual distance is exactly 2. Then all smaller
generalized Hamming weights meet the generalized Griesmer bound with equality. Also
C1 and C2 have lengths at and one greater than the Griesmer bound, respectively, so must
each satisfy the chain condition. Then we may apply Theorem 1 to conclude that the code
has a uniformly efficient permutation. The state complexity profile may be recovered from
the LDP’s of C1 and C2.

If d3(C) = 14 but d4 > 15, then with the [14,3,8] code as past code, the future code
has parameters [18,5,8], dual distance greater than 1 (since d4 > 15), and can have only
8, 12, and 16 as nonzero weights. Such a code cannot have dual distance 3, so must have
dual distance exactly 2. Then we may write the generator matrix in the form (10) where G ′

1
and G ′

2 both generate [16,4,8] codes. Repeating the argument shows that each [16,4,8] code
has LDP {8, 12, 14, 16}, which matches the LDP of C ; each exceeds the Griesmer bound
by one in length, and thus satisfies the chain condition. Then Theorem 1 applies, and the
optimal state complexity profile is determined.

Finally, we show that C must have d3 = 14. First, any [32,16,8] code has d2 = 12 by
taking residuals, since there is no [24,15,5] code [3]. Then a [12,2,8] code as past code
yields a [20,6,8] code as future code, with possible nonzero weights 8, 12, and 16. Again
such a code must have dual distance exactly 2, and adjoining two positions to the past 12
yields a [14,3,8] code.

The remaining problems are to decide which of the [32,16,8] doubly-even codes fit which
cases, and to find how the singly-even codes behave. Here we use facts from the classification
of these codes and the properties of self-dual codes [5, 22].

Both r32 and 2g+
16 contain the first-order Reed-Muller code g16 by construction [5]. These

codes therefore have d5 = 16.
Via the mass formula for doubly-even codes [5] and the known group sizes [5,30], it

follows readily that these are the only doubly-even codes that contain 2g16 as a subcode.
But g16 is present if and only if 2g16 is present by using the balance principle, so the other
codes have d5 > 16.

Now we invoke a result of Koch [22], who proved that the unique g15[15,4,8] code (the
simplex code of length 15) is a subcode of 16 f +

2 , but not a subcode of q32 or 8 f +
4 . Then

16 f +
2 has d4 = 15, while q32 and 8 f +

4 have d4 = 16.
A generator matrix for a uniformly efficient permutation for each of the [32,16,8] doubly-

even self-dual codes is given in Tables 2–5. Uniformly efficient permutations and the cor-
responding state complexity profiles were already known for r32 [19] and q32 [2], though
in the case of q32 the permutation was not known to be uniformly efficient.

5.3.1. Singly-Even Self-Dual Codes of Length 32

The three singly-even [32,16,8] codes s-r32, s-2g+
16 and s-8 f +

4 may be constructed by modi-
fying the doubly-even counterpart [7]. Each of these has the same optimal state complexity
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Table 3. Uniformly efficient permutations for r32 and s-r32.




1111111100000000 0000000000000000
1111000011110000 0000000000000000
1100110011001100 0000000000000000
1010101010101010 0000000000000000
1001011001101001 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111100001111
0000000000000000 0011001100110011
0000000000000000 0101010101010101
0000000000000000 1001011001101001
1000001000101000 0001010001000001
0100001011101000 0001011101000010
0010001010001000 0001000101000100
0001001001001000 0001001001001000
0000101010100000 0000010101010000
0000011001100000 0000011001100000







1111111100000000 0000000000000000
1111000011110000 0000000000000000
1100110011001100 0000000000000000
1010101010101010 0000000000000000
1001011001101001 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111100001111
0000000000000000 0011001100110011
0000000000000000 0101010101010101
0000000000000000 1001011001101001
0111001000101000 0001010001000001
1011001011101000 0001011101000010
1101001010001000 0001000101000100
1110001001001000 0001001001001000
0000101010100000 0000010101010000
0000011001100000 0000011001100000




Table 4. Uniformly efficient permutations for 2g+
16 and s-2g+

16.




1111111100000000 0000000000000000
1011100011110000 0000000000000000
1110010010101100 0000000000000000
1100101011001010 0000000000000000
1001011001101001 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111100010111
0000000000000000 0011010100101101
0000000000000000 0101011001001110
0000000000000000 1001001101110100
1000001001001000 0001011100110101
0100001011000000 0001011101010110
0010001011101000 0001011100011000
0001001000101000 0000011001001000
0000101010001000 0001011101101100
0000011001100000 0000001101110111







1111111100000000 0000000000000000
1011100011110000 0000000000000000
1110010010101100 0000000000000000
1100101011001010 0000000000000000
1001011001101001 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111100010111
0000000000000000 0011010100101101
0000000000000000 0101011001001110
0000000000000000 1001001101110100
1000001001001000 0001011100110101
1101010011000000 0001011101010110
1011010011101000 0001011100011000
0001001000101000 0000011001001000
1001110010001000 0001011101101100
0000011001100000 0000001101110111




profile as its doubly-even counterpart. A sketch of the proof follows; fuller details are
in [4].

An elementary search shows that we may modify r32 and 2g+
16 to obtain the singly-even

counterparts without changing the partition between past and future codes at the center, and
thus both s-r32 and s-2g+

16 have d5 = 16 also, from which we may apply Theorem 2.
For 8 f +

4 with generator matrix as in Table 5, we again have the property that we may
modify the code to obtain s-8 f +

4 while still maintaining the [16,4,8] doubly-even code with
LDP {8, 12, 14, 16} as past and future codes. The remaining question is whether or not this
LDP matches the LDP of s-8 f +

4 ; if it did not, then we would have d4(s-8 f +
4 ) = 15. The
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Table 5. Uniformly efficient permutations for 8 f +
4 and s-8 f +

4 .




1111111100000000 0000000000000000
1111000011110000 0000000000000000
1100101011001100 0000000000000000
0011101011000011 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111100001111
0000000000000000 0011011001100101
0000000000000000 1100011001101010
0100100001001000 0001010001000001
1110010011100010 0100010001000010
0111010011101000 0001010001000100
0010100001000010 0100010001001000
0110011010101010 0101000001010000
0110000011001010 0000000001100000
0000101011000000 0101010100000000
0110110011000000 0000011000000000







1111111100000000 0000000000000000
1111000011110000 0000000000000000
1100101011001100 0000000000000000
0011101011000011 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111100001111
0000000000000000 0011011001100101
0000000000000000 1100011001101010
1011100001001000 0001010001000001
0001010011100010 0100010001000010
1000010011101000 0001010001000100
1101100001000010 0100010001001000
0110011010101010 0101000001010000
0110000011001010 0000000001100000
0000101011000000 0101010100000000
0110110011000000 0000011000000000




Table 6. Uniformly efficient permutation for 16 f +
2 .




1111111100000000 0000000000000000
1011100011110000 0000000000000000
0101110011001100 0000000000000000
0011011001101010 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111101010101
0000000000000000 0011001101011010
0000000000000000 0101011000111100
0010111001101001 0000011001000001
1101111010001000 0001001001000010
1000001010001001 0001000001000100
0100010001101000 0000010001001000
1100011001001001 0001011001010000
0000011011001000 0000001001100000
0100100011100000 0001010100000000
1010101000101001 1000000000000000




modification of doubly-even to singly-even involves changing by 2 the weights of codewords
that are not orthogonal to a given set of four positions t1 [7], while leaving unchanged the
weights of codewords that are orthogonal to t1. If s-8 f +

4 has d4 = 15 then it contains the
unique g15[15,4,8] code. This is doubly-even, and so we must have u · t1 = 0 for all u ∈ g15.
This implies that g15 is a subcode of 8 f +

4 , and this has already been ruled out.
A generator matrix for a uniformly efficient permutation for each of the [32,16,8] singly-

even self-dual codes is given in Tables 3, 4, and 5.
In summary, we have the following theorem for [32,16,8] self-dual codes. The absolute

state complexity is 9 for these eight codes. The fact that d3 = 14 for each of the doubly-
even codes plus the Wei relations (3) determine all Hamming weights apart from the fourth
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Table 7. Uniformly efficient permutation for q32.




1111111100000000 0000000000000000
1110001011110000 0000000000000000
1011100011001100 0000000000000000
1010011001001011 0000000000000000
0000000000000000 0000000011111111
0000000000000000 0000111101010101
0000000000000000 0011001101110010
0000000000000000 1101011100000110
0001111011100010 0101000001000001
0110011001000000 0000010001000010
0010001001100010 0001000001000100
1000100010001000 0001010001001000
0011110001000010 0000000001010000
1110001001101010 0100010001100000
0110000001100000 0101010100000000
0011000010001000 0101011000000000




and fifth, which could only be (15, 16), (15, 17), or (16, 18). Each of these possibilities
arises.

THEOREM 4. Every [32,16,8] binary self-dual code satisfies the double chain condition.
The LDP and optimum SCP of r32, s-r32, 2g+

16, and s-2g+
16 are

d = {8, 12, 14, 15, 16, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32},
s = {0, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 8, 7, 6, 7, 8, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 3,

2, 1, 0}.
The LDP and optimum SCP of 16 f +

2 are

d = {8, 12, 14, 15, 17, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32},
s = {0, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 8, 7, 8, 7, 8, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 3,

2, 1, 0}.
The LDP and optimum SCP of 8 f +

4 , s-8 f +
4 , and q32 are

d = {8, 12, 14, 16, 18, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32},
s = {0, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 3,

2, 1, 0}.

5.4. A [32,16,4] Code

One of the doubly-even [32,16,4] codes is worth noting, as it illustrates the main difficulty
in applying the general method. This is the code obtained by taking a direct sum of the two
distinct doubly-even [16,8,4] codes, 2e8 and d16. This is code C6 in the classification of
Conway and Pless [30]. We have seen that both of the component codes satisfy the chain
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condition (in fact, the double chain condition). However, the overall code does not satisfy
the double chain condition, as we may achieve either s8 = 0 (by placing 2e8 first) or s24 = 0
(by placing 2e8 second) but not both simultaneously. In terms of the conditions listed in The-
orem 1, the problem is that only one of the glued codes matches the LDP of the overall code.

5.5. The Self-Dual Codes of Length ≥ 40

Since there are very many extremal doubly-even self-dual codes of length 40 [5], we aim for
blocklengths this long and longer to find a self-dual code with the smallest state complexity
profile over all possible self-dual codes of the same parameters.

The strategy is to start with a self-orthogonal code C1[n/2, kmax, d] with the smallest
LDP, component by component, among all [n/2, ≤ kmax, d] self-orthogonal codes, where
kmax is the maximum dimension of a length n/2 binary self-orthogonal code with minimum
distance ≥ d , and to verify that C1 satisfies the chain condition. We then seek appropriate
glue vectors to produce a self-dual [n, n/2, d] code; we must verify that it is possible to
choose the glue vectors to maintain the minimum distance as d.

Assuming this is possible, we may apply Theorem 1 to conclude that the permutation
with corresponding code generated by

GC =

G1 0

0 τ(G1)

E F


 , (14)

is uniformly efficient, and in fact is uniformly concise in the class of all [n, k, d] self-dual
codes.

If C1 = 〈G1〉 has d⊥
1 ≥ d/2, we may choose any E and F so that 〈G1 ∪ E〉 =

〈τ(G1) ∪ F〉 = C⊥
1 . Then the code with generator matrix of the form (14) is self-dual, and

has minimum distance at least min{d1, 2d⊥
1 } [26, p. 584], i.e., at least d if C1 has the given

dual distance.

5.5.1. The [40,20,8] Self-Dual Codes:

We can start with the optimal length 20 binary self-orthogonal code with minimum distance
8, the [20,8,8] code obtained by shortening the [24,12,8] Golay code in any 4 positions. This
code is unique [9]. From Section 5.1.2 its LDP matches the LDP of the Golay code, and
the code satisfies the chain condition. Its LDP is then d(g20) = {8, 12, 14, 15, 16, 18, 19,

20}. Each di is the smallest possible for any code with minimum distance 8 (up to d5, they
meet the generalized Griesmer bound; and there is no [17,6,8] code). Since d(g⊥

20) = 4,
we can choose E so that 〈E ∪ C1〉 = C⊥

1 , and F = τ(E). Then the code with generator
matrix of the form (14) is a self-dual (in fact, doubly-even) code that satisfies the double
chain condition, is in uniformly efficient order, and is uniformly concise in the class of all
[40,20,8] binary self-dual codes, with state complexity profile

s = {0, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, . . .}.
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By pairing different glue vectors, we can easily obtain a singly-even self-dual [40,20,8]
code with the same properties [4].

Similar constructions produce uniformly concise permutations for the class of [42,21,8]
and [44,22,8] self-dual codes. We remark that in applying Theorem 1, we are only concerned
with whether each component code satisfies the chain condition, not the double chain
condition. Here, for example, the [21,9,8] shortened Golay code satisfies the chain condition,
but Encheva [12] has shown that it does not satisfy the double chain condition.

5.5.2. The [48,24,12] Self-Dual Code(s):

The only known [48,24,12] self-dual code is the extended quadratic residue code; whether
another exists is an open problem [30]. A uniformly efficient permutation was found via a
combination of heuristic and computer search by Dolinar et al. [10]. Another was found by
Berger and Be’ery [2]. The resulting state complexity profile is

s = {0, 1, . . . , 11, 10, 11, 12, 13, 14, 15, 14, 15, 16, 15, 16, 15, 14, . . .}.
Via a direct application of Theorem 2 and equation (12), we can conclude the following

for any [48,24,12] self-dual code, not necessarily just the quadratic residue code:
If a [48,24,12] self-dual code contains a [24,5,12] subcode, then

— it has a uniformly efficient permutation that meets the DLP bound;

— the permutation is uniformly concise over the class of [48,24,12] self-dual codes;

— a permutation is uniformly efficient if and only if the resulting code has generator matrix
of the form

G =

 G→

[24,5,12] 0
0 τ

(
G→

[24,5,12]

)
E F




where G→
[24,5,12] is a generator matrix for the unique [24,5,12] code in chain condition

order, and τ(·) is the reverse permutation;

— the number of uniformly efficient permutations out of all 48! is 2443205674112a5,24,
where a5,24 is the number of distinct 5-dimensional subspaces of effective length 24.

The last part follows because taking a chain of residual codes with respect to minimum
weight codewords gives [24,5,12] → [12,4,6] → [6,3,3] → · · · . Each of these codes
is unique by the results of van Tilborg [34] and Helleseth [16]; the respective weight
enumerators are 1 + 28x12 + 3x16, 1 + 12x6 + 3x8, and 1 + 4x3 + 3x4. We then apply (12).

We do not know of any purely combinatorial argument showing that the [24,5,12] code
must be a subcode of [48,24,12] codes in general or the quadratic residue code in particular.
In the case of the quadratic residue code, we can find this by inspection of the two known
uniformly efficient generator matrices [2,10], which generate this code with the first five
and last five rows in each case.
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Since the number of uniformly efficient permutations must be divisible by the auto-
morphism group of the code, and the complement of a [24,5,12] subspace has the same
parameters, we find in the case of the quadratic residue code that a5,24 must be divisible by
2 · 23 · 47, and then dividing by Aut(Q48) = 47(472 − 1)/2 [26, pp. 491, 494], we have
a total of at least 11.6 × 1031 distinct codes in uniformly efficient order. Of course, this
represents a very small fraction (4.8 × 10−26) of all distinct permutations of Q48.

6. Conclusion

The optimal permutation problem for linear block codes may be simplified substantially
for the class of self-dual codes. For the self-dual codes of highest minimum distance, it is
often the case that the existence of a uniformly efficient permutation, and a full classification
of all possible such permutations, may be deduced. This is the case when appropriately
chosen subcodes have lengths sufficiently close to the Griesmer bound.

This result, among others, is used in the paper to classify the eight self-dual [32,16,8]
codes according to optimal trellis structure and generalized Hamming weights. Optimal
trellises and generalized Hamming weights are similarly derived for several other self-dual
codes, including the lowest complexity [40,20,8], [42,21,8] and [44,22,8] binary and both
[24,12,9] ternary codes. A new characterization is given of uniformly efficient permutations
for the [48,24,12] quadratic residue code, and the number of distinct uniformly efficient
permutations for many self-dual codes of length up to 24 is determined.

Note

1. This is the definition of uniform efficiency given by Vardy [35, p. 2058]. The definition given by Kiely et al.
[21] is slightly stronger, and corresponds to meeting the DLP bound (6). Permutations satisfying the weaker
condition are termed “efficient, but not uniformly so” by Kiely et al. The term “efficient coordinate ordering”
[12] is synonymous with meeting the DLP bound.
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32. M. A. Tsfasman and S. G. Vlăduţ, Geometric approach to higher weights, IEEE Trans. Inform. Theory,
Vol. 41, No. 6 (1995) pp. 1564–1588.

33. J. H. van Lint, Introduction to Coding Theory, Springer-Verlag, New York (1982).
34. H. C. A. van Tilborg, On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound,

Information and Control, Vol. 44, No. 1 (1980) pp. 16–35.
35. A. Vardy, Trellis structure of codes, in Handbook of Coding Theory, Volume II, (V. S. Pless and W. C.

Huffman, eds.), North-Holland, Amsterdam, The Netherlands (1998).
36. V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, Vol. IT–37, No. 5

(1991) pp. 1412–1418.


