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allows us to treat all aspects of a decision in a similar framework. We show how views from different levels 
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duality gap in stochastic integer programs as the number of scenarios increases. 
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1. Introduction 

JOHN R. BIRGE AND M. A. H. DEMPSTER 

Scheduling decisions involve consideration of many quantities that are not known with certainty. Im- 

portant characteristics such as process yield, processing time, resource availability, product quality, demand. 

input costs and eventual revenues may all be random quantities with varying’levels of certainty. The in- 

evitability of these uncertainties has promoted interest in stochastic scheduling (see, for example, Dempster 

et al [1982] and Righter [in Shaked and Shanthikumar,l994]). 

The great majority of the stochastic scheduling literature concentrates on structural results for optimal 

solutions that show that, under certain conditions, it may be optimal to follow a fixed permutation schedule or 

use a form of an index rule (see, for example, Gittins [1981], Glazebrook [1981], Pinedo (19831, Shanthikumar 

and Yao [1992]). While these results are quite useful in many settings, especially in terms of overall system 

evaluation, they do not, generally, extend directly to near-term operating conditions. Our interest in this 

paper is to use stochastic programming formulations to explore the relationship between broad system results 

for planning purposes and short-term results for actual operations. 

Our approach fits into a hierarchical approach to decision making (see also Dempster (19821. Dempster 

et al 119831 and Dempster [1994]) . m which we view the decision process as breaking down into: (1) long-term, 

strategic decisions about overall capacity and scope (market); (2) medium-term. tactical or planning decisions 

about aggregate production for known items or services, or fixed orders: and (3) short-term, operational 

decisions for current situations. Scheduling decisions impact on each level of this hierarchy since they may 

determine overall capacity and fixed term production. as well as decisions on what or how to produce in the 

present. 

Hierarchical stochastic programming provides a unifying framework for thii analysis. .411 levels of the 

hierarchy can appear in the same model to allow for various methods of decomposition, approximation and 

solution. In thii paper, we explore different types of approximation associated with each level of the hierarchy 

and show how that approximation may aid the overall decision process. 

Our results are consistent with other attempts to unify stochastic and dynamic optimization as in. for 

example. Bertsimas [1994]. These are most compatible when we take a long-term view of design decisions 
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for overall performance and capacity. In Section 2. we explore this strategic decision making level. Our 

approximation in this section is to assume that operational scheduling effects are well approximated by heavy 

trafhc fluid, or Markov-modulated fluid, queueing approximations, Dempster [1994]. We use an example from 

telecommunications (see Dempster, Key and Sledova 119953) to illustrate how this approximation and large 

deviation theory can reduce a complicated stochastic program to a simple deterministic problem. 

When higher level capacity and scope decisions are set, aggregate production scheduling becomes a 

dominant concern. In Section 3, we study this level of the decision hierarchy when production decisions 

can be approximated in a convex model. We give some justification for this in a planning setting. We then 

provide results from Birge and Dempster (19921 to give optimality conditions for this problem and provide 

a turnpike result and conditions for optimal cyclic schedules. This also justifies a match-up scheduling 

approach to disruptions, which was discussed for deterministic systems in Bean et al (19911. 

At an operational level however, it is often difficult to eliminate the effects of nonconvexities. In this 

case, other approaches are necessary. In Section 4, we show how to use a Lagrangian relaxation approach 

to the general stochastic scheduling problem with setups. This method has been used in power system 

scheduling (see Takriti. Birge and Long [1994a]) with small duality gaps. Extending results from Bertsekas 

(19821, we show, in fact, that the duality gap in this relaxation approach actually decreases to zero as the 

number of samples in a discrete approximation procedure to the stochastic problem increases. 

2. The Strategic Level and Queueing Approximation. 

Following the original ideas of G.B. Dantzig (see. e.g., Dantzig [1963]) in the context of military logistics, 

from the 1940’s management science has been concerned with models at the macro. meso and micro levels of 

detail to support corporate decision-making in plannin,, o- management and control. Integrated hierarchical 

mathematical and computer models reflect the classical three-level military planning concepts of strategic 

long-run, tactical medium-run and operational short-run. As decision-making moves down the corporate 

hierarchy. it becomes increasingly detailed and involves many more, but smaller, uncertainties. The modelling 

involved at succesively lower levels reflects these differences - paralleling the macro, meso and micro scale 

mathematical models of classical physics - increasing in complexity at each level. In a stationary corporate 
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environment, operational planning models - involving mainly management and control functions - can 

become extremely complex. In a highly dynamic uncertain environment, useful mathematical and computer 

models tend to become simpler, as it is the strategic and tactical decisions involving rarer major uncertainties 

which are critical for survival (see Table 1). 

Lead Time cost Complexity Uncertainty 

Level 1 Strategic T i 1 Macro T 
Level 2 Tactical I I 1 Meso I 
Level 3 Operational 1 Micro 

Table 1. Strategic and tactical planning levels handle complexities and uncertainties by aggregation in a 

stable environment in order to focus on rare major emironmental change. 

Many problems in manufacturing, logistics and telecommunications are modelled at the operational 

level by open queueing system (see, for example, Buzacott and Shanthikumar (19801, Harrison (19851, Chen 

and Mandelbaum [1991], Sethi and Zhang [1995] and Kelly [1991]), although the study of the behaviour 

of these systems with active scheduling policies is in its infancy (see, however, Bertsimas and NirioMora 

[1993], Bertsimas 119941 and Garbe and Glazebrook [I9951 for situations in which simple index rules can be 

justified). In this section we first outline the aggregation of minor operational event uncertainties by changes 

of time and space scales appropriate to macro level strategic decisions and modelling for open queueing 

systems with finite buffers. (Here we ignore the intervening meso - tactical - level regarding these queueing 

approximations; the reader is referred to Harrison [1985]. Chen and ;\Iandelbaum [1991] and Dempster 

(19941 for more details.) Using functional central limit theory, the complex operational stochastic model is 

aggregated to a simple deterministic fluid flow model for strategic planning purposes. 

For practical applications of hierarchical planning models, however, this aggregation is often too strong in 

that the resulting approximation ignores the occasional random extraordinary influences of extreme tactical 

and operational level considerations on strategic planning. For modeling at this meso-macro boundzy, 

hlarkov-modulated fluid flow models are appropriate. We illustrate strategic planning at this level with 

a hierarchical telecomunications planning model (treated in detail in Nedova [1993], Dempster [1994] and 

Dempster, Key and Nedova [1995]) which uses large deviations theory to produce, from the original chance- 
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constrained stochastic programming formulation. a simple deterministic mathematical programming model 

for network dimensioning and traffic balancing which can be used as a framework for fast real-time routing 

and scheduling algorithms. The section concludes by briefly indicating some extensions of thii approach to 

other scheduling contexts. 

Consider now an open (i.e. exogenous input) queueing network on an arbitrary graph G(N. A) of nodes 

(with finite buffer capacity) and (directed) arcs, with random muting of particles from each node on each of 

its output links to each other node. (Classical sources for queueing networks are Kleinrock 119751 and Kelly 

[1979].) We assume arbitrary independent identically distributed exogenous input inter-arrival and service 

time processes at each node subject to the existence of a dynamic equilibrium (long-run) limiting process 

distribution for the system. This stationary stochastic process is characterized by an erogenous arrival rate 

X8, a potential service rate p, and the stitching fractions pjk of particles that are routed directly to node k 

on link (j, k) after service at node j on each of the J := IN] nodes j in the network. The corresponding row 

vector/matrix triplet (Ah, p’. P) specifies the long-run average performance of the system and - assuming 

that particles arriving at a node with a full buffer are lost to the system - the total inflow vector A’ of total 

arrival rates A, at nodes j = 1,. . , J is the m aximum solution of the trafic equations 

A’ = A;, + (A’ A p’)P, 

where A denotes coordinatewise minimum. 

(1) 

Figure 1. Example of a Three Node Nehvork. 
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An example of this network appears in Figure 1. In this case, external arrivals with rate X,” combine 

with output particles from the random routing with rates, pzjpi, to form the overall arrival rate A, at each 

node. Arrivals which encounter full buffers are lost to the system. 

Since the network is open, the muting transition matrix P has spectral radius a(P) < 1. ( A closed 

network has m(P) = 1 and X6 := 0.) The trafic intensity at node j is defined to be p, := Xi/p, and node j 

is defined to be a bottleneck if p, = 1 and a nonbottleneck if pj < 1. Let 

Q’ := {Q’(t) := (Ql(t). . , QJ(t)) : t 2 0) 

denote the integral equilibrium queue length process representing the network node (i.e. buffer and server) 

occupancies. Not surprisingly. it may be shown that the macro level fluid approximation of this process is 

supported on the set of bottleneck nodes. 

Moreover, it may be shown that Q can be expressed in terms of the potential net throughput process 

X’ := {x’(t) := (X,(t), . ,X,(t)) : t 2 0). 

which represents the difference between the equilibrium cumulative input and potential output processes, 

and the equilibrium lost output process (due to empty nodes) 

Y’ := {Y’(t) := (Yl(t). ,YJ(t)) : t 2 0). 

Together, X’ and P completely specify the system ss a&vt surely (as.) the unique solution of 

Q’ = X’ + [Y’ - z’(I - p)] i_ B’, (2) 

where B’ is the constant process representing fixed node capacities and Z’ represents the bufler overflow loss 

process, subject to the appropriate a.s. nonnegativity conditions and the requirement that Y’ and Z’ are as. 

nondecreasing and increase from 0 (the identically zero process) only when the corresponding coordinates of 

Q’ and B’ - Q’ respectively are 0. 

A basic representation of the identity in (2) appears in Figure 2 for a single node with no branching 

probabilities and a single realization of the processes. In this figure, we assume that the system has no buffer 
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‘;‘,- 
l-l i Q=Queue Length 

JY=Lost output 1 

JEBuffer Overflow 

Figure 2. The Queue Length Process in Terms of the Input and Potential Output Processes. 

so that the maximum queue length is one. The difference between the input and potential output process is 

the potential net throughput. X. To obtain the queue length process. Q. the lost output process. Y. must 

be added whenever the output is limited due to the empty state. The buffer overflow process. 2. must also 

be subtracted when an arrival is lost due to the buffer limit. 

The conditions defining the queue length process maq- be neatly summarized by observing that Q’ must 

be pathwise the as. unique solution of the linear order complementarity problem (see e.g. Dempster [1994]) 

(OW 4’ := X’ + [Y' - Z'(I - p)] 5 B' (3) 

Y’ 2 0’ Z’ 2 0’ Q’ 2 0’ (-I) 

Q’ A AY’ = 0’ [B’ - Q’] A AZ’ = 0 (3) 
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posed in the Skorohod space of left-limited right-continuous functions of time. 

Here we note that we may express 

Y’ = c AY’(t,) and 2’ = c AZ’(r,) 
h<(.) r.S(.) 

in terms of the jumps AY’(t$) and AZ’(r,) of the respective processes at jump epochs t,, r, up to time 

t. It follows that Y’ and Z’ are a.s. the least element processes satisfying the inequalities (3) and (4). 

Thus (OCP) provides a complete description of the equilibrium behaviour of the specified finite buffer open 

queueing system at the operational level of equilibrium stochastic particle flow. 

Aggregating numbers of particles by the scaling X’/n, accelerating time by the scaling nt and applying a 

suitable functional law of large numbers for stochastic processes (see e.g. Chen and Mandelbaum [1991]), the 

e.rpecled queue length process g’ emerges at the strategic level in the a.~. limit as n -+ co as (equilibrium) 

deterministic fluid flow. This flow is regulated by a deterministic increasing process for expected lost output 

7’ and expected buffer overflow 2’ and driven by the deterministic expected potential net throughput process. 

T? := {T(t) := [(A’ - p’) ” p’]t : t 2 0): (6) 

where v denotes coordinatewise maximum. Taken together these deterministic fluid flows satisfy a determin- 

istic version of (OCP). As mentioned above, positive coordinates of g and z’ are associated with bottleneck 

nodes, as is appropriate to strategic decisions such as decreasin, = exogenous input rates or increasing service 

rates at bottleneck nodes or changing routing frequencies in the network so as to decrease their input loads. 

Notice that at this macro expected level - which is by no means the case at lower levels - buffer sizes at 

individual nodes are irrelevant. 

To illustrate a situation at the me-macro level in which such dimensioning becomes relevant to strategic 

planning. ne turn to a hierarchical telecommunications model with extensions to more general scheduling 

models. Following Dempster[lSSd]. the general 3-level hierarchical telecommunication network planning 
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model is given by 

m~~l,.z,VW + Level 1 : Topology Design 

gbh* 4 + Level 2 : P;ode and Link Capacity Allocation 

Eh(q, ~2. d)] Level 3 : Traffic Management 
(7) 

subject to a E x1,x2 E x2, 

where, in a manufacturing setting, topology design includes plant layout, node and link capacity allocation 

involves the material handling system design, and traffic management determines routing and sequencing. 

In this model, x1 and ze represent a choice from usually an exponentially large number of integer design 

vectors in Xr and X2, representing node and link placements and capacity allocations respectively. while lE(.) 

denotes mathematical expectation in terms of the stationary distribution of the trafic demand process with 

state d in terms of bandwidth requirements on the allocated directed links. The function given by h(zi. zs. d) 

represents the value of a mzllticommodity flow problem (see e.g. Hu[1969]) which allocates the traffic demand 

d by origin-desttnation pair to routing paths over the physical network topology determined by I, within the 

capacities determined by 2s. Since real telecommunication networks tend to grow incrementally. in practical 

planning problems the physical topolo, of the network (determined by zi in the model) is usually taken as 

given. so that the main strategic decisions in telecommunications network management concern node (i.e. 

switch) and link (i.e. optic fibre) capacity allocation - particularly so as to allow resilience of the network 

in the face of random node and link failures. In manufacturing systems. the nodes become machines and 

storage areas while the links are material handling routes. such as conveyors and automatic-guided vehicle 

paths. 

Modern telecommunication networks involve many layers, both physically and with respect to traffic 

demand time-scales such as private network contracts (months or years), calls (minutes), packet bursts 

(milliseconds) and bit flow (microseconds). In manufacturin,, 0 similar contracts run from product lifetime 

supply (years) to hourly just-in-time deliveries. To illustrate the influence of meso level rare events on macro 

level strategic decisions. we shall present a simplified ‘-level special caSe of (9) involving its second and 

third level. Our model is a special case of a more detailed model of asynchronous transfer mode (AT>I) 

network dimensioning and tr‘aillc routing and balancing developed in XIedova[l!393j, DempsterfISS-i] and 
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Dempster, Key and Medova[1995], to which the reader is referred for more details. In particular, the optimal 

traffic management cost function h of (7) will result from solving a certainty equivalent form of a chance- 

constrained stochastic program. Applications to telecommunications network planning with the alternative 

recourse stochastic programming formulation have recently been given in Sen et al (19921 and Bai et al [19!Uj. 

In general, the chance-constrained approach is natural to gmde-of-service (GoS) considerations expressed in 

terms of acceptable blocking or loss probabilities at various time-scale layers of the network and usually results 

in a very much more compact computational representation of the problem than the recourse formulation. 

Similarly, in manufacturing systems, a model can either incorporate penalties for shipping delays for recourse 

formulations or use service level constraints of the chance-constrained form. 

To see this in the telecommunications context. consider once more a fixed network topology represented 

by adirected graph G(X. A) and consider stationary stochastic (packet. cell or bit) trafic flows f, (in packets. 

cells or megabits per second) between each origin-destination (OD) pair w E W in the network during a 

specified traffic regime. The network dimensioning and traffic management problem we shall consider is to 

allocate link capacity C,,. a E A, and route tr&c fP on paths p E P,, a set of specified routes through the 

network from origin to destination node W, so as to optimize the expected net revenue occuring from carrying 

the stochastic traffic in terms of total OD pair bit flows 

offered to the net>vork. For simplicity. we treat a linear objective. but the arguments given below can easily 

extended to (level) separable convex cost functions and to the proxsision OF node (switch), as weI1 as link. 

capacity (see Dempster, Sledova and hloise !1995j). 

Specifically, we consider the chance-constrained P-level problem 

(9) 
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fp > 0 as. P E Pw w E w. (12) 

The objective (9) of this optimization problem contains coefficients representing the unit cost of link capacity 

promsion b, , u E A, and unit OD pair net revenue rw. w E IV, resulting from carrying traffic between OD 

pairs. The first chance, or probabilistac, constraint (10) states that the probability of offered stochastic OD 

pair traffic flow f, exceedin,o a specified demanded capacity level D, must not exceed the GoS for call re~twrl 

probability gcalt. The probabilistic constraint (11) states that call GoS gcdr must be maintained for the sum 

of offered traiiic flows on the set Q, of all paths passin, * through each (directed) link a E A. The constraint 

(12) requires the a.s. nonnegativity of traffic flows 

Problem (9-12) is completely analogous to the manufacturing situation where W’ corresponds CO a set 

of products, P, includes alternate production routings to complete product w, and C, represents capacity 

of both paths and machines. At this level, we would assume that operational level sequencing effects would 

not be significant in reducing overall capacity. 

In the result below we shall use a large deviation bound to approximate the OD pair demanded ca- 

pacities D, which meet the probabilistic constraints (10) and (11) exactly. It is well known that a linearly 

chance constrained problem of the above form has a deterministic equivalent problem which is obtained 

by replacing the probabilistic constraints involvin:: random variables with equivalent constraints written in 

terms of deterministic variables which meet the probability restrictions as nearly as possible. These equiv- 

alent constraints are usually found by inverting the joint distribution of the random variables. However, if 

D, is specified (approximately) by a conservative traffic bound derived from large deviation theory. we may 

replace the stochastic traffic flows fr, by deterministic fluid flows fp, p E P,. ‘IL’ E IF’. which represent traffic 

flows just at the rate above which fluctuations of the stochastic flows f, would begin to exceed call GoS 

requirements. Then we can formulate the (approximate) deterministic equivalent of our problem as the path 

and capacity allocation (PCA) problem of Medova [1993]. viz. 

(PC.%) min 

subject to 

(13) 

(1-I) 
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This model dimensions link capacities and routes traffic at the maximal flow rates (bandwidths) con- 

sistent with the specified individual call GoS. (In fact, the multilayer multiservice e&&w bandtidt/~~ D,. 

w E W, developed in Dempster, Key and hIedova [1995] for ATM networks are also consistent with more 

stringent GoS criteria at the burst and cell timescale layers of the network.) The linear programming problem 

specified by the PCA model (13)-(16) is a 2-level deterministic net&xk planning and traffic management 

model in which the strategic level (first stage) dimensions link capacities and the lower level (second stage) 

allocates and routes (approximate) deterministic equivalent traflic between all specified OD pairs in the 

network so as to maintain GoS for its corresponding stochastic traffic on all paths and links. For jzed link 

capacities, the second stage problem is a multicommodity flow problem in compact format instantiated using 

OD pair-path and arc-path O-l incidence matrices. 

We summarize the above discussion in the following proposition. 

Theorem 1. The chance-constrained stochastic programming problem (g)-(12) mth Poisson jlows and ran- 

dom call muting has an approximate deterministic equivalent linear progmmmzng problem gwen by (13)-(16) 

whose accuracy depends on the tightness of the large deviation bound employed to derive it. 

Remark. We establish the theorem using the least refined of the large deviation bounds. the Chernoff 

bound. but both reducing constants and. under appropriate stochastic assumptions. tighter bounds. such as 

the Bahadur-Rao bound. can be obtained (see Dempster. Key and Nedox-a [1995] for references). . 

Proof First consider the total offered traffic f, between an arbitrary specified OD pair w E II’. Recall that 

the Chemofl bound is given by 

P{f, 2 D} 4 exp {-max,[sD - pf,(s)]}. (17) 

where the logarithmic generating function pr,, of f, is defined as 

(18) 
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Rearranging (17) yields 

-In P{fw 2 D) 5 m=slsD -  fir,(s)1 

429 

and consequently to approximately invert the constraint (lo), taking account of (8), we must solve 

to obtain 

(19) 

(20) 

for the optimal s* in (19), and the corresponding deterministic constraint 

fw 5 Dw. (21) 

If we assume that the stationary traffic flow f, has a Poisson distribution with parameter pW, that 

and that each arriving particle (call) of the Poisson flow f, is independently randomly routed on a path 

p E P, with probability fp/fw, then it follows that 

is the deterministic equivalent of (lo), since 

Moreover, since UJ E W was arbitrary, we have that 

provided that 

a E A, 

(23) 

P-1) 

since it may be shown that for sufficiently small ~~~~~ (typically 10e3 or lOed), the effective bandwidths D, 

determined by the Chernoff bound are additive. i.e. 

XI”, 4 = Dw, (25) 
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(see Hui and Karasan [1995]). Hence (24) is the deterministic equivalent of (11) as required. . 

This theorem can be extended in a number of ways. For telecommunications network planning perhaps 

the most important generalization is to multiservice traffic mixtures of independent Poisson streams of 

Markov modulated fluid calls with negative exponential holding times (see Dempster, Key and Sledova 

119951). In this context the (PCA) model provides a framework for real-time routing and rerouting of actual 

calls based on stochastic knapsack and bin packing models. 

Since Theorem 1 applies to the basic queueing network model treated earlier, it (and its generalizations) 

can be used to study hierarchical planning problems in, for example, flexible manufacturing. Strategic and 

tactical decisions might involve shop layout. factory and machine centre product capability, machine centre 

sizing, setups, etc; while operational decisions would involve work-in-progress scheduling, processing and 

routing between machine centres. We consider tactical level decisions on overall production in the next 

section. 

3. The Tactical Level and Convex Approximation. 

The example of the previous section fits the strategic framework of a manufacturer considering capacity 

planning. The analysis considered only aggregate production service requirements without consideration of 

the timeliness of order fulfillment. At a lower decision levei, the time element becomes more important. We 

first consider appropriate methods for aggregate production (for example. daily or monthly) decisions. 

Our approximation is based on a convex model in contrast to many scheduling models. in which non- 

convexities immediately appear through disjunctive constraints. This model gives a good approximation 

at a tactical level where the production system appears large enough that a continuous approximation to 

setup conditions can apply. In this section. we follow the model in Birge and Dempster ([1992,1995]). Our 

model is similar to the continuous time model in Sole1 (19871 (see also Dempster and Sole1 [1987]) but we 

consider a discrete time model that allows us a wider class of problems. Related results for gener,al stochastic 

optimization models appear in Dempster [1988]. F&m [1983.1985]. Kushner [1972]. Arkin and Evstigneev 

[1979]. Rockafellar and Wets [1983] and Hiriart-Urruty [1982]. One of our main results in this section con- 
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terns turnpike optimality which in the deterministic case may be found in McKenzie (19761 and in stochastic 

models in, for example, Sethi et al. [1992]. 

To set the stage for our model, we assume a data process, w := {or : t = 0.. .} in a (canonical) 

probability space (Q, C,n). We also assume a decision process z := {.q : t = 0, .} such that I is a 

measurable function z : w c-) z(w). The space of the decision processes is the space of essentially bounded 

functions, L”, := L,(R x N, C x P(N), n x #: W’), where P is the power set and # is counting measure. 

Associated with the data process is a filtration IF := {C,}g”,,, where Ct := e(wt) is the u-field of the history 

process wL := {we?. ,~t} and the Ct satisfy (0.n) C Co C .. C C. 

A fundamental property of the decision process at time t is that it must only depend on the data up to 

time t, i.e. xt must be Et-measurable. An alternative characterization of thii nonanticipatzve property is 

that xt = IE{xt]&} almost surely (a.s.), t = 0.. ., where IE{.]C } . t IS conditional expectation with respect to 

the o-field Ct. Using the projection operator Ii, : z c rrt.z := lE{z/C,}, t = 0,. ., on L&. this is equivalent 

to 

(I - &)I, = 0, t = 0.. (35) 

We let h’ denote the closed linear subspace of nonanticipative processes in L”, and denote by II := 

(Us. III,. .) the projection operator from Lk onto N. 

Our general optimization model is to find 

where “IE” denotes expectation with respect to X. We use the notation x1 and f, to denote respectively zt 

and ft as functions of w, i.e. as random entities. Expression (27) then becomes 

m 

inf,e.\.IECft(xt,~t+l)~ 

t=0 
(28) 

with objective F(x) := IE cz”=, fi(xt. xt+r). 

We assume in (28) that the objective components f, are proper convex normal integrands (see Rockafellar 

[1976]) with the following additional property: 
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Assumption 1: For any y = (x L, x t+l), there exists y > 0 (independent of t) such that for x E at,(y) c 

(Lk)‘, the Banach dual space of L&,, and for all w, either 

Of 

(b) there exists z such that ?r E aft(z) and 

ft(z) + ?T(w - 2) 5 f,(w) - y]]z - y]] as. (29) 

for all t-2 0. a 

Note that uniform convexity implies Assumption 1:which allows nonstrict convexity involving a van IXeumarm 

facet. We use this more general assumption here because it allows us to use the common scheduling objectives 

which involve linear tardiness and earliness penalties. 

We present the main results from Birge and Dempster [1992] on optimality conditions. turnpike resulrs 

concerning the optimality of cyclic policies and the asymptotic optimality of match-up strategies. The proofs 

of these results may be found there. 

In general, the objective in (28) is infinite. We can avoid this difficulty by defining a policy X* := 

(~0, xi,. .} as (weakly) optimal, as in SfcKenzie ]1976], if it is not overt&n by any other policy, i.e. if there 

does not exist x’ such that 

1imsupEk’f ( ’ ( t x,.x:+1, - ft(x;.x:+J 5 --e. 
7-m t=o 

(30) 

where c > 0 

We also assume that the objective functions satisfy a condition ensuring that no infinite terms are 

present in the sum in (30). 

Assumption 2: For any t and 6 < co, there exists c < co such that ]]xt]] < 6 a.s. implies lE f,(x,, x1+1) > --c 

and ]]xl+r]] < c a.s. for xt+r feasible. I 

Given -4ssumption 2, we can subtract a constant from each f, without changing the weak optimality of 

x*. By setting this constant equal to the expected objective value in each period. we obtain an infimum of 

0 in (28). Thus without loss of generality we assume a finite infimum in (28) in the sequel. 
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The first result from Birge and Dempster (19921 is that there exist prices supporting the objective 

terms in (28). These price supports provide the optimality conditions in the folldwing theorem that allow 

decomposition of the conditions by time period. 

Theorem 2. Suppose Assumption 2 holds and that x* is optimal in (28) with finite injimum. and 

(a) (nonanticipative feasibility) For anyx E dom F (i.e., such that E C;“=, ft(xt,xt+l) < co), the projection 

of x onto N, IIx, is such that IEEE_, f,(II,x,,l&+,x,+,) < 03, 

(b) (strict feasibility) For some x E N, such that E cz*=, f ( t xt,xt+~). < co, there exists 6 > 0 such that for 

all jJy - XII < 6-y E L&, 1Ec:of*(Y,.Yt+l) < 32. 

(c) (finite horizon continuation approximation) There e.&ts x’ such that for all Tk in some sequence 

{T,,Ts ,... }, and; for any x E dom F, (x~~.x$~+~,x$~+~ ,...) is also feasible, and the transition cost 

to x’ is such that IJE[fT,-1(xr,-1,xT,) + fT~(xrt.x&h+l)]l --t 0 as k - M and ]lE[fr,-l(xTk-l,xTk) + 

fTk(xTk,x$,+l)]\ 1 ~~[fT~--l(xTI-l,xT~)+fr~(XT~rxT~+l)]~ fOrk=l,.... 

Then, X* is optimal with given initial conditions xc if and only if there erist pt E L?(C), t = 0.. . , such 

that 

(i) pi is nonanticipative. i.e. pt = E{p,j&} a.~. fort = 0,. ., 

(ii) &(fo(xo.xl) - ~0x0 + ~1x1) is a.s. minimized by x1 := Xi ocer x1 = lE{xl 1 C,}, and. for t > 0. 

%(ft(xt,xz+l) - ptxt + pt+lxt,l) is as. minimized by (x*.x~+~) := (x;.x;+~) over xt = lE{xl / &} and 

x1+1 = Wxtil I Et+l}.and 

(iii) E plr(xtt - xh) - 0 as tk - az. for all x E dom F. . 

The optimality conditions (c) characterize optimal solutions which approach a common facet - the 

van Neumann facet - from any given starting condition xg. The main implication of this result is that it is 

asymptotically optimal to match up with a decision process that is optimal for a specific initial condition even 

if that initial condition chaqes. Thii result may be elaborated by showing that if the data process is cyclic 

then it is asymptotically optimal to return to an optimal cyclic policy even if other conditions temporarily 

obtain. These results justify the match-up scheduling policy in Bean et al [I9911 and extend the deterministic 
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results in Bean and Birge [1986]. The followin g results for the general stochastic optimization model (28) 

are also from Birge and Dempster 119921 and apply in a variety of contexts. 

Proposition 1. Given Assumptions I and 2 and Conditions (a) - (c) in Theorem 2, let X’ be the set of 

solutions (x;, x;+~) that are minimal in (ii) of Theorem 1 for pt a set of optimal supporting prices given the 

initial condition ~0 and let x’ be an optimal decision process given the initial condition XL. Then. for any 

c > 0 and 6 > 0, there ezists T < LY), such that. for all t 2 T, 

PIw : inf(,; .x;-, 
* I 

xx; il(4.4+1) - (Xt 7 X*+1 Ill ’ E) < 6. 

Theorem 3. Under the conditions of Proposition 1, we may conclude that as t -+ co, 

ink; +;+, jE~;[\(~;.~:+l) - (x;,x;+~)// - 0 a.s. 

(31) 

. 

(32) 

. 

For Theorem 3 to be fully applicable, we would like to have a method for determining an optimal 

policy for some initial state so that the policy of matching up to that strategy can be implemented. This 

determination is simpler if we can show that qclic policies are optimal. In this case, only a single cycle 

needs to be analyzed to determine the turnpike optimal policy. 

In this development, we follow a similar approach to .4rkin and Evstigneev [19i’91. \Ve first assume 

that the data process has a left tail. i.e. that ~0 can be interpreted as . ,L,,&. .Xn alternative is to 

assume some type of hlarkovian property of the data process (see Arkin and Evstigneev). The data process 

is assumed to be cyclic with cycle k if the measure p is invariant with respect to the k-period forward shifi 

operator Tk where Tkw = w’ such that WI := q+k, i.e., ut = Tki~* = i*rt+k as. It follows that we may 

define TkC, := Ct for t = 0, . k - 1. We also assume that the objective is invariant with respect to Tk so 

that f,+k(Tr.x,. Tkx,+l) = f,(xt.xt+r) a.s., where TQ,(w) := z~(T~Y). In this context. x is a cyclic policy if 

xt+k = Tkxt as. and (25) becomes 

t-2 
inf,e,v:IE(C fdxt.xl+i) + fk-l(xk-.l.Tkxo)). (33) 

t=0 
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Corollary 1. Given conditions (a) - (c) of Theorem 2 and a cyclic data process with cycle k. then them 

exists a weakly optimal policy with cycle k for any initial condition xg. I 

As an example of extending these general results to a scheduling framework, consider a model with sev- 

eral commodities i = 1,. , n processed according to random processing times p(i), random release dates r(i) 

and random due dates d(i), with a penalty weight of rut for every period after the due date in which process 

ing is not completed. We wish to model a situation in which orders for each item arrive randomly (according 

to r(i)), in varying amounts (according to p(i)), and with random due dates (d(i)). The random enci- 

ties, r(i), p(i), d(i), correspond to sequences of times, {r(~, i, l), r(w. i. 2), ,}, {p(w. i. l),p(w, i. 2). . }. 

{d(w. i, I), d(w. i. 2), , }, for each order number 1,2.. . The data process is defined so that when the jth 

order for i arrives at t = r(w, i,j), then the processing time p(w, i. j) and due date d(w. i.j) are also known. 

Thus Et distinguishes r(w. i, l).p( w, i. l),d(is. i. 1) for 1 5 I 5 j, but not for 1 > j. 

Decisions are the amount of processing performed on each item i in each period t. Since the state of 

each item is reduced by the processing requirement at each due date, the total processing in period t is 

xr+r(i) - xl(i) if t is not a due date (t # d(i.j) for any j = 1.2,...) or xt+r(i) + p(i.j) - x((i) if t is 

a due date (t = d(i.j)). The decisions are constrained so that no processing can occur if an item is not 

released (t < r(i.j)) and processing in each period on each item is at most one. Other restrictions on feasible 

processes appear in an indicator function S(w. x1. xt+r) which considers ah resource availabilities. 

The only costs in this model are due to tardiness. A penalty w, is charged in each period for every unit 

of item i backordered (xt(i) < 0). The total tardiness cost at time t given w is then C:=, wi(-rt(w.i))+. 

The objective is to minimize the expected total tardiness. 

The single period objective contribution is thus: 
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where 

I 

--~+&i) if Cgl -l(f=d(,,j)}P(irj) 5 xl+l(i) - xl(i) 

5 c,“=l l{t>r(t,j)}P(i.j) - l{t=d(i,,)}P(i.j). 
xt(i) < 0 a.s., 

f;(xt(i),xt+l(i)) := 0 if c;“=, -l(,=d(,,))p(i,j) 4 xt+1(i) -xi(i) 

< x7="=, l(t>r(t,j)}P(i,j) - l{t=d(i.j)}P(i-j). 
q(i) > 0 a.s., 

00 otherwise. 

This noncyclic model is a generalization of the model with cyclic data P~OCCSS (with cycle k) in Birge and 

Dempster [1992]. In that model, it is assumed that r(i,j + 1) - r(i,j), d(i,j) - r(i,j), and p(i,j) are all 

identically distributed and that r(i,j) < d(i,j) < k a.s. for all j. 

The data process is assumed to determine the availability of the resources (such as machines. labor and 

tools) for processing all commodities. We allow the 6 indicator term to represent feasibility generally by 

assuming a value of “0” if xt+t is feasibly reached from xt and “00” otherwise. For example, suppose that 

each process i requires a resource m(i) where m(i) E {I.. . , M}? the set of resources. and each resource 

can process at most one unit during a time interval if available and cannot process anything if unavailable. 

In this case. w1 can be interpreted to have several components such that the first di components form an 

M-vector of ones and zeroes corresponding to availability and unavailability of resources. 1Ve then have 

0 
6(iJ,xt,xt*1) := 

{ 

if cyzl l{J=m(t)}(xl+l(i) -  xt(i) + P(i)l(t=d(t)}) 

~ ;tt;g!sz j = l.....Ar, (35) 
7’ 

Other constraints can also be represented in this way. Our only requirement is that 6(w. . . .) is convex. 

As an example of an alternative convex function, this constraint on feasibility can be broadened further 

to a situation with setups by including an additional set of variables, st(l, j), which indicate the extent 

to which resource group j is set up to process commodity i. If resource j is a large number of machines. 

then certain fractions of the group could be set up For i at different times. By indicating the total single 

period production capacity of resource j by K, (which might also vary in time and be an additional decision 

variable), we would include a constraint that C:=, s,(i,j) 5 K,. We can also include a convex constraint on 

the maximum setup change in a single period as A,, so that C:=, /s,+l(i.j) - s,(i, j)l 5 Al (with a setup 

change cost also entering the objective if relevant). In this case. the indicator of feasibility becomes: 

0 if (&+1(i) -  xt(i) + P~i)l{t=d(4)) 

5 .~,(j)s,(i.j) for i = 1.. .n: j = 1.. ,111. 
h(w. Xt. Xt+*) := C~zlst+~(Lj) 5 h;. 

C,=, !s,+,(i,j) - st(i. j)l 5 A,. j = 1,. . df. 
x) otherwise. 

(36) 



STOCHASTIC PROGRAMMlNG APPROACHES 437 

Note that this function preserves the convexity of the objective function. This model is a basic multiple- 

processor, minimum expected weighted tardiness problem. With the convexity assumption, it meets the 

criteria for optimality and asymptotic stability given in Theorems 2 and 3. In some cases, the stationary 

distribution for this model follows a deterministic path between disruptions and an optimal match point is 

achieved as quickly as possible (cf Bean et al [1991]). To see this, let X* be an optimal turnpike schedule in 

X, the set of optimal turnpike schedules. Assume that some state xb < g a.s. is the initial state instead of 

4. Let x’ be an optimal trajectory given 4. In Birge and Dempster 119921, it is shown that a trajectory f 

that starts at 4 and matches up with X* at the earliest feasible t can be constructed with the same objective 

value as x’ for the cyclic problem. Essentially the same proof mutatis mutandis yields this result for the 

current noncyclic problem. 

Theorem 4. Suppose x* is optimal from g above in the tardiness model, find infxE~..xa=x; a.s. 

IE~~=,,f,(x,.x,+i) given G 2 $, a.s.: unth ft defined zn (34) and Lir in (35). and that them exists a 

feasible solution f such that f = XL a.s., and ft = xi a.s. for some r < 3~. Then there exists an optimal 

solution x’ given xb such that xi = x;. t > 7 a.s. I 

To illustrate the use of this result. we consider a one-machine, multiple commodity version of the model 

with single period objective (34). In this case. M := 1 and m(i) := 1 for i = 1.. . n. For simplicity. we 

also assume that 1~1, := 1 for i = 1.. . n. n‘irh these assumptions. the familiar earliest due date scheduling 

policy is optimal. To define this policy. suppose that r(z. i,j(&, t. i)) 5 t < P(J.~(w. t. i) -+ 1) and that 

d(sr. il,j(w. t. il)) 5 d(kl. iz,;(ti. t.iz)) 5 .. 5 d( u‘. i,. j(w. t. i,)) and define zt+i (w. ir) recursively from 

1 = 1 to 1 = n by: 

rt+lhil) = dw,ir) - lIt=d(w.lr.jfw.t.l~))~P(W.il,I(W.t.ii)) 
1-I 

+ l(,,(il=ii(min{l - C(zt+i(c.i,) - zt(z. 6) (37) 
a=1 

i l(t=d(d ,x., j(;,t.t.)))P(d. i,.3(~.t.i,)).p(u~.il.j(;.t.il)),c). 

Equation (37) then forces production to occur up to the machine availability in due date order on any items 

that have not yet reached the order quantity p(~. il.j(&. t. ii)). This definition implies that order j for item i 
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is always completed before order j + 1 is released, i.e. that x,(,,,)(i) 2 0 as. This assumption can be relaxed 

by allowing due date order to apply also to previous orders j < j(w. t. i) that are not yet complete. 

Theorem 5. An optimal solutzon to problem (28) with objective defined by (15). 111 := 1, x0 := 0. and 

m(i) := 1, zu, := 1 for i = 1,. . . , n is to process items according to earliest due date of &eased items first. 

i.e. according to (37). 

The result of Theorem 5 for due date order is not valid (even with equal weights) in cases where penalties 

are charged only when jobs are finished. In such cases, the optimal order follows due dates if all jobs can 

complete on time, but the optimal order switches to shortest processing time if all jobs are late. The result 

of Theorem 5 does apply, however, if processing times and due dates follow the same order (see Birge et al 

[1990], Lemma 2.3). It also applies if the weights are ordered in decreasing order from earliest due date to 

last due date. 

Due date order is optimal here regardless of processin, - time because, according to (37). charges are 

incurred only on the incomplete portion of each job. This assumption is practical if an order is large and 

small batches within the large order can be shipped to the customer as they are finished. This ability to 

break up jobs is the critical factor in our convexity assumptions. 

Processing Bvailable jobs in due date order according to Theorem 5 provides a long run optimal solution 

provided the initial system is empty or that n-e can assume some point in time at which we have nonnegative 

processing on all released jobs. T\e would like to show that this policy satisfies the conditions for match-up 

optimality in Proposition 1 and Theorem 3. 

Assumptions 1 and 2 are valid since the costs are just piecewise linear with fixed increment in each 

period and the set of possible states is at most a unit L1 -distance from the current state. For condition (a) 

in Theorem 2 (nonanticipative feasibility). note that the feasibility conditions only depend on information 

available when an order is accepted. The second condition (b). strict feasibility. is satisfied if we assume that 

the system has sufficient slack such that the objective can be obtained without completely using all available 

capacity in some period. \\-e ,assume this is possible (although an optimal solution may use all capacity). 
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The third condition (c). finite horizon continuation, is that we can at some point reach a trajectory starting 

from, for example, the empty inventory state. 

With these assumptions and following Theorem 4, the optimal policy for any initial inventory state 

is to match up with the state from the empty inventory position as quickly as possible. The alternative 

initial states in Theorem 4 would correspond to entering period 0 with some overdue orders causing initial 

negative inventories for these items. The optimal match up response then corresponds to processing any 

items with negative inventories before proceedin, m to items with zero or positive inventories. The result is 

that one reaches by time t the same state as in the zero initial inventory state whenever the cumulative 

excess capacity up to time t is greater than the total negative inventory at time 0. 

4. The Operational Level and Lagrangian Relaxation. 

At the operational level. distinct setup times and the consideration of discrete variables is often unavoid- 

able. In these situations, however. the stochastic nature of the problems can frequently provide advantageous 

solution characteristics that are not possible in deterministic problems. For example, consider a single ma- 

chine scheduling problem with the objective to minimize weighted completion time when the machine is 

unavailable at some point during processing. If that downtime is known with certainty and occurs some- 

time strictly between 0 and the time to process all jobs. then finding the optimal order of jobs becomes an 

NP-complete problem. However, if downtimes occur randomly with negative exponential interarrivals. then 

the optimal order is simply the same weighted shortest processing time order as in the reliable machine case 

(Birge et al. [1990]). 

Other beneficial effects of random problem parameters inciude obtaining continuity and other useful 

objective function characteristics. For example, Van der Vlerk jl99.51 surveys quite general conditions for 

continuity in input variables of the expectation over random parameters of the optimal value of optimization 

problems with integer variables. The applications of these results include problems with fixed order costs. 

These types of results are reminiscent of the classical Lyapunov theorem (see. e.g. Youngjl969j. Theorem 

79.1) which implies that the expectation of a nonlinear multifunction of a random (vector) argument with an 
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absolutely continuous (joint) distribution is convex. Another characteristic of stochastic scheduling problems 

is that similarities of problem structure across different random outcomes can be exploited in solution 

procedures. This observation has led to a variety of Lagrangian-based solution methods (see. for example. 

Dempster [1988] and Rockafellar and Wets (19911). A particular advantage for scheduling problems is that 

the integer-variable problems can be solved separately with warm starts provided by solutions to problems 

with similar data. We show below, in fact, that the duality gap in discrete time stochastic programs of this 

type actually decreases to zero as the number of scenarios increases. 

The basic approach here follows Bertsekas’s [1982] original results in bounding duality gaps. Our 

development here is a generalization of the results in Takriti, Birge and Long [199lb], which apply the 

Lagrangian relaxation approach to scheduling electric power units. In that paper, it is shown that the 

duality gap is indeed limited by the number of decision points and the total capacity and that the average 

gap declines to zero as the number of random scenarios increases. Computational results (Takriti, Birge and 

Long [1994a]) also show that the solutions are close to optimal with only a few scenarios and that in this 

case stochastic scheduling problems provide significant savings over deterministic methods. 

As a general model, we postulate the model of (27) with a finite number of scenarios R = {d’, . . . . w.“} 

with probabilities, p’, . . . , p”, respectively, and a finite time horizon t. For decisions, xi, i = 1.. . N. we 

may have integer yariables (in addition to continuous decisions) where we use a superscript i to indicate 

dependence on scenario (u.‘. Our problem becomes: 

where X’ includes any feasibility conditions such as integrality on certain components of z’, f; is a convex 

function, and the only constraints linking scenarios are represented through N. As noted earlier. N can be 

written as a set of linear constraints, such as 

where &(i) is the set of scenarios sharing the same history process as i at time t. If there are T periods and 

X’ c PT. we would typically have N(T - 1)n of these constraints (one for each scenario in every period 
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from 1 to T - 1). If we collectively write these constraints as 

then (38) becomes 
min P 

subject to 

(39) 
z’ E X’, i = l,...,N, 

g 
H’z’ = b. 

For an electric power scheduling problem as in (39), the variables 2‘ have binary components to represent 

the set of units which are in service and continuous components to represent the amount of production. We 

then have constraints in X’ to ensure that a unit can only produce power when it is in service. Objective 

costs also appear in F’ for setups to place units in service and to remove them from service. The linking 

constraints ensure that all demand is met. 

The Lagrangian relaxation approach is to solve a Lagrangian dual to (39) by relaxing the nonanticipa- 

tivity constraints. This program has the form: 

sup D subject to D < D(X) 
A 

where 

D(X) := 
~~ject~o~~,~~~(;~’ + X=‘H’~‘] - X=b 

A$,’ 
i= l.....iT. 

which then decomposes into completely independent subproblems for each i. 

(10) 

The following result from Bertsekas [I9821 provides the basis for the duality gap result in the Lagranginn 

approach. 

Theorem 6. If problem (39) has a solution. for every i, the set {(xi, F’(z’))lz’ E X’} i.s compact, ami. for 

infP-supD<(q+l)p. 

where p := max,=I ._,.. N sup(p’F’(z’)lz’ E S*) - inf(p’f’(z’)lr’ E .U’). 
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Proof: This proof follows immediately from Berteskes [Proposition 5.6, 1982]. The only observation is that 

p’F* corresponds to the objective function f, in Bertsekss’ work. and that we use a linear function H’ which 

preserves compactness in X’. I 

The significance of this result is that the gap decreases to zero as the probabilities decrease (as p’, 

for example set equal to +, + 0) without a corresponding increase in Q. This tendency occurs in solution 

procedures that either sample the set of possible outcomes (for statistical results, see, for example. King 

and Wets [1991]) or include bounding approximations with increasing accuracy (see. for example. Birge and 

Wets [1986]). In either case, the number of scenarios increases and the probability of any individual scenario 

decreases with decreasing confidence intervals or bounds on the expected value of a full solution of (39). 

Our goal is thus to show that the number 4 of constraints necessary to maintain nonanticipativity 

need not increase at the same rate when we consider integer variable values separately. The burden of 

proof is in fact less than this since we really need consider only constraints involving integer variables. 1Ve 

show this in the following theorem. For this result, assume that 2’ has a continuous part and a binary 

part. so that z’ := (y’,s’) and ;Y’ := Y’ x S’, where Y’ is a convex set and S’ is the interesection of a 

convex set with x&, {O. I}. where J = mT if we have T periods with n integer variables in each period. 

In the power scheduling problem. Y’ gives production levels while S’ provides service availability. The 

scenarios correspond to alternative demand paths. We suppose that the JV total scenarios are combined by 

the nonanticipativity constraints into a tree with li non-leaf nodes or branching points. %Ve then have the 

following result. 

Theorem 7. Suppose the condztions of Theown 6. that X’ = Y’ x S’ as defined above, and that the 

equivalent decision tree for problem (39) mcludes K non-leaf nodes, then 

inf P - sup D 5 (Km + 1)~. 

where p := m~,=~.....,~~sup(p’F’(s*)~z’ E X’) - inf(p’F’(.r’)lz’ E Iy’) 

(11) 

Proof. The proof of this result follows the lines of the proof in Bertsekas 119821 except that we recognize 

the difference between the continuous and integer parts of the variables in order to reduce the first factor of 
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the bound from the general case of q = N(T - I), where T is the number of periods. to Km. 

First observe that we can replace all nonanticipativity constraints in P for variables s by the following: 

si’( c pk) - c pks: = 0: vt, 
kEZ.(z) kEZ,(i) 

(-12) 

where we have only chosen a single representative, i’ E C,(i), for each set of scenarios sharing the same 

history process as i at time t. We therefore need only g single constraint (42) for every node of the tree. To 

see this note that the s; components are all binary. If s;‘(j) = 0. then (42) is only satisfied when s:(j) = 0 

for all k E C,(i). If s:‘(j) = 1, then. of course, the same condition holds. Thus, constraints (42) can 

substitute for all si nonanticipativity constraints. If there are K non-leaf nodes and s;’ E W, then we have 

Km constraints of the form (42). 

If we let the constraints of form (42) be denoted collectively by 

and let the nonanticipativity constraints on the y’ variables be of the form 

c L’y’ = 1, 

then the primal problem becomes 

inf $$‘(C’(y’) + D’(2)) 
*=1 

subject to y’ E 1” i=l......l. 

si E S’ i = l......V. 
(43) 

where we have written F’(z’) as C’(y’) + D’(Y) and note that g E RZKm and 1 E !RQ, for example. 

Now, following Bertsekas. consider II” := {w’ : u.’ = [t’y’.C’(y’)),y’ E Y’} and 2’ := (2’ : 2’ = 

[G’s’.Di(s’)].s’ E S’}, with If- := 5>L111;’ and 2 := eC,Z’. Then we have: 

inf P = min{u i vl3((rc. u). (z. F)) E II: x 2 such that u‘ = 9. z = I). 
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From duality theory (see, fo! example, Magnanti et al. [1976]), we have that 

supD = min{u i vl~((m,u).(z.v)) E conv(W x Z) such that w = S,L = 1). (45) 

where conv denotes the convex hull. 

Next observe that con@’ x Z) = W x cav(Z). since Y’ is convex. Now, following Bertsekas. we can 

use the Shapley-F&man theorem to write every I E conv(Z) using a subset I(z) C { 1. 1 N} with at most 

Km + 1 indices such that 

i E Bi~r(z)Z’. (46) 

Now: suppose ((t5, a), (2, a)) E IV x cow(Z) with 0 + v = sup D and 2 = 9,5 = 1. Then we have g’ E Y’ 

such that C,“=, L*ji’ = 9 and Cc, C’($) = ii. 

From Shapley-Folkman, we also have some 7 C 11,. , N}: If/ 5 Km + 1, with (F. i?) E conc(Z’) and 

%’ E S, i $ f, such that 

N 
CC’(B’)+CD‘S’+Co’=supD. 
,=I igi si 

cm 

Xoa, using the approach in Bertsekas and our assumptions, we can obtain for every i E 1. some S’ such that 

G’s’ = I’ and f,(s’) < ci’ + p’ + c for any L > 0. Thus, we have found a feasible solution (0. S) for (P) such 

that 

inf P 2 5 C’(ij’) i 2 D'S' 5 sup D + c p'. 
r=l 1=1 *ET 

which, since f < 2Km + 1, yields the result. 

C-19) 

I 

This result is only valuable in the present context if we can restrict the growth of li to o(-V) so that 

the gap in Theorem 6 goes to zero. In fact. this is the general case. Suppose, for example, that we employ 

a sampling scheme where every scenario path has weight p’ := &. If each path has v branches at each node 

in each time period (see Figure 3 for an example). we then have N = vT scenarios and K = (vT - l)/(v - 1) 

branching nodes. The duality gap vanishes in the limit since since A/N - 0 as Y - TX. \Ve state the result 

as follows. 
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\ 0 = Nonleaf node 
(K=13) 

v =3, T=3, N=27 

Figure 3. Scenario tree where with T = 3 periods (excluding t = 0), v = 3 branches at each non-leaf nodes. 

N = 27 scenarios, and K = 13 non-leaf nodes. 

Corollary 2. If the conditions of Theorem 7 hold. I\: = vT. p’ := &. 11’ = (17 - l)/(v - 1). and 

sup,(F’(~‘)Iz* E X1) - inf(F’(z’)lz’ E X’) < ~\f < IX. unzfonlyfor all v, then 

lim (inf P - sup D) - 0. 
Y--X (50) 

The vanishing duality gap result holds for other general sampling schemes. The result also indicates 

that the Lagrangian duality gap for a problem with any distribution obtained in the limit of the sampling 

procedure must also have zero duality gap. It implies in general that randomness - absolutely continuous 

random variables in this case - can indeed simplify some of the combinatorial difficulties in problems. Of 

course, one must still solve the separate deterministic subproblems optimally. but no additional gap is present 

in this case. 

This result also indicates that parallel processing may offer distinct advantages for stochastic scheduling 

Repeated deterministic solutions of deterministic Lagrangian subproblems on separate processors will yield 

increasingly accurate solutions as the number of scenarios increases. 
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Conclusion. 

JOHN R. BIRGE AND M. A. H. DEMF’STER 

This paper has explored three methods for incorporating optimization procedures into stochastic schedul- 

ing problems as part of a decision hierarchy. At the capacity plannin, s level, rye showed how queueing ap- 

proximations yield a convenient model when lower level timing effects are not - or are only occasionally - 

significant. At the aggregate production level, we demonstrated that a convex approximation can yield useful 

characterizations of optimal policies. At the lowest level of detailed scheduling, we showed that Lagrangian 

relaxation methods obtain smaller duality gaps as stochastic program formulation sizes grow. 

These results can all be viewed as separate solutions of parts of the J-level model in (7) with each higher 

level incorporating some approximation of the lower level objectives. Our results give some indication of 

structural properties and uses of optimization procedures. We anticipate that this general framework will 

yield many other characterizations and procedures for alternate problem structures. 
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