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An equation is presented which allows infinity values for biexponential processes to be predicted in 
the early nonlinear phase when samples are taken at equal time intervals. This equation is 
independent of the value or ratio of the rate constants involved in the process. However, this method 
is very sensitive to noise normally associated with urine data. 
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I N T R O D U C T I O N  

One of the methods used to assess bioavailabiIity is to determine the 
total amount  of drug and /o r  metabotite(s) (infinity values) appearing in the 
urine. Guggenheim (1) and Amidon  et  al. (2) have both proposed different 
forms of the same equation to predict these infinity values for monoex-  
ponential  processes, where sample are taken at equal t ime intervals. The 
equation may be written in the general form of 

Yoo = Y/+2- (Y/+2-  Y i + l ) 2 / ( Y i + 2 - 2 Y i + l  + Y i )  (1) 

where Y~ is the terminal value of Y and Y~, Y~+I, and II/+2 are sucessive 
values of Y taken at equal t ime intervals during the time course of the study. 

Wagner  and Ayres  (3) have written equation 1 as 

Y~ = Y~o-slope (Y~+I- Yi) (2) , 

which can be used to plot the data allowing more  than three observations to 
be used in the determinat ion of Y~. The slope of equation 2 can be shown to 
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be equal to - 1 / ( 1 -  e-ka'); therefore, 

Y~ = Y ~ - [ 1 / ( 1 -  e-ka~)][Y~+l- Yi] (3) 

which allows Y~ to be determined from the intercept of the graph and the 
rate constant k to be evaluated from the slope of the line, where At is the 
equal time interval at which samples are taken. Wagner (4) has shown that 
the Guggenheim equation corresponding to equation 3 may be written as 

In ( Y~+I - Y/) = In Y~o(1 - e-ka')] _ kti (4) 

However, equation 4 will make terrible estimates of the infinity value 
and rate constant k from data at equal time intervals, whereas equation 3 
with either ordinary or orthogonal least squares will make excellent esti- 
mates (5). 

These equations can be used in biexponential processes provided that 
they are applied during the terminal linear phase of the biexponential 
process. This could require collection of urine samples over relatively long 
time periods to assure being in the linear phase. The purpose of this 
communication is to propose an equation which will allow prediction of the 
infinity values for the biexponential processes during the nonlinear phase. 
This equation is independent of the rate constants and may be used during 
the early period of the study, provided that samples are taken at equal time 
intervals. 

This technique is described in Hildebrand (6) as Prony's method of 
exponential approximation. It is an exact solution (non-least-squares) and 
can be very sensitive to noise normally associated with urine data and may 
produce large errors especially if there is much deviation of the data from the 
exact line. Included in the discussion is an example of the error which may 
result from rounding off the data as discussed by Hildebrand (6). 

THEORETICAL AND DISCUSSION 

Juhl et al. (7) have investigated the effect of sulfasalazine on digoxin 
bioavailability by measuring urinary digoxin excretion. Wagner and Ayres 
(3) have applied various methods to these data to estimate the total amount 
of digoxin appearing in the urine. All of the methods used by Wagner and 
Ayres (3) assume that the data become linear at 3 days, and the data from 
this point on were fitted to various monoexponential functions. If the 
following equation is used (see Appendix for derivation), 

2112113114+ YI  Y s Y s -  YI  Y 2 - Y s Y ~  - y 3  

Y1Ys  + Yt  Ya - 2 Ya Y 4 -  2 Y2 Ys + 2 Y2 Y4 

+2112113+ Y 3 Y s + 2 Y 3 Y 4 -  y 2  - 3 Y ~  - Y ]  

(5) 
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Table ! 

Digoxin + 
Number of Digoxin alone sulfasalazine 

Method data points (ixg) (Ix g) 

Juhl et al. (7) 
(2, 4, 8, 12, 24 hr, 2, 3, 4, 5, 6, 7, 8, 9, 10 14 278 228 
days) a 

Equation 5 
(1, 2, 3, 4, and 5 days) 5 276 231 
(0.5, 1, 1.5, 2, and 2.5 days) 5 281 233 

Wagner and Ayres (3) 
Method I (3, 4, 5, 6, 7, 8, 9, and 10 days) 8 285 234 
Method IIA (3, 4, and 5 days) 3 303 229 
Method IIB (3, 4, 5, and 6 days) 4 281 224 
Method IIB (3, 4, 5, 6, 7, 8, 9, and 10 8 284 232 
days) 
Method IIC (3, 4, 5, and 6 days) 4 282 232 
Method IIC (3, 4, 5, 6, 7, 8, 9, and 10 8 285 234 
days) 

~Numbers in parentheses indicate the time at the end of each collection. 

data points in the nonlinear phase of the process may be used, and the 
problem of determining when linearity begins is avoided. Also, equation 5 
may be used during the early t ime periods, reducing the number  of samples 
needed in the study. Table  I shows the results obtained by JuhI et al. (7), by 
Wagner  and Ayres (3), and by using equat ion 5. Two sets of data are 
presented for equation 5. One  set uses the data points extrapolated for the 
first 5 days by Wagner  and Ayres  (3). The  other set is a combination of the 
0.5, 1-, and 2-day points extrapolated by Wagner  and Ayres (3) and the 1.5- 
and 2.5-day points extrapolated by the authors. The data points at 1.5 and 
2.5 days for digoxin alone are 143 and 186 t~g, respectively, and 118 and 
152.5/zg, respectively, for digoxin in the presence of sulfasalazine. The 
results obtained by using equation 5 compare  favorably with those reported 
by both Juhl et al. (7) and Wagner  and Ayres (3). The advantage of equation 
5 lies in the fact that results may be obtained in 2.5 days, which is the early 
nonlinear port ion of the curve. 

The following two examples are presented to illustrate the situation 
where the data show no linearity; thus it would be inappropriate  to use the 
methods of Wagner  and Ayres (3). Cabana  et al. (8) administered a 950-rag 
i.v. dose of Cephapirin to human volunteers and collected nine equally 
spaced urine samples over  a period of 6.04 hr. Using a two-compar tment  
open model  analysis, Cabana  et  al. (8) repor ted  that a total of 455 mg of 
Cephapirin and 317 nag of the metabol i te  appear  in the urine. Using the first 
five data points in equation 5, over  a t ime period of 2.54 hr, values of 449 mg 
of intact drug (1.3% difference) and 3 1 5 m g  of metaboli te  (0.63% 
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Table 11. Oxacillin, 250 mg i.v. bolus; Sulfaethidole, 1.0 g oral ~ 

Cumulative amount of oxacillin in urine (rag) 

Time (hr) B.R. B.M. E.S. L.D. D.K. Mean • 

0.5 92.0 90.0 75.6 90.1 91.0 87.7• 6.83 
1,0 103.2 108.4 88.8 106.0 113.0 103.9• 9.2 
1.5 108.1 112.9 92.9 109.9 119.5 108.7• 9.8 
2.0 110.0 114.8 94.9 112.2 122.1 110.8+10.0 
2.5 111.6 116.7 95.8 113.0 123.5 112.14-10.2 
3.0 - -  - -  96.5 113.7 124.7 113.0-+-10.4 
3.5 12.9 117.6 96.9 114.2 125.6 113.4-+-10.5 
4.0 113.1 118.0 97.3 114.6 126.3 113.94-10.6 

~Data taken from the Ph.D. dissertation submitted by Karl A. DeSante in partial fulfillment for 
the requirements for the Doctor of Philosophy Degree at The University of Kentucky (1972). 
Reproduced with permission of the author (9). 

difference) were predicted to appear in the urine. Table II presents the data 
of D e S a n t e  (9), who  gave  a 250- rag  i.v. dose  of oxaci l l in  a long with  a 1 .0-g 
ora l  dose  of  su l f ae th ido le  to h u m a n  vo lun tee r s .  Us ing  e ight  d a t a  po in t s  and  
t w o - c o m p a r t m e n t  o p e n  m o d e l  analysis ,  he  r e p o r t e d  a to ta l  of 113.9 m g  of  
oxaci l l in  a p p e a r i n g  in the  ur ine.  A p p l y i n g  e q u a t i o n  5 to  the  first five d a t a  
poin ts ,  a p r e d i c t e d  va lue  of 116.5 mg  (2 .3% dif ference)  was ob t a ined .  

T h e  fo l lowing  da ta ,  shown in Tab les  I I I  and  IV,  were  s imu la t ed  to 
i l lus t ra te  the  sens i t iv i ty  of  the  m e t h o d  as de sc r ibed  by  H i l d e b r a n d  (6). Us ing  
the  so lu t ion  for  the  o n e - c o m p a r t m e n t  o p e n  m o d e l  

y ~  = ( y 2  _ Y 1 Y 3 ) / ( 2 Y 2 -  Y 1 -  Y3) (6) 

for  d a t a  g iven to  t h r e e  dec ima l  p laces  (Table  I l i )  gives a resul t  of 100.1 mg  
for  Yoo (0 .1% error) .  Us ing  the  da t a  given to two dec ima l  p laces  gives a 
resul t  of  98.49 mg for Yoo (1 .51% error) .  

Us ing  the  so lu t ion  of the  t w o - c o m p a r t m e n t  m o d e l ,  p rev ious ly  shown 
as e q u a t i o n  5, for  the  d a t a  g iven to  t h r e e  dec ima l  p laces  in T a b l e  IV  gives a 
resul t  of  99.96 mg (0 .04% error ) .  Us ing  the  d a t a  given to two dec ima l  p laces  

gives a resul t  of 108.98 mg (8 .98% error) .  

Table IlL Simulated Data for the One-Compartment Open Model 
(k, = 0.05/hr, dose = 100 mg) ~ 

Time Y2 cumulative Yt cumulative 
(hr) (mg) (mg) 

1.0 4.877 4.88 
2.0 9.516 9.52 
3.0 13.929 13.93 

~ Y ~ -  Y~ = Y~ e -kJ. 
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Table IV. Simulated Data for the Two-Compartment Open Model 
Bolus Injection (a = 1.0/hr, 13 = 0.05/hr, A = 10.0 rag, B = 90.0 mg, 

dose = 100 mg) ~ 

Time Yt cumulative Y~ cumulative 
(hr) (mg) (mg) 

1.0 10.711 I0.71 
2.0 17.211 17.21 
3.0 22.038 22.04 
4.0 26.131 26.13 
5.0 29.841 29.84 

'~ Y |  - Y t  = A e- '~t + B e -~t. 

CONCLUSIONS 

An equation has �9 presented which allows prediction of infinity 
values for both intact drug and metabolite appearing in the urine for 
exponential processes, provided that samples are taken at equal time 
intervals. This method allows data to be used in the early nonlinear place of 
the biexponential process. However, this technique must be used with 
caution as it is very sensitive to noise which is usually associated with urine 
data and may result in large errors. 

APPENDIX 

The general equation for the biexponential process may be written as 

Y~o- Y~ =Ae-k'~ +Be-k"t  (ta) 

1. Oral absorption model (single dose): 

ka kel 
Do ~" DB ~ Du 

(drug in central / 
(drug in gut) 1 compartment ] (drug in urine) 

kaDof e_ko~, + kejDof e_ko ~ (2a) 
Y ~ -  Yt = k T -  ke---~l k~, -  ka 

2. Intavenous model (single bolus dose): 

kel 
D u  ~ DB . 

/drug in central 1 
(drug in urine) ~ compartment ] 

kelDo(k2 - a) 
Y ~ - Y , =  

(~ - o0( o0 

k I 

Dr  k2 
drug in peripheral 1 

compartment [ 

- o a  k e l D o ( k 2 - ~ )  _ &  
e -~ e 

( a  - t3 )(t~ ) 
(3a) 
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Yo~ = total amount of drug appearing in the urine. 
Y, = cumulative amount  of drug appearing in the urine at time t. 
t = time of urine collection. 
Do = dose. 
f = fraction of dose absorbed. 
ka = absorption rate constant. 
ke~ = rate constant for transfer of drug from central compartment to 

urine. 
k~ = rate constant for transfer of drug from central compartment to 

peripheral compartment. 
k2 = rate constant for transfer of drug from peripheral compartment to 

central compartment. 
a and/3 = complicated constants composed of the system of micro- 

parameters. 

Using the method of equal time intervals suggested by Guggenheim (1), such 
that ti = i At; i = 1, 2, 3 . . . .  then the following equations may be written: 

Y o o -  Y1 = A e - k ' a '  + Be-k~a '  (4a) 

Yoo - Y2 = A e  -2k~a~ + B e  -2k~a` (5a) 

Y ~  - Y3 = Ae-ak~a '  + Be-3k2~' (6a) 

Yoo - II4 = Ae--4klAt q- Be-4k2a'  (7a) 

Y ~ o -  Y5 = A e  -5kla' + Be-Sk2a'  (8a) 

If equations 4a, 5a, and 6a are written as 

Yoo - Y1 = A e - k l A ' ( 1 )  + Be-k~at(1)  (9a) 

Yoo - II2 = A e - k l a t  ( e -klAt ) + Be-k2a '  ( e -k~a') (10a) 

Y ~  - Y3 = A e - k l a ' ( e  -2kla') + Be-k2at (e  -2k2a') (1 la) 

then the following determinants and equalities may be written: 

A 

(Yo~- Yt) (1) -k~,,(1) t) 
(Yoo- Y2) (e -k~a*) (e = 
(Y~-Y3)  (e -2klan) (e -2k2at) 

B 

( Yoo - Y1 - A e - k l a t  -- Be-k2at)  

( Y ~  - Y2 - A e - 2 k ' " t  _ Be-2k2at)  

( Yoo - Y3 - Ae-3k~at  _ Be-3k2at)  

(1) (1) 
(e-k~A~) (e--k~A') 
(e--2k, A') (e-2kd") 
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C 

0 (1) (1) 
0 (e -klan) (e -kla') =0 
0 (e -2k~a') (e -2kzat) 

Repeating this procedure for equations 5a, 6a, and 7a and again for 
equations 6a, 7a, and 8a allows the following determinants to be written and 
shows that all the resulting determinants are equal: 

D 

( Y ~ -  IIi) (1) (1) 
(Yoo- Y2) (e -kIa~) (e -k2a') 
(Yoo- Y3) (e -2klA`) (e -2k1~') 

E 
(Yoo-Y2) (1) (1) 
(Y~o- I13) (e -k'~t) (e -k~a') 
(Y o o-Y4) (e -2klat) (e -2k2a') 

F 
( Y ~ -  I13) (1) (1) 
( Y ~ -  Y4) (e -k'a') (e -k~'  
(Y  o o - Y  s) (e -2k~') (e -2k~') 

The solution for determinant D can be obtained by letting x = e -klAt, 
X 2 = e - 2 k l A t ,  y = e -k2a~, and y2 = -2k2at. Thus 

(Yoo- Y1)(xy2-yx2)-(Y~o - Y2)(ya-x2)+(Y~ - Y3)(y -x )=0  (12a) 

(I /G- Y1)(xy)(y - x ) - ( Y ~ -  Y2)(y -x) (y  +x)+(Y~o- Y3)(y - x )  = 0 (13a) 

( Y ~ -  Y , ) (xy)- (Yoo-  Y2)(y+x)+(Yoo- II3)=0 (14a) 

Similar solutions obtained for determinants E and F lead to 

(Yoo- Y z ) ( x y ) - ( Y ~ -  Y3)(y + x ) + ( Y ~ -  Y4)=O (15a) 

(Yoo- Y 3 ) ( x y ) - ( Y . -  Y4 ) (y+x)+(Y~-  I15)=0 (16a) 

The solutions of determinants D, E, and F (equations 14a, 15a, and 
16a) allow the development of the following determinants: 

G H 

(Yoo- Y~) (Yo~-Y2) ( Y ~ -  Y3) I(Yoo- Y~) (Y1-Y2) (Y2-Y3) 
(Y~o-Y2) (Y~-Y3) (Y~-Y4)]  = t lY~-Y2)  (I"2-I13) (Y3-Y4) 
(Y~-Y3)  (Y~-Y4)  (Yoo-Ys)] Y~o-Y3) (II3-II4) (Y4-Ys) 
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which can be written as 

Or 

Y~ (Y~- Y2) 
Yoo (II2-II3) 
Yoo ( Y3-  Y~) 

1 

Y ~ =  1 

1 

(YI- Y~) 
(Y~- y~) 
(Y3- Y,) 

or  

I 

( I I 2 -  Y3) I Y, 
( Y 3 -  Y4) - I Y 2  
(Y,~-  Ys) II3 

(II2- II3) Y1 
( Y~-  Y,) - Y2 
(Y4-- Y~) Y3 

(Y1- Y2) 
(Y2- Y~) 
(Y~- Y,) 

(Y~- Y2) 
(Y~- Y~) 
(Y3- Y~) 

( Y~-- Y3) I 
(]I3-- Y4)/ 

(Y,- Ys) l 

(Y~-  Y3) 
( Y3 -  Y~) 
( Y4 -  rs) 

Y ~ =  

YI (Y1-Y2) (Y2-]I3) 
Y: ( Y~-  Y~) (Y~-Y4) 
Y3 (Y3-Y4) (r4-r~) 
1 ( Y t - Y 2 )  (Y2- Y3) 
1 (Y2-Y3)  (Y~-Y,,)  
1 (Y3- Y4) (Y4- Ys) 

which leads to the following solution for Y~: 

2 Y2 Y3 Y4 + Yx Y3 Y s -  Y2 Y 2 - Ys Y~ - y3  
Y=-  

Y~ Ys + Yx Y3 - 2 Y~ Y 4 -  2 Yz  Ys + 2 Yz  Y4 

+ 2 Y 2 Y 3 +  Y 3 Y s - 2 Y 3 Y 4 -  y 2  - 3 Y ~  - y 2  

(17a) 
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