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Parameter Identifiability Is Required in Pooled 
Data Methods 
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In pooled data methods such as naive pooled data methods and NONMEM, the number of sample 
points per individual may be less than the number of  unknown parameters so that the values of 
the parameters are not estimable in individuals. However, for the moments of the distributions of 
the parameters to be estimable, the basic parameters must be identifiable. 
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INTRODUCTION 

In pharmacokinetics two general classes of methods for the estimation 
of the diztributions of the parameters of models of drug distribution and 
disposition can be distinguished (2,3). These are the two-stage (TS) and the 
pooled-data (PD) methods. In the TS methods sufficient data are obtained 
on each individual to estimate the values of the parameters of the model for 
each individual. The data on the individuals are then aggregated to obtain 
the population moments, usually the means and the covariance matrix. In 
PD methods one usually does not have enough data points on each indi- 
vidual to be able to estimate the parameter values for each individual; these 
methods estimate the first few population moments directly on the pooled 
data without first estimating the values of the parameters for individuals. 

There has been some confusion over whether or not the basic param- 
eters must be identifiable for the pooled data methods to work. In part, that 
may be attributed to imprecise use of the terms and ideas about identifi- 
ability. In this note, I first present basic theory ofidentifiability of parameters 
and define terms. That is followed by a section in which I prove that the 
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basic parameters must be uniquely or locally identifiable for pooled data 
methods to work. 

IDENTIFIABIL1TY 

Theory 

Suppose the dynamic equations for the system with state variables xi 
a r e  

Yc=F(x, O, t); x(O) =Xo. (1) 

Here x is the vector of state variables and 0 is the vector of basic parameters 
which are usually basic kinetic parameters. One observes some functions of 
the state variables called the observation functions or the response functions. 
There may be more than one observation function for an experiment but to 
keep this simple we shall assume only one. The argument carries over directly 
to multiple observation functions. Let yi be the observation function for the 
ith individual. 

yi = G(x, 0~, t). (2) 

The actual observations are samples of the observation function at certain 
times, b, with added experimental error, e~. 

zo.= G(x, Oi, 6) +eij (3) 

The observation functions can also be written in terms of a set of compound 
parameters, ~, that are uniquely determined by the observation function, i.e., 
uniquely identifiable; these are called the observational parameters (1,4,5) 

y, = 6 (x, dp,, t) (4) 

Suppose there are K observational parameters ~k which are of course 
functions of the basic parameters. Let ~ki be the value of the kth observa- 
tional parameter in the ith individual. Thus we have a set of K simultaneous 
algebraic equations relating the observational parameters to the basic 
parameters 

�9 k, = r (5) 

As an example, consider the observation function for the one-compart- 
ment model for concentration of a drug in plasma as given by 

Di _(c,/vi)t 
Yi = - -  e (6) 

E 
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which has two identifiable parameters. For the ith individual these are $1i 
and $2, which are the following functions of the basic kinetic parameters 

$,̀ .=D̀ . (7) 
v, 

$2 .̀ =C`. (8/ 
E 

If D .̀ is known, Ci and Vi are uniquely determined by the values of $1, and 
$2,. However, if Di, Cj, and ~ are unknown, there is no way to obtain 
unique solutions for D .  C.  and ~ from the values of $1i and $2`.; in that 
case, D~, C.  and V,. are not identifiable. 

Terminology 

If the transformation $~-~0 is one-to-one, the basic parameters are 
uniquely or globally identifiable. If the transformation is one-to-many, the 
parameters are locally identifiable. I use the term identifiable to mean locally 
or globally identifiable. If the transformation has an infinite number of 
solutions for 0, the basic parameters are unidentifiable, When we examine 
the properties of the transformation $~-*0 we are looking at a priori identifi- 
ability (6). I note that it is possible for some of the components of 0 to be 
identifiable and others to be unidentifiable (1,5). 

Notice that a priori identifiability has nothing to do with how many 
samples are taken, it is concerned only with the nature of the transformation 
from the $ to the 0. But, if there are p basic parameters and one takes m <p 
samples of the observation function, the parameters cannot be estimated 
even if they are identifiable. That is an entirely different issue and has been 
called a posteriori or numerical identifiability (6). Because of the possibility 
of confusion, I prefer the term estimability for the issues involved in numeri- 
cal estimation of values for the parameters 0 (1,5). Thus the parameters 0 
must be (a priori) identifiable but if insufficient samples are taken, they 
may not be estimable (a posteriori identifiable). We distinguish between 
nonldentifiable parameters (NI), identifiable but not estimable (INE), and 
identifiable and estimable (IE) parameters. In addition, even if the param- 
eters are IE, the sample may be poorly chosen and thus give poor estimates. 
That is the issue of optimal sampling design and does not concern us here. 

THEORY FOR POOLED DATA METHODS 

It is obvious that for the TS methods, the basic parameters must be 
identifiable and estimable in individuals (IE). Is that also true for PD 
methods? For PD methods, it turns out that the basic parameters must be 
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identifiable but need not be estimable in individuals, i.e., can be IE or INE. 
To see that, consider again the mapping from the basic parameters to the 
observational parameters. The observational parameters are by definition 
uniquely identifiable. Suppose we have the distribution function for the ~b 
parameters. The theory of transformation of distributions for functions of 
random variates, such as 

~b = f ( 0 )  (9) 

requires that the mapping be one-to-one to obtain the distribution function 
for the basic parameters (7). Otherwise, one cannot obtain the distribution 
function for the basic parameters and hence their moments are not uniquely 
defined. But that is the same as the requirement for unique identifiability of 
the basic parameters. What if the basic parameters are only locally identifi- 
able? The transformation ~bF--~0 is locally one-to-one, so if one picks one of 
the solutions of the transformation, one can again obtain the distribution 
function for the basic parameters. The basic parameters must be identifiable! 

Remark. An important model for the study of drug distribution is the 
three-compartment mammillary model in which the central compartment is 
the amount in the plasma or blood and the peripheral compartments are 
the amounts in pooled peripheral tissues, usually a fast exchanging group 
and a slowly exchanging group. For observation of the amount or concentra- 
tion in the central pool, the parameters are only locally identifiable. But this 
is a special type of local identifiability which arises because the two peripheral 
compartments play symmetrical roles in the theory, i.e., they are interchange- 
able. As a result there are two solutions for the rate constants between the 
central and peripheral compartments which have the same values but are 
obtained by exchanging the two peripheral compartments. One need only 
choose one of the solutions and proceed. 

In PD methods, one estimates the moments of the distribution of the 
parameters but not the parameter values in individuals. Thus the basic 
parameters must be identifiable but need not be estimable in individuals. To 
return to our example, from Eqs. (7) and (8), if one of the parameters, Ci, 
Di, and V~ is known, the others are identifiable. Then, even if one takes only 
one sample for each of many individuals, one can determine the moments 
of the population distribution of the remaining two parameters. However, 
if all three are unknown, none are identifiable and one cannot estimate the 
three parameters no matter how many samples of the observation function, 
Eq. (6), are taken. 

CONCLUSIONS 

For the PD methods, as well as for the TS methods, the basic parameters 
must be identifiable for one to be able to estimate the population means 
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and covariance matrix. However, for PD methods there need not be enough 
sample points per individual to estimate the values of the parameters in 
individuals. That distinguishes the PD methods from TS methods. 
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