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Quantitative Pooling of Michaelis-Menten Equations 
in Models with Parallel Metabolite Formation Paths 
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PooBng of Michaelis-Men ten equations for models having parallel paths for formation of two or 
more metabolites is discussed. A theory which explains phenomena exhibited by pooled nonlinear 
pharmacokinetic systems and equations relating pooled Michaelis-Menten constants ( Vp, K,) to 
microscopic constants (V~, Ki) are presented. The suitability of this type of pooling for use in 
pharmacokinetic modeling is also discussed. Use of pooling concepts in the design of clinical 
studies is demonstrated. 

KEY WORDS: Michaelis-Menten kinetics; dose-dependent kinetics; pooling of nonlinear 
equations. 

INTRODUCTION 

Previous authors (1-6) have shown that accurate fitting of some plasma 
concentration-time (C,t) data observed following administration o f  two 
or more doses of drug involves nonlinear Michaelis-Menten elimination. 
The application of first-order kinetics to such data can result in one type 
of "dose-dependent" kinetics (4,6). Although nonlinear pharmacokinetics 
allows C,t data to be accurately described, the analysis of data becomes 
much more complex than in classical linear pharmacokinetics. In the non- 
linear case, differential equations can often be utilized only by means of 
numerical integration techniques and, preferably, a digital computer. 
Computer time required for fitting is usually much longer than with linear 
equations. In addition, as shown for salicylate by Levy et al. (2,3), the large 
amount of laboratory time needed to define a nonlinear model becomes 
almost prohibitive. 
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In classical first-order models, simplification is often achieved by the 
addition of first-order rate constants applicable to parallel paths for forma- 
tion of two or more metabolites from the drug. Simplification of parallel 
nonlinear systems in a similar manner would obviously be desirable, How- 
ever, because Michaelis-Menten equations are nonlinear, one would not 
expect the constants to be additive. Methods for obtaining kinetic constants 
for two or more enzymes acting on the same substrate are discussed in the 
literature (7-10). In general, these reports are concerned with isolated 
(in vitro) systems which provide Lineweaver-Burk plots characterized by 
marked nonlinearities. Iterative computer programs are used to resolve 
nonlinear Lineweaver-Burk plots. Application of these techniques to esti- 
mate kinetic constants for metabolite formation involving two or more 
enzymes using in vivo C,t data would be difficult for the following reasons: 
First, resolution of the,segments of nonlinear Lineweaver-Burk plots 
becomes very difficult when the Michaelis constant for one enzyme ap- 
proaches that for another enzyme and/or when the maximum velocities 
approach each other (7). Resolution would be extremely difficult when 
several enzymes acted on the same substrate. Second, in vivo data are 
generally more scattered than in vitro data. Therefore, it might be difficult 
to determine whether a Lineweaver-Burk plot is linear or nonlinear with 
appropriate statistical methods. Moreover, the estimation of enzyme 
constants from scattered Lineweaver-Burk data would be difficult, and 
the standard deviations of the constants could exceed the estimates by 
severalfold. Thirdl the use of Lineweaver-Burk techniques is inappropriate 
for drugs described by multicompartment models (11). 

Pharmacokinetic modeling does not always require the elucidation 
of a complete model. In general, the simplest model that accurately describes 
the C,t data obtained following administration of one or more doses of 
drug, and which has predictive properties, is all that is needed. The purposes 
of this report are as follows: 

1. To determine the consequences of combining or pooling Michaelis- 
Menten equations applicable to the same substrate. 

2. To develop a theory to explain the characteristics exhibited by 
pooled nonlinear phartflacokinetic systems. 

3. To determine whether simplification of such systems can be of 
use in the design of clinical studies. It should be noted that an 
investigator is often forced to pool various metabolic paths since 
all the metabolites have not been isolated and identified. 

THEORY 

A one-compartment open model involving n parallel Michaelis- 
Menten paths is shown schematically in scheme 1 : 
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concentration 
of drug 
in blood 

vl,~, , metabotite 1 

V2, X2 , metabolite 2 

vo, K. ' metabolite n 

(Scheme 1) 

This model is described mathematically by equation 1 : 

dC V1 C V2 C V. C 
- - -  ~ + . . . + - -  ( I )  

dt KI + C K2 -t-- C Kn -4- C 

Equation 1 may also be written as equation 2: 

_ 

dC 

dt i: x 

In equation 2, n is the number of parallel Michaelis-Menten paths (scheme 
I), Vi is the maximum velocity of the ith Michaelis-Menten equation, 
Ki is the Michaelis constant for the ith equation, C represents the concentra- 
tion of unchanged drug in the blood, and t is time. 

The model shown in scheme 2 results from the pooling of the parallel 
paths depicted in scheme 1 : 

concentration 
of drug 
in blood 

, metabolites (Scheme 2) 

Equation 3 mathematically describes scheme 2: 

dC V,C 
dt - Kp + C (3) 

In equation 3, Vp represents the pooled maximum velocity and Kp represents 
the pooled Michaelis constant. The other symbols are as defined above. 

If n Michaelis-Menten equations can be represented by a single pooled 
equation, then equation 2 must be equivalent to equation 3. A point-for- 
point correspondence is also implied. Equating the right-hand sides of 
equations 2 and 3 leads to equation 4: 

ViC ] 

K p + C  i:1 

Division of both sides of equation 4 by C provides equation 5 : 

Kp +----d = ,:1 K-TT-d (5) 
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Imposing boundary conditions in equation 5 leads to equations 6 and 7. 
When t = 0, C = Co, and substitution into equation 5 yields 

Kp+Co ~=1 KiTCo (6) 

When t = oo, C = O, and substitution into equation 5 yields 

gp i = 1  

Solving equations 6 and 7 for Vp and Kp, respectively, gives the dose- 
dependent equations 8 and 9: 

gi (8) 

Vi Vi 
Kp=C~ (K/--~-/-/-/-/-/+~o)]/[i:~l (K~)--i-~1 (Ki+Co)] (9) 

In equations 8 and 9, Vp and Kp are dependent on the initial drug concentra- 
tion, Co, and hence also on the dose of the drug. 

However, when Co is very much greater than Kp and all values of 
K~, then equations 8 and 9 simplify to the dose-independent equations 
10 and 11, respectively: 

vp = F, (v,) (10) 
i = 1  

n . Vi 
Kp: i~=l(Vi)~i~=l(Kii) (11) 

Equations 10 and 11 relate the pooled constants, Vp and Kp, only to the 
microscopic constants, Vi and Ki. In this case, Vp and Kp are independent 
of Co. 

Therefore, if nonlinear pharmacokinetic systems involving parallel 
Michaelis-Menten metabolism paths can be simplified in a manner similar 
to that employed for linear systems, equations 8 and 9 (and sometimes 
equations 10 and ll)  should describe the relationship between the pooled 
parameters, Vp and Kp, and the microscopic constants, V~ and Ki. 
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EXPERIMENTAL 

Generation of Simulated C,t Data 

When n = 2 in scheme 1, the reduced model shown in scheme 3 is 
obtained : 

amount of 
unchanged drug 

in blood (mg) 

v,,K, , metabolite 1 

v2, x2 -~ metabolite 2 
(Scheme 3) 

The equation applicable to scheme 3 is given as equation 12: 

dC V1C V2 C 
dt - K , - i -~  + K2 + ~  (12) 

Over 100 simulations were performed by assigning numerical values to 
V~, V2, K~,/(2, and Co in equation 12 and generating sets of C,t data by 
numerical integration of equation 12 using the program NONLIN and an 
IBM 360/67 digital computer. Some of the values employed were V~ = 5; 
K~ = 5 ;  V2 =0.1, 5, and 250; K z = 5 ,  10, 15, 25, 50, and 250; and Co=5  
and 250. 

Fitting of Simulated C,t Data 

Integration of equation 3 gives equation 13 : 

C O - C +  Kp In (Co~C) = Vpt (13) 

Each set of data, simulated as discussed above, was fitted to equation 
13 by numerical integration of equation 3 using the program NONLIN 
and an IBM 360/67 digital computer. Initial estimates of Vp and Kp were 
obtained from equations 10 and 11 using the appropriate values of Vi and 
Ki employed in each particular simulation. 

Representative Example 

The parameter values (scheme 3 and equation 12) used in this represent- 
ative example were V1 = 5, K~ = 5, V2 = 5,/s = 15, and Co = 5. 

Dose-Independent Example 

Values of constants reported by Levy et a!. (3) for formation of sali- 
cylurate and phenolic glucuronide from salicylate, namely V~ = 68, K1 = 340, 
V2 = 31, and K2 = 542, were used to generate simulated A,t data by numer- 
ical integration of equation 12. Initial conditions (Ao values) employed 
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were 5, 50, 100, 300, 1000, and oo when equations 8 and 9 were applied. 
In this case, Ao represents the initial amount of drug in the body and A 
represents the amount in the body at time t. The A,t data generated when 
Ao = 5, 100, and 1000 were fitted to equation 13 by numerical integration 
of equation 3 using the program NONLIN and an IBM 360/67 digital 
computer. 

Dose-Dependent Example 

Values of V1 = 5, K1 = 5, V2 = 50, and K2 = 50 were used to generate 
simulated A,t data by numerical integration of equation 12. Initial condi- 
tions employed were 5, 10, 50, 100, 250, 500, and ~ when equations 8 and 9 
were applied. The A,t data generated when A0 = 5 and 250 were fitted to 
equation 13 as described above. 

RESULTS AND DISCUSSION 

A representative set of simulated data is plotted in Fig. 1. Cartesian 
coordinate plots of all sets of data simulated from equations describing 
parallel metabolite formation paths were characterized by the "hockey- 
stick" shape illustrated in Fig. 1. Wagner (6) has shown that this "hockey- 
stick" shape is characteristic of C,t data generated by numerical integration 
of the Michaelis Menten equation itself. This suggested that data generated 
by numerical integration of equation 12 might also be fitted quite well to 
equation 13. When the data shown in Fig. 1 were fitted to equation 13 by 
numerical integration of equation 3, the estimated parameters shown in 
Table I were obtained. A comparison of the original simulated data and the 
model-predicted concentrations is made in Table II. This set of data was 
characterized by the excellence of fit (r 2 = 1.00 and Corr = 1.00) a and small 
deviations at any point. Simulated data could generally be classified as 
follows: (a) dose independent and (b) dose dependent. Most sets of data, 
particularly the dose-independent type, could be accurately fitted with a 
single Michaelis Menten equation. However, irrespective of data type, 
large deviations between simulated and model predicted concentrations 
were noted (Table IV) only after several orders of magnitude of concentration- 
time (C,t) data had been fitted. C,t data collected for pharmacokinetic 
analysis generally span only one or two orders of magnitude. Therefore, 
the above discussion does not impose severe restrictions on enzyme pooling 

ar~ = [ ~ C  2 -- ~((~ -- C)Z]/C z, where C represents the original simulated concentrations and 
C represents the concentrations predicted by nonlinear least-squares fitting to equation 13 by 
numerical integration of equation 3. Corr = the correlation coefficient for the linear regression 
of C" on C. 
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g 

dC 5C 5C 
dt 5 + C  15•  

C o = 5 

1 2 3 4 5 6 7 

TIME 

Fig. 1. Data simulated with the equation shown inset, where with refer- 
ence to scheme 3 the constants  are V1 = 5, KI = 5, V2 = 5, and K2 = 15. 

Table 1. Least-Squares Parameter  Esti- 
mates and Their Standard Deviations 
Obtained for the Representative Example 

(see text) 

Estimate of  Standard 
Parameter  parameter deviation 

Co 5.0020 0.0014 
Vp 8.5517 0.0030 
K~ 6.4541 0.0028 
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Table II. Comparison of Simulated Drug Concentrations (generated by 
numerical integration of equation 12) with Fitted Values (obtained by 
nonlinear least-squares fitting with program NONLIN using numerical 

integration of equation 3) a 

Simulated drug Fitted value for 
Time concentration drug concentration Percent deviation 

0 5.0000 5.0020 - 0.04 
0.25 4.1143 4.1184 - 0 . 1 0  
0.50 3.3339 3.3375 - 0 . 1 0  
0.75 2.6593 2.6611 - 0 . 0 6  
1.00 2.0881 2.0882 0.00 
1.25 1.6150 1.6137 0.08 
1.50 1.2316 1.2297 0.15 
1.75 0.9274 0.9256 0.19 
2.00 0.6908 0.6893 0.22 
2.25 0.5100 0.5090 0.20 
2.50 0.3737 0.3732 0.13 
2.75 0.2723 0.2722 0.04 
3.00 0.1976 0.1977 0.00 
3.25 0.1429 0.1432 - 0 . 1 4  
3.50 0.1030 0.1034 - 0.29 
3.75 0.0742 0.0746 - 0.40 
4.00 0.0533 0.0537 - 0 . 5 6  
4.25 0.0383 0.0387 - 0 . 7 8  
4.50 0.0275 0.0278 - 0 . 7 3  
4.75 0.0197 0.0200 - 1.02 
5.00 0.0142 0.0144 - 0 . 7 0  

~r2= 1.000, Corr = 1.000. Data for the representative example are 
discussed in the text. 

when it is applied to pharmacokinetic models. It will be demonstrated 
that enzyme pooling can yield pharmacokinetic predictions in agreement 
with simulated "observations." The following discussion will consider 
the use of enzyme pooling with respect to pharmacokinetic modeling. 

The pooled parameters, Vp and Kp, estimated by computer fitting, 
were always accurately predicted by equations 8 and 9. For the representa- 
tive example given, equations 8 and 9 gave Vp = 8.576 and Kp = 6.432, 
which agree very well with the computer estimates given in Table I. Simula- 
tions and fitting of simulated data were carried out only with the reduced 
model (scheme 3). By induction, however, it may be inferred that similar 
results would be obtained with simulations performed with scheme 3 
and equation 1 where n > 2. Hence the comments below should also apply 
to the one-compartment open model where elimination of drug is described 
by more than two Michaelis-Menten equations. 
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D o s e - I n d e p e n d e n t  E x a m p l e  

Equations 8 and 9 indicate that Vp and Kp are dependent on Co and 
dose. Thus the same problem is presented as in the application of classical 
first-order kinetics to data described by nonlinear kinetics; i.e., the "con- 
stants" are dependent on dose. Fortunately, the time courses of data described 
by parallel Michaelis-Menten equations can often be closely approximated 
over several orders of magnitude by a single Michaelis-Menten equation 
with constants insensitive to large changes in dose. For this type of dose- 
independent data, the change in the values of the pooled constants with 
different doses was often equal to or less than 5%. In clinical situations, 
because of experimental error, such small changes would not be detectable 
or would be unimportant. When the constants, estimated by computer 
fitting, changed only slightly with change in dose or Co value, they could be 
estimated by use of equations 10 and 11. 

Results of the dose-independent example are given in Table III. The 
following trends were noted: First, the constants changed very little with 
dose. As the dose increased, the magnitude of both Vp and K, increased 
slightly. Second, the constants calculated with equations 8 and 9 agreed 
closely with the corresponding constants estimated by computer fitting. 
Third, the computer fit was excellent (r 2 = 1.00 and Corr = 1.00) and the 
maximum deviation of model-predicted amount  to simulated amount was 
2%. Fourth, equations 10 and 11 provided values of Vp = 99 and Kp = 385, 
which are the same as those given by equations 8 and 9 when Ao = ~ .  
These values would be satisfactory to make predictions at any dose level. 

Conditions favoring dose independence are (a) cases where the Kis 
are equal for parallel paths, (b) cases where the K~s are within a factor 

Table III. Pooled Constants Obtained by Computer Fitting of 
Equation 3 and by Means of Equations 8 and 94 

Computer-fitted values b Calculated with equations 8 and 9 

Ao Vp Kp Ao Vp Kp 

- -  -- oe 99 384.9 
999.3 97.38 379.8 1000 97.78 380.7 

-- -- 300 96.72 376 
100 95.94 373.1 100 95.95 373.1 
-- -- 50 95.68 372 
5 95.38 370.8 5 95.37 370.8 

aData were generated by numerical integration of equation 12 using 
the values of constants for salicylate given in the text (see dose-inde- 
pendent example in text). 

bMeasures of fit were r 2 = 1.00, Corr = 1.00; maximum deviation at 
any point was 2%. 
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of 3 of each other, and (c) systems where the drug is metabolized primarily 
by one enzyme. 

Dose-Dependent Example 

Use of a pooled model to fit data described by parallel Michaelis- 
Menten equations with values of Kis which are separated by at least a 
factor of 5 results in dose-dependent "constants." As stated earlier and 
illustrated in Table IV, this type of data cannot be well represented over 
several orders of magnitude by a single Michaelis-Menten equation. The 
Lineweaver-Burk plot constructed from the concentration-time data listed 
in Table IV would be characterized by marked curvature. As discussed 
earlier, kinetic constants can easily be elucidated for systems of enzymes 
acting on the same substrate which provide Lineweaver-Burk plots char- 
acterized by marked nonlinearities. Therefore, since the constants for each 
enzyme are readily available, simplification of such systems is unnecessary. 

Table IV. Comparison of Simulated Drug Concentrations (generated by 
numerical integration of equation 12) with Fitted Values (obtained by 
nonlinear least-squares fitting with program N O N L I N  using numerical 

integration of equation 3) 4 

Simulated drug Fitted values for 
Time concentration drug concentration Percent deviation 

0 250.00 246.89 1.24 
0.5 226.89 224.90 1.88 
1.0 204.16 203.17 0.49 
1.5 181.87 181.75 0.07 
2.0 160.10 160.69 - 0 . 3 7  
2.5 138.95 140.08 - 0 . 8 2  
3.0 118.55 120.02 - 1.24 
3.5 99.045 100.64 - 1.61 
4.0 80.635 82.118 - 1.84 
4.5 63.563 64.700 - 1.79 
5.0 48.118 48.713 - 1.24 
5.5 34.622 34.580 0.12 
6.0 23.384 22.791 2.54 
6.5 14.612 13.761 5.82 
7.0 8.3121 7.5892 8.70 
7.5 4.2389 3.8719 8.66 
8.0 1.9269 1.8707 2.92 
8.5 0.7943 0.8755 - 10.21 
9.0 0.3077 0.4030 - 30.94 
9.5 0.1156 0.1840 - 59.08 

10.0 0.0429 0.0837 -94 .87  
10.5 0.0158 0.0380 - 139.87 
11.0 0.0058 0.0172 - 194.83 
11.5 0.0021 0.0078 - 266.67 

aData for the dose-dependent example are discussed in the text. 
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T a b l e  V. Pooled Constants Obtained by Computer  Fitt ing of 
Equation 3 and by Means of Equations 8 and 9" 

Computer-fitted values Calculated with equations 8 and 9 

A o V v Kp A o V~, Kp 

--  --  - -  oc 55 27.5 
--  --  - -  500 53.1 26.5 

246.9 49.9 31.5 250 51.4 25.7 
--  --  t00 47.1 23.5 
- -  - -  50 41.9 21.0 

- -  - -  10  28 14 
5. 20.7 10.3 5 23.9 t 1.9 

aData were generated by numerical integration of equation 12 
using the values of constants given in the text (see dose-depen- 
dent example in text). 

1 5 9  

In pharmacokinetic studies, blood samples are sometimes taken for 
short fixed intervals of time, irrespective of dose. Each set of dose-dependent 
data collected in such a manner could appear to be well described by a 
single Michaelis-Menten equation (each having a pseudolinear Lineweaver- 
Burk plot). However, the enzyme constants obtained from these plots or 
from computer fitting would change dramatically with change in dose. 
This is further confirmed by use of equations 8 and 9 and is illustrated in 
Table V. The following trends were evident: First, both Vp and Kp increased 
markedly as the dose was increased. Second, the amount of change in 
Vp and Kp was dependent on the dose range. The changes in Vp and Kp 
were large when Ao changed from 5 to 100, but the change in the constants 
was relatively small when A0 increased from 100 to oo. 

General Comments 

As indicated earlier, data generated from parallel Michaelis-Menten 
equations can sometimes be accurately described at all doses by a single 
Michaelis-Menten equation. Such "dose-independent" systems can be 
successfully simplified by using a pooling procedure. Lineweaver-Burk 
plots constructed from this type of data are pseudolinear. Therefore, 
linearity of these plots, alone, is not a good criterion of enzyme purity. 
Moreover, the constants obtained from such a pseudolinear plot, as indicated 
by equations 8 and 9, are generally not characteristic of any one enzyme. 
The values of these constants are a function of all of the microscopic con- 
stants for the enzymes. 

Dose-dependent systems are characterized by extremely nonlinear 
Lineweaver-Burk plots and kinetic "constants" which are sensitive to 



160 Sedman and Wagner 

large changes in dose. The use of gross enzyme pooling for the simplification 
of such systems is inappropriate. 

A thorough understanding of the pooling concept enables an inves- 
tigator to determine the suitability of gross enzyme pooling in pharma- 
cokinetic modeling. In order to determine in a specific instance whether 
pooling may be used to simplify a pharmacokinetic model, studies should 
be conducted at the extremes of the dose range of interest. If the estimated 
pooled parameters, obtained by fitting data derived from such a high and 
a low dose, are not appreciably different and the data are well described 
by the pooled model, then the system may be considered to be dose independ- 
ent within the dose range studied. If the sets of data are well described and 
the constants obtained from the lower-dose data are significantly less than 
those obtained from the higher-dose data, or the sets of data are not well 
described by a single Michaelis-Menten equation, the gross pooling of 
enzymes is inappropriate. The system would have to be further elucidated. 
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