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I N T R O D U C T I O N  

The classical method  of ob ta in ing  areas in terms of kinetic constants  
involves the following steps: (a) writ ing the differential equat ions  for the 

mode l ;  (b) ob ta in ing  the Laplace t ransform (ai) for the a m o u n t  in a given 
compar tmen t  at t ime t (Ai); (c) tak ing  the an t i t ransform which provides 

the expression for A~ which is a polyexponent ia l  equa t ion ;  (d) in tegrat ing 
the polyexponent ia l  equa t ion  between the limits of t = 0 and  t = ~ ; and  

(e) simplifying the result. The last step in this sequence often involves hor-  

rendous  algebra. 

T H E O R E T I C A L  

The  Laplace  t rans form of a funct ion,  F( t ) ,  is ob t a ined  as indica ted  by 
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L [ F ( t ) ]  = a i = F ( t )  e - s t  d t  

W h e n s = O ,  thene  s t=  1, and 

(1) 

(ai)s = o = F ( t )  d t  (2) 

In linear pharmacokinetics, F ( t )  is given by 

F ( t )  = V v Ci  e ~.,t = A i e -  ~t  (3) 

for the plasma or reference compartment, where Vp is the volume of that 
compartment, the Ci's and Ai's are coefficients with dimensions of concen- 
tration and mass, respectively, and the 2i's are either eigenvalues or micro- 
scopic rate constants of the particular model. 

Dost's "law of corresponding areas" (1) may be stated as follows: the 
ratio of the area beneath the blood level-time curve after oral administration 
to that following intravenous administration of the same dose is a measure 
of the absorption of the drug administered. This may be expressed mathe- 
matically as 

fo o / fo  o F = C p~ d t  cip v d t  (4) 

In equation 4, F symbolizes the fraction of the dose which is absorbed 
(hence is the bioavailability factor due to incomplete absorption), C~ ~ is 
the plasma concentration at time t after oral administration, and C~ v is the 
plasma concentration at time t after intravenous administration. 

Now, Dost's law should be replaced by 

F F *  = Di.v. CPp ~ d Dp.o. C~ v d t  (5) 

In equation 5, Di.v. represents the dose given intravenously, Dp.o. represents 
the dose given orally and F* is the bioavailability factor due to the so-called 
first-pass effect. When dealing with linear pharmacokinetic models, the 
value of F* is obtained by assuming F = 1 and Di.v. = Dp.o. and then sub- 
stituting the appropriate values for the two areas into equation 5 and sim- 
plifying, if necessary. 
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EXPERIMENTAL 

Figure 1 shows the schematic diagrams of 6 linear pharmacokinetic 
models. Table I lists the Laplace transforms for the amounts in the designated 
plasma compartment (signified by Vp being written below that compartment) 
after both oral, a p~ and intravenous, a~; ~, administration, the corresponding 
areas, and the value ofF* for the model. The areas obtained by the application 
of equation 2 were all checked by the classical method of integrating the 
polyexponential equation for the amount in the plasma compartment as a 
function of time and agreement was obtained in each case. 

Since the products of the 2/s appearing in the area expressions cancel 
when the ratio of the oral to the intravenous area is made to obtain F*, it 
is not necessary to know what the i~'s mean in terms of the microscopic rate 

IV dose IV ~ ~ oral dose oral~ dOSekl2 ~.4/ dose 

k20 > 

(Vp) k21 

Model I Nmdel II 

oral dose IV dose 

~4 kl 2 k23 ~/" 

21 32 (p) 

Model III 
kl 2 
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/ 
] "~- "~g 3 IV dose 

Mcdel IV 

"~'-I k3~ 

ore<dose ~3 71~2 

~2 1 ~0 
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k21 r kl 3 
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Fig. 1. Schematic diagrams of six linear pharmacokinetic models. 
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constants to obtain the value of F* for any particular model. However, for 
the models shown in Fig. 1, the products are as follows: 

Models I and II: )t12 2 = k12k2o (6) 

Model III: 212223 = k 1 2 E z E 3  - k 1 2 k 2 3 k 3 z  - k 1 2 k z l E  3 (7) 

where  E 2 = k21 + k23 a n d  E 3 = k32 q- k30. 

M o d e l  I V :  212223 = E I E 2 E  3 - k 2 3 k 3 2 E 1  - k l 2 k 2 1 E  3 - k13k21k32 

- k 1 2 k z a k 3 1  - -  k l 3 k 3 1 E  2 (8) 

w h e r e  E1 = k12 + k13, E2 = k21 + k23, and  E 3 = k30 + k31 + k32. 

M o d e l  V :  ~-1~2~3 = k 1 2 E z E  3 - k12k23k32 - k12k21E3 (9) 

where E 2 = ]r + k23 + k21 and E3 = k30 + k32. 

Mode lVI :  212223 =ExE3k31 -k12k21k31-k13kalE 2 (10) 

where E 1 = k12 -~- k13 and E 2 = k2o + k21. 

DISCUSSION 

The above method is clearer and more in keeping with acceptable 
pharmacokinetic theory than the method proposed by Niiesch (2) to make 
the correction (i.e., find F*) that makes Dost's law valid for a given com- 
partment model. 

However, in the real world (as contrasted to the abstract world of 
models) the only way to prove that Dost 's law is applicable to a particular 
drug is to show that, with some type of dosage form, FF* = 1 when one 
measures the drug in plasma after both oral and intravenous administration 
and applies equation 5. Such a result implies that the oral dose was com- 
pletely absorbed (i.e., F = 1) and that for conditions existing in the body 
F* = 1. If the oral area is less than the intravenous area, one really cannot 
determine whether this was caused by F < 1 or F* < 1 or both being less 
than unity. This is because the bioavailability factors are confounded (i.e., 
appear as a product, FF*, in equation 5). It has been recognized for some 
time that the value of F* can be so close to unity (e.g., when k21 >> k20 in 
models I and VI of Fig. 1) that, with the errors involved in plasma assays 
and in estimating the areas, one cannot distinguish the value from unity. 
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