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The Loo-Riegelman absorption method provides the correct A ~ / V  t value and the correct rate 
constant k~ (if absorption is first order), whether metabolism occurs in compartment 1 only, 
compartment 2 only, or both compartments 1 and 2 of the two-compartment open model. In cases 
where there is metabolism in compartment 2, the disposition parameters estimated from intravenous 
data are only apparent and not the real values. The correct A ~ / V  t and k. values are obtained, 
however, only under conditions not hithertofore specified. These conditions are that there must be 
essentially no bias in the disposition parameters k tz ,  kzt, and k~t. and in the Co value estimated 
fi'om the intravenous data, and that in the oral study a large number of  interpolated plasma concen- 
trations, as well as the observed plasma concentrations, must be used, especially for drugs with 
long half-lives. It is shown that application of  the Guggenheim method to the initial A~/V~, t values 
frequently provides a better method of  estimating A~/Vt and k. than the classical method. I f  biased 
disposition parameters are used in application of  the Loo-Riegelman method to oral data, then 
essentially the correct value ofk a will be estimated, but the estimate of A| t will be approximately 
equal to the true value of A ~ / V  t multiplied by the ratio of  the biased C o value (obtained in fitting 
the intravenous data) to the true Co value of the intravenous data. The above indicates that 
intravenous data should be fitted by computer until there are no systematic deviations or trends 
and as small a sum of squared deviations as possible is obtained. The oral data should be fitted by 
spline or Akima methods, or similar procedures, to produce a .function which passes through each 
observed plasma concentration and at the same time provides a large number of  interpolated 
concentration data. 

KEY WORDS: absorption plot; amount absorbed; kinetics of absorption; bias in computer 
fitting; disposition parameters; interpolation of blood levels. 

I N T R O D U C T I O N  

Loo a n d  R i e g e l m a n  ( i )  de r ived  e q u a t i o n s  1 and 2" 

A,#'V1 = ( C O t ,  + kel CI  d t  + (C2)t, 
0 

(1) 
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( C 2 ) 1 .  = ( C 2 ) t n _  I - e -k21a' + kl2/k21, (C1)~._,(1 - e -k2'at) 

+ k12 ACx At~2 (2) 

Although not explicitly stated in their article (1), it is implicit that the 
asymptote of a plot of A,./V 1 is A~/VI,  which is given by equation 3: 

A~/V~ = k~ Cj dt (3) 
0 

In equations 1-3, A , j V  I is the cumulative amount of drug absorbed to time 
tn divided by the volume of the inner (central) compartment of Model II 
below (if drug is given by intravenous infusion it is the amount which has 
been infused to time t, divided by V~), (C~)t~ is the concentration of drug in 
the central compartment (assumed to be the equivalent of the plasma 
concentration), (C2)~, is the amount of drug in the outer so-called tissue 
compartment at time t, divided by the volume of the inner compartment 
(i.e., A2/VI), the integral is the area under the C 1 ,t curve from time to (when 
absorption commences) to time t,, and the rate constants k~2, k21, and ke~ 
refer to those of Model II below, In equation 3, A~/V  1 represents the total 
amount of drug absorbed divided by the volume l/~. Usually to is taken 
equal to zero since the integral is closely approximated by the trapezoidal 
rule, and, in such a case, one assumes (C~) = 0 when t = 0, where the latter 
is the time of dosing. 

Loo and Riegelman (1) showed that the A~./V~, t, data resulting from 
application of equations 1 and 2 could be analyzed to obtain the kinetics of 
input of drug to the bloodstream. This was shown by infusing an aspirin 
solution intravenously in man with a logarithmic infusion pump and back- 
calculating the first-order infusion rate. They also infused griseofulvin at a 
constant rate and acc~arately back-calculated the infusion rate. Subsequently, 
they reported (2) that when the interval between blood samples became too 
long the linear piecewise integration procedure used to estimate (C2)t, 
resulted in poor estimates, and they proposed a new equation which was 
based on a logarithmic piecewise procedure which they claimed solved the 
problem. Another variation in which the value of ket could be adjusted from 
the intravenous and oral experiments was reported (3). 

The Loo-Riegelman method (1-3) is based on Model II below, but in a 
given practical situation one does not know whether the true model is 
Model I, Model II, or Model IlL Recently, Suzuki and Saitoh (4) showed 
that the result obtained by application of the Loo-Riegelman method was 
independent of the ratio of ke~,/k~l ~ if the true model was Model I. Kaplan (5) 
showed that for data collected on coumermycin A~ the absorption plot 
obtained by the Loo-Riegelman method, based on Model II, and the 
absorption plot, based on Model IIl, were identical, but they did not give 
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#2 #2 #2 

#1 #1 #1 
Model I Model II Model 11I 

the reason for the result. Analogously, Breckenridge and Orme (6) applied 
both the Loo-Riegelman method, based on Model II, and the corresponding 
equations of Kaplan (5), based on Model III, to intravenous and oral warfarin 
plasma concentration data. They reported that the absorption plots obtained 
by the two methods were identical, but did not give the reason for the result. 
This report will show why these authors obtained the results that they 
reported. 

In addition, the effect of bias on the estimates of k12, k21, and kei ob- 
tained from intravenous data on the result obtained by application of the 
Loo-Riegelman method to plasma concentrations observed in the same 
subject following oral administration has not been reported. Bias in such 
parameter estimates may exist either from (1) computer fitting of intra- 
venous data using initial estimates of the parameters which are too distant 
from the real values, resulting in convergence at a local minimum, or (2) 
using graphical estimates of parameters, as has been shown by Wagner (7) 
and Wagner and Metzler (8). 

Since the Loo-Riegelman method assumes that the plasma concentra- 
tion curve is linear between two adjacent points, then the interval or inter- 
vals between concentrations measured become very critical in the result 
attained with the method. This problem is examined further, and some 
suggestions are made to eliminate this problem as a major source of error. 

EXPERIMENTAL AND RESULTS 

Effect of Metabolism in Compartment 2 

Define: AT = amount of drug absorbed to time T (same as A,, in 
equation 1). 

C 2 = A 2 / V  1 = amount of drug in compartment 2 at time t/volume of 
compartment No. 1. 

For Model I, 

Ar/'V~ = (C~)r + (C2)T + k,l, C~(t) dt + k ~  C2(t ) d t  (4) 
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A,,/V~ = k <  C,(t) dt + ke~2 C2( t  ) dt (5) 

Since there is no way of knowing k~l 2 unless drug is measured in compartment 
2 as well as in compartment 1, then one cannot apply these equations. 

Model II is assumed in applying the method of Loo and Riegelman (1): 

fo Ar/V1 = ( C l ) r  + (C2)r + k~l Cl(t)dt (6) 

If the model is really Model II (i.e., elimination occurs only from compart- 
ment l), then the Loo-Riegelman method provides the correct asymptote 
(A~/Vi),  the correct A r / V  ~ plot, and the correct values of k~2, k2~, and k,~. 
If the model is really Model ! and one applies Model 1I in the form of the 
Loo-Riegelman method, the method gives the correct asymptote (A~/k~), 
the correct A r / V  1 vs. T plot (i.e., the correct kinetics of absorption are ob- 
tained), but only apparent values, (k12),p p, (k21)app, and ( k e l ) a p p  , of the dis- 
position portion of the model are obtained, and not the real values, k12, 
k21, and k e l  I . The reason for this is as follows. 

When drug is administered intravenously as a bolus of dose D, the plasma 
concentration-time curve is described by the equation 

Cl(t) = A e-~' + B e  -~' (7) 

Formulas used to obtain estimates of microscopic rate constants give the 
following results: 

(ka , ) app  = {Aft + B a } / { A  + B I (8) 

(kcl)ap p ~--- gfl/(k21)app = {k21kel ~ q- k l 2 k e l  2 .4_ kel~keb]/{k21 4- kelal (9) 

Hence 

A~/;V 1 ---- (kel)app CI(T ) dt 

~/~ + k~}]  C, ( t )d t  (10) = I{k21kel l  q- k l 2 k e l  2 -}- kel l / . (el2f/(k21 

For Model I, working in amounts (A) 

A l = D[(E 2 - fl)e -~' - (E 2 - -  ~)e-=']/(~ - fi) (11) 

where 

E 2 = k21 + kel 2 

o ~ AI(t ) dt = EzD/o~ fl 

A~ k12D[e -& ~t / _ = - e  ] / ( ~ - / ~ )  

12) 

13) 

14) 
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o~ Az(t) dt = k lzD/~f l  (15) 

/fo fo /fo A2(t ) dt A~(t) dt = C2(t) dt Cl(t) dt (16) 

= k l z / E  2 = k12/{k21 4- kel_,} 

And  

fo fo C2(t) dt = {kl2 / (k2l  4- kelz) } Cl(t) dt (17) 

Subs t i tu t ing  f rom equa t ion  17 into equa t ion  5 gives 

A ~ , V  1 = [kei ~ + ~k12ke12/(k21 + ke lSJ  Cl ( t )d t  
vo 

(18) 

= [{k2~keh + k~2 + ke, 2 + k~jke~, k2j + k~,13 C~(t)dt 

Since the r igh t -hand  sides of  equa t ions  10 and  18 are  the same, the L o o -  
R iege lman  m e t h o d  gives the correc t  a m o u n t  a b s o r b e d  even if the mode l  is 
Mode l  I. S imula t ions  have  shown  that  it also gives the correc t  kinetics of  
absorp t ion .  An example  is given below. 

Simulation Example 1. For  the in t r avenous  data,  let k,2 = 0.37, k2j = 
0.23, k~l, = 0.08, k~l~ = 0.08, Co = D/VI = 25. 
F o r  Mode l  I, we have  

C~(t) = 

C ~ ( t )  = 

e l ( t )  = 

F o r  Mode l  

(k21)app 

(kel)app 

(kl 2)app 

N o t e  that  

Co[(k2~ + k~ - fl)e -p '  - (k2~ + k<, - ~)e-~ ' ] / (~  - /~) (19) 

A e -~'  + B e - e t  (20)  

15.417 (3 - 0 " 6 8 t  4- 9.583 e - ~ 1 7 6  (21) 

I1, we calcula te  

= (Aft +BcO/(A + B) = k21 + kel e = 0.31 (22) 

= ~fl/(k 2 ~).pp = (0.68)(0.08)//0.31 = 0.1755 (23) 

= ~ 4- • -- (k21)app -- (kel)app ~-- 0.68 4- 0.08 
(24) 

- 0.31 - 0.1755 = 0.2745 

fo ~ C l ( t ) d t  = (15.417,/0.68) + (9.583/0.08) = 142.5 (25) 
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a n d  

(k~)apv C , ( t ) d t  = (0 .1755) (142 .5)  = 25.  (26) 

In  t h e  a b o v e ,  

+ / ~  = k12 + k2~ + kej ' + kel 2 = 0 .76 (27) 

:~fl = k 2 1 k e j  ~ + k12ke12 + kel kej ~ = E 1 E  2 - k 1 2 k 2 1  = 0 .0544  (28) 

w h e r e  E 1 = k12 4- kel ~ a n d  E 2 = k21 4- kel ~ 

= �89 + fi) + ~ + fl)2__ 4~fl]  = 0,68 (29) 

fi = �89 + fl) _ ~ + fi)2 _ 40~fl~ = 0.08 (30) 

O r a l  d a t a  w e r e  g e n e r a t e d  w i t h  t h e  a p p r o p r i a t e  e q u a t i o n  for  M o d e l  I, 

n a m e l y  

C , ( t )  = k , , C o [ { ( E  2 - ~ ) / ( k  o - c t ) ( f l  - o0}  e - ~ '  + { ( E e  - f i ) / ( k .  - f i ) ( ~  - f l ) e  - I ' '  

+ {(E 2 - k~)/(o~ - k , ) ( f l  - k,~)} e - k " ' ]  (31) 

C t ( t )  = A~ e -= '  + A 2 e - e '  + A 3 e -k~' (32) 

C l ( t  ) = - 2 3 . 4 1 0 5  e - ~  + 1 t . 9 0 6 6  e - ~ 1 7 6  + 11.5039 e - ~  (33) 

Table L Simulation Example 1 Showing That LoG Riegelman Method Gives Correct 
Result if the Model Is Model I 

s176 s176 t, (CO," Cl(t) dt (k~t),pp Cl(t) dt (C2) tn  a A,./V1 b 
Guggenheim data 

t~ A(A,o/V t ) 

0 0 0 0 0 
0.5 4.1485 1.0371 0.1820 0.2847 
1.0 6.7656 3.7657 0.6609 0.9509 
1.5 8.3380 7.5416 1.3236 1.7824 
2.0 9.2042 11.9271 2.0932 2.6461 
2.5 9.5991 16.6279 2.9182 3.4635 
3.0 9.6845 21.4488 3.7643 4.1925 
3.5 9.5714 26.2628 4.6091 4.8140 
4.0 9.3353 30.9895 5.4387 5.3235 
5.0 8.6809 39.9976 7.0196 6.0181 
6.0 7.9546 48.3153 8.4793 6.3632 
7.0 7.2529 55.9191 9.8138 6.4483 
9.0 6.0314 69.2034 12.1452 6.1010 

11 .0  5.0520 80.2868 14.0903 5.4809 
15.0 3.6099 97.6106 17.1307 3.9733 
18 .0  2,8281 107.2676 18.8255 3.1811 
24.0 1.7462 120.9905 21.2338 1.7187 

0 0 
4.6152 4.6152 

7 > 0 5  3.7622 837 4 " 
" >1 0 3.0666 11.4440 " 

13.9435>1.5 2.4995 
>2 0 2.0373 159808 " 

" >2 5 1.6605 176413 " 
" >3 0 1.3532 18.9945> ' 

20.0975 3.5 1.1030 

21.7186 
22.7971 
23.5150 
24.2776 
24.623 l 
24.7139) 
24.8347~ Average = 24.7491 
24.6987J 

~Calculated with equation 2. 
bCalculated with equation 1. 
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where A t = - 2 3 . 4 1 0 5 ,  cz = 0.68, A z = 11.9066, fl = 0.08, A 3 = 11.5039, 
and ko = 0.41. Data  generated are shown in columns 1 and 2 of Table I. 
The Loo-Riege lman  method was applied to these data using the values as 
follows: (kl2)app =0.2745 ,  (k21)app =0 .31 ,  (kel)app =0.1755.  Results are 
shown in columns 5 and 6 of Table 1. 

Application of the Guggenheim Method to Estimate ko 

The data  for k, according to the Guggenhe im method are shown in 
the last two columns of Table I. Linear least-squares regression of 
In {A(At,/VI) }, tl values gave the equat ion 

In [A(A,,/VI)] = 1.5295 - 0.409t~ (34) 

whence 

A(At,,/V1) = 4.6158 e -~176 (35) 

Hence k, is 0.409 hr -1  and the real value was 0.41, and 
d o = A~/I,~ = 4.6158/{1 - e-'k~ I = 4.6158/{1 - e - '~176176176 

(36) 
= 24.96 

whereas the real value is 25. 
Hence if the estimates are rounded off the estimates are equal to the 

real values. 

Usual Methods of Estimating k~ and Co 

Usually the estimate of A~/VI is taken from the terminal values of 
At,IV ~ , i.e., the asymptote  of the At,/V ~ vs. t, plot. If we take the average value 
of the three last A,,/V~ values, namely 24.7491, as the A~/V~ value and then 
do linear least-squares regression on l n ( 2 4 . 7 4 9 1 -  At~ . values, we 
obtain 

In (24.7491 - A,, /V 1) = 3.2337 - 0.428t (r = 0.9999) (37) 

whence 

{24.7491 - A,,/Vt} = 25.375 e -~  (38) 

Hence using this method we have 0.428 as the estimate of k a and two 
estimates of A~/Vj ,  namely 24.7491 and 25.375, and we really don ' t  know 
which one is the "cor rec t "  one. 

Note  that the Guggenheim method of estimating ka and C O or A~/V~ 
is the more  accurate in this case and is less ambiguous.  

The product  of (ke~)ap p and the total area under the "plasma concentra-  
t ion"  curve is also an estimate of A~/V  1 . With the example given, the result 
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is shown below:  

fo ~ = q.- A2/' fi 4- A3/k  a Cl(t)  dt A1/c~ 

= -23.4105/0.68 + 11.9066/0.08 + 11.5039/0.41 

= 142.5 

A:~/V 1 = (k~l).p p Cl(t) dt = (0.1755)(142.5) = 25. 

(39) 

(40) 

Effect of Bias in Parameters Estimated from Intravenous Data 

Simulation Example 2. For  the intravenous data, the parameter  values 
k~2 = 1.162, k2~ = 0.515, kel = 0.038, and C O = 100 (corresponding to 
V 1 = 41.0) were used to substitute into equat ion 41, which is appropr ia te  
for Model  II. Such substitution gave equation 42: 

C 1 ( /  ) = Co~(k21 - /3)e -I~' - ( k 2 1  - 9{)e-:~']/(0~ - fi) (41)  

Cl(t) = 29.758 e - ~ 1 7 6  is, + 70.2419 e -  1.703s, (42) 

Int ravenous C1, t values were generated with equation 42 and 20 sets 
of concentrat ions "with noise" were generated by adding 5 ~o random error 
with normal  deviates. Each of these 20 sets of concentrat ion data was fitted 
to equation 41 using the program N O N L I N  and an IBM digital computer .  
The initial estimates used to initiate the iteration in each case were values of 
k l 2 ,  k2 1" /<el' and V 1 which were twice the known values. The averages of the 20 
estimated parameters  of each type were k~2 = 1.853, k21 = 0.797, k~j = 
0.068, and V~ = 32.6 (corresponding to Co = 125.8). The real values of 
and fl were c~ = 1.7035 and / t  = 0.0155. The values of c~ and/3 obtained from 
the averaged parameters  were :~ = 2.6979 and [J = 0.0201. The averages of 
the parameters,  obtained by this method,  are quite biased and represent an 
extreme case. We could have used only one of 20 sets of biased estimates 
but reasoned that it was fairer to use the averages of the 20. The equation 
for the estimated concentrat ions (C1), obtained by substituting the averaged 
parameters into equation 41. is given by equation 43 : 

C1(f )  = 36.489 e - ~ 1 7 6 1 7 6  + 89.2805 e - 2 6 ~  (43) 

A table of the C~ and real C1 values clearly shows the bias in that when 
t < 12 then CI > Cl ,  and when t ~ 24, (~ < C~. However,  because of the 
rapid falloff and then flattening of the curve, it is almost impossible to show 
the nature of the systemic deviations or trends on cartesian coordinate  graph 
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Fig. I. Simulated intravenous blood level curve ( - - - )  generated with 
equation 42 and biased es t imat ions  ( - - ) generated with equation 43. 
Top: Expanded scale of first 6 hr only. Bottom: Terminal part of curves. 

paper. Figure 1 consists of two semilogari thmic plots which show the nature 
of the trends. At the top of Fig. 1 is an expanded scale plot showing the data 
for the first 6 hr. At the bo t tom of Fig. 1 some of the data beyond 10 hr are 
plotted. A weighted residual plot would also show such systematic deviations. 

Oral C1, t data were generated by using the same real values of the 
disposition parameters  as used to generate the original intravenous data. 
Three sets were generated using C o = 100 and k a = 0.5, C o = 75 and 
k~ = 1.25, and Co = 75 and k a = 2. The parameter  values were substituted 
into equat ion 31 and the value of k21  = 0.515 was used for E 2. The L o o -  
Riegelman method was then applied to the C I , t data of each of the three sets 
using the biased parameters  k12 = 1.853, k21 = 0.797, and k~ = 0.068. In 
each set, concentra t ions  were used at times t = 0.2, 0.4, 0.6, 0.8. 1.0, 1.2, 1.4, 
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Table 1L Estimates of A~/V~ and k a Obtained by Using Biased Disposition 
Parameters in Applying the Loo-Riegelman Method in Simulation Example 2 

Set 1 Set 2 Set 3 

A~/V~ k~ A~/Va ko A~o/V~ k~ 

Real value 100 0.50 75 1.25 75 2.00 
Guggenheim method 123 0.48 108 0,91 96.4 1.64 
Sigma-minus method 119 0.53 99.5 1,48 101.0 2.26 

(realA~ x 125.8 - -  94.4 - -  94.4 
(biased Co)i.~. 

1/1 /o,~, (real Co)i.,. 

1.6, 1.8, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 36, 48, 60, 72, 84, 96, 120, 144, 168, 192. 
216, 240, 264, 288, 312. These are more sampling times than one would have 
available in a human study, but we wished not to introduce another source 
of error discussed later. 

The Guggenheim method was applied to the equally spaced AAT/V1, t I 
values (here tl is time at the beginning of the interval) in the 0- to 2-hr range, 
and the sigma-minus method was also applied to estimate A~/V~ and k, 
from each set of data. Results are shown in Table II. It may be seen that k~ 
is reasonably well estimated in each case but that A~/V~ is always appre- 
ciably higher than the real value. This is due to the bias in the fitting of the 
intravenous data. The ratio of volumes is 41/32.6 = 1.258, hence the ratio 
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Fig. 2. Solid line gives actual C 2 values for simulation example 2 (oral). Dotted line gives 
estimated C 2 values calculated with the biased parameter values. 
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of biased C0/true C O = 125.8/100 = 1.258. Equation 44 approximately 
holds in each case: 

(A~ /V l )ora l  "~ (real A~/Vl)oral. (biased Co)i.v./(real C0)i.v. (44) 

That is, the poor estimate of Aoo/V~ obtained by application of the Loo-  
Riegelman method to the oral data is accounted for by the bias in the 
estimate of Co in the fitting of the intravenous data. This can be seen by 
comparing the values of the right-hand side of equation 44 with the A~/V~ 
estimates in Table If. It is somewhat remarkable that k~ is estimated as well 
as it is under conditions of such biased estimates. This is accentuated by 
Fig. 2, which is a plot of the real C2 values and the values of C2 obtained by 
the Loo-Riegelman method using the biased estimates of klz, kz~, and k~ 
for set 1 where k a = 0.5. It is obvious that the ~2 values during the absorption 
phase are considerably higher in this case than the real C 2 values. 

Effects of Time Interval Between Plasma Concentrations 

Many simulations have been performed, but results of only one will be 
given. 

Simulation Example 3. The original parameters of example 2, namely 
klg = 1.162, k21 = 0.515, kel = 0.038, k~ = 0.5, and C O = 100, were used. 
These values, substituted into equation 31, gave the equation for C~ shown in 
the footnote to Table Ill. Substitution into the appropriate equation for 
Model II also give the equation for C 2 shown in the same footnote. Using 
equation 2, (~2 values were calculated from the C~, t values listed in columns 
1 and 2 of Table III; in this case, the real values of k12, k21, and ke~ (above) 
were used and not the biased estimates. Hence this simulation is a test of the 
criticality of the values of AC1 and At and of the distribution of the C~ values 
with respect to time. Four different sets of C~, t values were used and the 
generated C 2 values are shown in Table III in the last four columns. All cal- 
culations were carried out to the number of significant places shown in 
Table III. Although the trapezoidal areas are not listed, the error introduced 
by use of the trapezoidal rule in this simulation was of minor importance in 
determining the results. Since At appears in the exponent of "e"  in two terms 
of equation 1, and both ACa and At appear in the third term, the value of At 
and its change with time are the major source of poor estimates of C2. 
When a very large number of C1, t values are used, as in set I, ~2 is essen- 
tially the same as the real C 2 over the whole time range. However, in sets 2 
and 3, when At suddenly jumps from 2 hr (in the 2- to 12-hr range) to 12 hr 
(between 12 and 24 hr) then the C2 estimated at 24 hr is appreciably lower 
than the real Cz value. At least with this set of data, when fewer "blood 
samples" are taken in the absorption phase (sets 3 and 4 compared with set 
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Table  I lL  How "Tissue  C o n c e n t r a t i o n "  ( C z / E s t i m a t e d  by' the Loo Riegelman 
Me thod  Depends  M a r k e d l y  on the Values of AC~ and At (S imula t ion  Example  3~ 

Actual  values  a s es t imated  by Loo Riege lman me thod  
Time 
(hr) C~ C2 Set 1 Set 2 Set 3 Set 4 

0 0 0 0 0 0 0 
0.2 8.4772 1.0050 0.9851 0.9851 
0.4 14.5103 3.4940 3.4617 3.4617 3.3722 - 
0.6 18.8027 6.8653 6.8260 6.8260 6.5546 
0.8 21.8551 10.7075 10.6649 10.6649 10.5464 
1.0 24.0237 14.7430 14.6994 14.6994 
1.2 25.5620 18.7878 18,7446 18.7446 18.6247 18.4459 
1.4 26,6506 22.723t 22.6815 22.6815 
1.6 27.4180 26.4756 26,4360 26.4360 26.3261 
1.8 27.9558 30.0031 29.9659 29.9659 - 29.7084 
2. 28.3292 33.2846 33.2500 33.2500 33.1537 

-4. 28.8842 53.7895 53.6152 53.6152 53.5808 53.5108 
6. 28.3629 60.6871 60.4402 60.4402 60.4279 
8. 27.7577 62.3045 62.0230 62.0230 62.0186 61,0682 

10. 27.1408 61.9908 61.6965 61.6965 61.6949 
12. 26.5289 60.9871 60.6907 60.6907 60.6901 59.5752 
15. 25.6317 59.1009 58.4714 
18. 24.7630 57.1373 56,2262 - - -  
21. 23.9233 55.2088 54.4844 - -  
24. 23.1121 53.3386 52.6725 36.0372 36.0372 36.0349 
27. 21.8109 51.5302 50.0094 
30. 21.0815 49.7828 48.1112 
33. 20.3673 48.0946 46.4378 -- 
36. 20.1329 46.4637 45.6494 31,3437 31.3437 
39. 19.4502 44.8880 44.2838 
42. 18.7906 43.3658 42.8209 -- 
45. 18.1534 41.8952 41.3771 . . . .  
48. 17.5377 40.4745 39.9756 27.3032 - 2 3 . 5 8 1 4  30.5258 
51. 16.9430 39.1019 38,6204 -~ 
54. 16.3684 37.7759 37,3107 - - 
57. 15.8134 36.4945 36.0456 
60, 15.2771 35.2572 34.8232 23.7842 - 23.7909 
63. 14.7590 34.0616 33,6422 . . . .  
66. 14.2585 32.9065 32.5013 - - -  
69. 13.7750 31.7906 31.3992 . . . . . .  
72. 13.3079 30.7125 30.3345 20.7185 - 19.4101 20.7185 
75. 12.8566 29.6710 29.3058 
78, 12.4206 28.6648 28.3120 
81. 11.9994 27.6928 27.3519 . . . .  
84. t l .5925  26,7537 26.4243 18.0477 ~ 18.0477 
87. 11,1993 25.8464 25.5281 - 
90. 10.8196 24.9900 24.6625 . . . .  
93. 10.4527 24.1231 23.8262 - - 
96. 10.0982 23.3051 23.0182 15.1212 - 14.7295 15.7212 

aUsed equa t ions  for t w o - c o m p a r t m e n t  open model  with f irst-order absorp t ion  
wi thk~2 = 1.162, k2~ = 0.515, k ~  =0 .038 ,  a n d k  a = 0 . 5 h r  I Co = 100. These 
pa rame te r s  gave equa t ions  

C I = 30.458e o.o115~_ 29 .1825e -1 .7o35 ,_  1,2757e-O.5~ 

C 2 = 70.2929e - ~ 1 7 6  + 28.5318e I .ov35t_  98.8247e-O5~ 
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2) a similar dramatic effect on r is not seen. Of  course, there is a lower limit, 
and one must take sufficient samples to get a good distribution of points at 
least up to the peak of the CI ,  t curve (which in this example is near 4 hr). 
Notice that although set 3 consists of 15 samples and set 4 consists of only 
14 samples the C2 values are better in set 4 than in set 3. The large At of 
24 hr (from 24 to 48 hr) in set 3 caused (~2 to become a large negative value 
at 48 hr. 

A t j V  1 values for each set were estimated by applying equation 1, the 
trapezoidal rule for the areas, and the C a values listed in Table III. Then the 
A,,/I~%, t, values were analyzed by two different methods to estimate the 
A~/V~ and k, values. The Guggenheim method was applied to the equally 
spaced values in the 0- to 2-hr range. Since absorption had essentially ceased 
at 10hr all the A,,/V~ values from 12 to 96hr  were averaged to obtain an 
estimate of the asymptote of each set: the early At,,/V ~ values were then 
subtracted from these asymptotes and the natural logarithms of the dif- 
ferences were treated by least squares to obtain the estimate of k, by the 
usual sigma-minus method. Results are shown in Table IV. In each case, the 
Guggenheim method very accurately estimated both A ~ / V  1 and k~. However, 
only for set 1 did the sigma-minus method give good estimates of either k~ 
or A~/V~. The sigma-minus plots are shown in Fig. 3. The unwary (with 
real data) might interpret data set 2 as being a case of biexponential absorp- 
tion! The reason for these results is that the poor estimates of C 2 beyond 
12 hr in sets 2-4 caused great fluctuation in the terminal A,,/V~ values and all 
the values were lower than the real values. 

DISCUSSION 

The derivations have shown that under certain conditions the Loo 
Riegelman method will provide the correct A ~ / V  1 value and the correct 

Table IV. How Both the Values of AC~ and At (Data Set) and the Method of 
Plotting A.  r V 1 Data Affect the Estimates of A,  'V~ and k a Obtained (Simula- 

tion Example 3) 

Parameter  Estimate obtained from A r / V  ~ data by 
Data 
set Symbol Real value Guggenheim method Sigma-minus plot 

1 A ~ / V  1 100.0 100.1 99.6 
k a 0.50 0.4988 0.5164 

A:~/VI 100.0 100.1 90.2 
2 k, 0.50 0.4988 0.5887 

A ~ / V  1 100.0 100.5 
3 ka 0.50 0.4941 Curved plot 

4 A ~ / V t  I00.0 101.1 98.1 
ko 0.50 0.4863 0.6138 
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Fig. 3. Sigma-minus plots for simulation example 3. 0 ,  Set 1 ; 
4 ,  set 2 ; I ,  set 3 ; C), set 4. 

kinetics of absorption (or the correct At~V,, T plot if the kinetics of absorp- 
tion are nonuniform) independently of whether there is metabolism in 
compartment 2 or not. In those cases where metabolism does occur in 
compartment 2, the disposition parameters estimated from the intravenous 
data are only apparent and not the real values. The relationships among the 
parameters of Models I, II, and III are shown. This explains the results 
reported by Kaplan (5) and Breckenridge and Orme (6). The treatment 
herein is simpler than that of Suzuki and Saitoh (4). 

In situations where the disposition parameters are biased, such as when 
they are obtained by the "feathering" or "back-projection" technique or 
when the computer converges on a local minimum in the least-squares 
surface, use of such biased parameters in application of the Loo-Riegelman 
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method to oral data results in reasonable estimate of the true absorption 
rate, k, (if absorption is first order), but in a biased value of A 2 / V  I which is 
approximately given by equation 44. This strongly suggests that in the 
fitting of the intravenous concentration data one should use as good initial 
estimates of the parameters k12, k21, ke~, and Co for Model II as possible, 
and fit the data to equation 41 repeatedly on the computer until one has the 
best curve-fit possible--that is, there should be no systemic deviations of the 
model-predicted C~ from the observed C~ values. 

The reason there is bias when one "feathers" or "strips" the intravenous 
data is that to obtain the estimate of fl one assumes e -~t = 0 at some point 
and then for terminal concentration data assumes fl = - A  In C / A t .  This 
biased estimate of fl is higher than the true value, hence the residuals are 
biased, and a biased estimate of ~ is also obtained. The amount of bias is 
very dependent on the particular set of data which is "stripped." Besides the 
usual definition of fi, one may define it as 

[d In C/dt] ,  ~ = - fl 
C~0 

When the digital computer obtains a fit without systematic deviations, it is 
really using this latter interpretation of fi rather than the former. 

The Loo Riegelman method assumes that the plasma level curve is 
linear between adjacent points. Because of this assumption, the values of C2 
estimated by the method depend on the time intervals between samples. 
Hence, optionally, in applying the method to oral concentration data one 
should have a large number of concentration time points which are closely 
spaced. But this is impractical since one can take only so many blood 
samples following any given treatment in a human subject. To circumvent 
the problem, one can fit a function or functions to the data points such that 
the "line" goes through each observed concentration and is " smooth"  
between observed concentrations. An ideal approach, which the author has 
studied, is use of the spiine and Akima methods reported by Fried and Zeitz 
(9). With a very "steep-slope" plasma concentration curve (sum of four 
exponential terms), Sedman (personal communication) has shown that the 
method gives interpolated concentrations between adjacent "observed" 
points which differ only 0-2 ~o from the real values. Hence in applying the 
Loo-Riegelman method to oral concentration data one should generate a 
large number of such interpolated points and use these and the observed 
concentrations to estimate the C2 values. We now have a computer program 
to interpolate such values and apply equations 1 and 2 to the interpolated 
and observed values, z 

2p. Larson and A. Sedman, University of Michigan, Ann Arbor, Mich. 
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In most simulations, the A , / V  1 value, and sometimes the k a value, is 
better estimated by means of the Guggenheim method from the early 
Ar/VI  values than by the classical sigma-minus method. The Guggenheim 
method requires equally spaced A r / V  ~ values and hence equally spaced 
blood samples during the absorpt ion phase. When using the curve-fitting 
method above, one can generate interpolated concentrat ions at equally 
spaced time values, and hence the blood samples need not actually be taken 
at equally spaced intervals to apply the Guggenheim method. However,  if 
the operator  wishes to insure that he used all observed concentrat ions in the 
absorpt ion phase, then to apply the Guggenheim method the study should 
be designed for taking blood samples at equally spaced intervals at least up 
to the time of the expected maximum plasma concentration.  

If absorpt ion is not first order, then both the Guggenheim plot of 
log ( A A t j V I )  vs. t I and the sigma-minus plot will be curved if the data give 
a sufficient span of time compared  with the time for half of the drug to be 
absorbed. In these cases, the user usually likes to present the A,n/V ~ vs. t 
plot. If only the observed concentra t ion data are used, then the problem 
presented by simulation example 3 (Table IIl) may occur and the A~/V~ 

value may be difficult to determine. However,  if one uses a large number  of 
interpolated values, then an estimate close to the true value of A ~ / V  1 would 
be obta ined:  this is supported by set I in Table III. The relative A~/V~ values 
from different treatments are impor tant  in bioavailability studies and it is 
desirable to obtain the best possible estimates of this parameter.  
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