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Abstract. In this paper we investigate computational issues associated with the supervision of concurrent

processes modeled as modular discrete-event systems. Here, modular discrete-event systems are sets of

deterministic finite-state automata whose interaction is modeled by the parallel composition operation. Even

with such a simple model process model, we show that in general many problems related to the supervision of

these systems are PSPACE-complete. This shows that although there may be space-efficient methods for

avoiding the state-explosion problem inherent to concurrent processes, there are most likely no time-efficient

solutions that would aid in the study of such Blarge-scale^ systems. We show our results using a reduction from

a special class of automata intersection problem introduced here where behavior is assumed to be prefix-closed.

We find that deciding if there exists a supervisor for a modular system to achieve a global specification is

PSPACE-complete. We also show many verification problems for system supervision are PSPACE-complete,

even for prefix-closed cases. Supervisor admissibility and online supervision operations are also discussed.

Keywords: modular systems, supervisory control, verification, computational complexity

1. Introduction

There has been considerable interest lately in both the discrete-event systems community

and the computer science community in concepts related to modular systems. Some

systems too complicated to model in a monolithic manner may be easier to model as

modular interacting subsystems. Manipulating systems as separate interacting agents has

the added advantage of avoiding the Bstate explosion^ problem; when several finite-state

systems are combined, the size of the state space of the composed system is potentially

exponential in the number of components, so we may wish to keep system models modular

whenever possible. Likewise, when supervising or verifying system behavior, there may be

several separate specifications and therefore it would be advantageous to keep the

specifications modular as well. If we try to combine diverse modular specifications of

concurrent systems to form a single monolithic specification, that specification may have a

state space too large for a reasonable computation device to handle due to a similar state

explosion problem. We investigate the computational complexity of decision problems

associated with the supervision of modular systems.
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Although there are several ways of specifying modular systems, we make the assump-

tion that the modular systems and specifications discussed in this paper are modeled as

deterministic finite-state automata interacting via the parallel composition operation.

unless stated otherwise. This modeling method is generally considered to be the simplest

method that is expressive enough to be used for real-world problems, and decision

problems related to finite-state deterministic automata are also thought to be relatively easy

in general. We explicitly define the automata models and the composition operation used

for our investigations in the next section.

We show that many problems related to the supervision of these simple systems are

PSPACE-complete, which implies that similar supervision issues for more general models

are likewise intractable. For background information on the theory of computation and

properties of class PSPACE, please consult one of the standard textbooks such as (Du and

Ko, 2000) or (Garey and Johnson, 1979). Although for supervision purposes we find

there may not be great savings in time by specifying systems in a modular manner, there

is possibly great savings in computation space. This is why researchers began to

investigate the use of modules in the first placeVto avoid the state explosion problem.

There has recently been a large volume of work investigating connections between

theoretical computer science and supervisory control of discrete-event systems. Many of

the system models used in supervisory control are based on ideas that originated from

computer science, such as finite-state automata and Petri nets. Discrete-event system

theory can be used to model a large range of systems such as telecommunication

networks, database systems and computer logic units. Some notable examples of

crossover work between control theory and theoretical computer science include

(Bergeron, 1995; Blondel and Tsitsiklis, 2000; Burkhard, 1997; Henzinger and Kopke,

1999; Madhusudan and Thiagarajan, 2001; Ramadge and Wonham, 1987; Ricker and

Rudie, 2000; Rudie and Willems, 1995). We discuss and explore further connections

between these fields.

The work in this paper was inspired by the automata intersection problem initially

investigated by Kozen (1977). We extend the work of the computer science literature to a

special subclass of automata intersection problems involving prefix-closed languages

specified by deterministic finite-state automata and show how these problems are

relevant to supervision and verification problems. The first main result of this paper is to

show that several decision problems related to comparing the prefix-closed behaviors of

deterministic automata are PSPACE-complete.

The results on the computational difficulty of automata intersection problems are

reduced to supervisor existence and verification problems using polynomial-time many-

one reductions. We assume the supervision systems in this paper are Bparallel^ supervision

systems that are realized as deterministic finite-state automata where the supervised system

is synthesized by a parallel composition of the supervisor automata with the unsupervised

system. See (Cieslak et al., 1988; Lin and Wonham, 1988a, 1988b; Ramadge and

Wonham, 1987, 1989; Rudie and Wonham, 1992) for a sample of major innovative

works from the control community on parallel supervision discrete-event systems and the

text (Cassandras and Lafortune, 1999) for a general introduction to discrete-event system

theory. An event is disabled by a parallel supervisor at a given state if there are no output

transitions for that event at that supervisor state. Supervisors can only update on the
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occurrence of observable events and can only disable controllable events. A supervisor

with these properties is called Badmissible.^
Decentralized supervision problems are also investigated where local supervisors make

local observations and generate local control actions that are combined globally. De-

centralized supervision systems can be centralized through the use of the parallel

composition operation. We assume in this work that no explicit communication occurs

between the various modules in the system besides the implicit communication of shared

events through the parallel composition operation used to coordinate local behavior. Our

results also hold for more general supervision systems as discussed in (Yoo and Lafortune,

2002).

Another main result of this paper is that supervisor existence problems for modular

systems are in PSPACE when we desire the supervised system to behave exactly as the

specification. We use these supervisor existence results to explore deciding supervisor

admissibility.

It is also discussed how if given a (possibly decentralized) supervision system, a

modular plant and a modular specification, it can be verified that the specification is

satisfied in a computationally feasible manner. In general, we find that verification

problems for modular discrete-event systems modeled as sets of deterministic finite-state

automata are PSPACE-complete, meaning that these problems are probably intractable.

The online supervision of modular discrete-event systems is also investigated. Online

supervision methods calculate control actions on the fly as behavior is observed as opposed

to the traditional offline methods where control actions are precalculated. Online

supervision has been used to avoid computational intractability for the supervision of

monolithic discrete-event systems. See (Ben Hadj-Alouane et al., 1996; Rohloff and

Lafortune, 2003; Yoo and Lafortune, 2002) for example. We find that online supervision

does not help us with modular system problems as with monolithic systems.

There have been several papers from the computer science community that discuss

topics related to ours. The difficulty of coupled automata problems is discussed in (Buss

et al., 1991), but this reference does not discuss computational complexity nor the

specific problems discussed here. The complexity of verification for systems using more

complicated models such as temporal logic and alternating tree automata is discussed in

(Harel et al., 2002; Kupferman and Vardi, 1998; Kupferman et al., 2000; Vardi and

Wolper, 1994). Although researchers in computer science have shown more complicated

verification problems are PSPACE-complete, this paper shows that the supposedly

simpler verification of finite-state automata modular systems are PSPACE-complete. The

synthesis of distributed systems and supervisors is discussed in (Kupferman and Vardi,

2001; Madhusudan and Thiagarajan, 2001; Pnueli and Rosner, 1990) under assumptions

different from those made in this paper. The supervision of systems from a computer

science viewpoint that is similar to the paradigm used here is discussed in (Bergeron,

1995), but this reference does not discuss modular systems.

The supervision of modular systems is currently receiving much attention from the

control research community. See (Jiang and Kumar, 2000; Jiang et al., 2001; Leduc et al.,

2001a, 2001b; Queiroz and Cury, 2000; Ramadge, 1989; Willner and Heyman, 1991;

Wong and Wonham, 1998) for example. Some of the earlier results relating to modular

supervision are shown in (Willner and Heyman, 1991; Wong and Wonham, 1998).
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Properties of modular discrete-event systems when the modules have disjoint alphabets

are investigated in (Queiroz and Cury, 2000; Ramadge, 1989). Various local

specification and concurrent supervision problems, respectively, are investigated in

(Jiang and Kumar, 2000; Jiang et al., 2001). The supervision of modular systems using

specific architectures is discussed in (Leduc et al., 2001a, 2001b).

With the exception of (Gohari and Wonham, 2000), there has been little work

investigating the computational complexity of modular supervision. NP-hardness results

for modular supervision problems are shown in (Gohari and Wonham, 2000). We

improve on the results in (Gohari and Wonham, 2000) by showing PSPACE-

completeness results and by looking at more problems besides just supervisor existence.

Incremental system verification for modular discrete-event systems under weaker

assumptions than discussed in this paper are shown in (Brandin et al., 2000). Online

supervision, but for monolithic systems is discussed in (Ben Hadj-Alouane et al., 1996;

Rohloff and Lafortune, 2003; Takai and Ushio, 2000). There has been little or no

discussion in the control literature related to the online supervision of modular systems.

As would be natural when drawing from the work of two separate research areas, we

need to explicitly introduce the notation and assumptions we will be using in the rest of this

paper. We do this in Section 2 where we also introduce several simplifying assumptions

used in the rest of this paper that do no cause a loss of generality. In Section 3 we present

our results related to the computational complexity of several automata intersection

problems. In the fourth section we present a brief review of supervisory control of discrete-

event systems. In the fifth section of this paper, we reduce several results of the third

section to discrete-event systems supervisor existence problems. In the sixth section of this

paper we discuss supervisor admissibility. In the seventh section of the paper we show how

supervisor verification for modular systems is PSPACE-complete and in the eighth section

we discuss online supervision. We close this paper by discussing the implications of the

results presented in this paper and by discussing areas of possible future research related to

this work.

2. Notation and assumptions

Although the notation for automata problems used by researchers in computer science

and discrete-event systems is similar, there are subtle differences. We generally use the

notation of computer science theory when we present the automata intersection problems

and we use the notation of supervisory control when we discuss work related to discrete-

event systems. However, to aid the reader, we use this section to review the notation used

in both fields. For more background information on theoretical computer science, please

reference the seminal text by Hopcroft and Ullman (1979). Furthermore, a background

on supervisory control and discrete-event systems can be gained in (Cassandras and

Lafortune, 1999).

We define the automaton G as a 5-tuple (X G, xo
G, �G, dG, Xm

G) where X G is the set of

states, xo
G is the initial state, �G is the automaton alphabet, dG : X G � �G Y X G is the

(possibly partial) state transition function, and Xm
G is the set of Bfinal^ or Bmarked^

states.
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For an automaton G, in theoretical computer science, the language accepted (L(G )) by

the automaton G is the set of all strings that lead to a final state. L(G ) is equivalent to

the language marked Lm Gð Þð Þ in discrete-event system theory. The language generated

in discrete-event system theory L Gð Þð Þ is the set of strings whose state transitions are

defined by the transition function dG(I). Note that we use a script L for discrete-event

systems notation and a regular L for computer science notation. When dG(I) is a partial

function, L Gð Þ � �*. L Gð Þ is a prefix-closed language, i.e., it contains all the prefixes

of all its strings. Lm Gð Þ and L(G) are not prefix-closed in general. For a language K, we

use K to denote the set of all the prefixes of all the strings in K. We call an automaton

that accepts a prefix-closed language a prefix-closed automaton. We also say an

automaton is nonblocking if the prefix-closure of its marked language is equal to its

generated language, i.e., Lm Gð Þ ¼ L Gð Þ.
To review the parallel composition operation, suppose we have the automaton G

defined above and another automaton H = (XH, xo
H, �H, dH, Xm

H).

The parallel composition of G and H denoted by G || H is defined as follows:

G Hk :¼ X G � X H
� �

; xG
o ; xH

o

� �
;
XG [

XH ; �G Hk ; X G
m � X H

m

� �� �

where

�G Hk xG; xH
� �

; �
� �

¼
�G xG; �

� �
; �G xH ; �ð Þ

� �
if �G xG; �

� �
! ^ �H xH ; �ð Þ!

�G xG; �
� �

; xH
� �

if �G xG; �
� �

! ^ � =2PHð Þ
xG; �H xH ; �ð Þ
� �

if �H xH ; �ð Þ! ^ � =2PG
� �

undefined otherwise

8>><
>>:

9>>=
>>;

Note that we use the unary operator ! where f (�)! returns true if f (I) is defined for input

�, false otherwise. We assume without loss of generality that the automata in this paper

have a common alphabet � because we can always add self-loops at all states for all

events not initially in an automaton’s alphabet.

Given a set of h modules modeled as automata {H1, H2, . . . , Hh}, we use the script

notation Hh
1 to denote the set of the module automata {H1, H2, . . . , Hh} and the regular

notation H1
h to denote the parallel composition H1 || H2 || . . . || Hh. H1

h accepts (generates) a

string t if and only if t is accepted (generated) by all automata inHh
1 ¼ H1;H2 : : : ;Hhf g.

This implies that Lm Hh
1

� �
¼ Lm H1ð Þ \ : : : \ Lm Hhð Þ.

Similarly, for a set of k languages {K1, K2, . . . , Kk}, we use the script notation Kk
1 to

denote the set {K1, K2, . . . , Kk} and the regular notation K1
k to denote the intersection of

the languages K1 7 K2 7 . . . 7 Kk. We also use the notationL Hh
1

� �
and Lm Hh

1

� �
to denote

the sets of languages L H1ð Þ;L H2ð Þ; : : : ;L Hhð Þf g and Lm H1ð Þ;Lm H2ð Þ; : : : ;Lm Hhð Þf g,
respectively.

It is well-known (Garey and Johnson, 1979) that the problem of showing the language

equivalence of two nondeterministic finite-state automata is PSPACE-complete. With

this information it is also easily shown that for two automata A and B, deciding L(A) �
L(B) for the nondeterministic case is also PSPACE-complete because verifying L(A) �
L(B) and L(B) � L(A) also verifies that L(A) = L(B), a known PSPACE-complete

problem. Because of these discouraging results for simple nondeterministic automata
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comparison problems, we discuss deterministic automata exclusively in this paper. It is

well known that we can decide L(A) � L(B) and L(A) = L(B) in the deterministic case in

polynomial time (Hopcroft and Ullman, 1979).

3. Complexity of automata intersection problems

Kozen (1977) demonstrates that given a set Aa
1 ¼ A1; A2; : : : ; Aaf g of deterministic

automata, the problem of deciding if L(A1
a) = ; is PSPACE-complete. This problem is

called the finite-state automata intersection emptiness problem (also called DFA-Int.)

This problem has also been discussed in (Garey and Johnson, 1979; Lange and

Rossmanith, 1992). Kozen’s result is rather disappointing because PSPACE-complete

problems are known to be at least as hard as NP-complete problems. It is known that if a

is fixed to be less than some value, then the DFA-Int problem can be solved in poly-

nomial time.

In this section of the paper we examine other finite-state automata intersection

problems and prove some computational complexity results. We are explicitly interested

in decision problems comparing the behaviors of two sets of composed automata. We

commonly use the phrases Bcomposed automata^ and Bintersected automata^ to denote

the same conceptVa set of automata interacting through parallel composition.

We find that in general, decision problems involving composed automata are

PSPACE-complete although a few problems are decidable in polynomial time. We start

by demonstrating that a general class of composed automata decision problems are in

PSPACE.

PROPOSITION 1 Given an instance of two sets of interacting deterministic finite-state

automata Aa
1 and Bb

1 accepting languages not necessarily prefix-closed, the problem of

deciding the following expressions are in PSPACE:

1. L(A1
a) � L(B1

b )

2. L(A1
a) = L(B1

b )

Proof: We show that the problem of deciding if L(A1
a �= L(B1

b)) is in NPSPACE. A

well known result from complexity theory is that PSPACE = NPSPACE (Savitch,

1970). This means that a deterministic Turing machine bounded to a polynomial amount

of space cannot solve more problems if it operates in a nondeterministic manner.

Showing a problem to be in NPSPACE is sufficient to show that problem is also in

PSPACE.

We present a nondeterministic algorithm using a polynomial amount of space that

decides if there is a string s accepted by all A1, . . . , Aa that constitute Aa
1 but not by

all B1, . . . , Bb that constitute Bb
1. We start by placing markers on all the start states of

A1, . . . , Aa, B1, . . . , Bb and nondeterministically generate events � from the common

alphabet �. As the events are generated the current states of A1, . . . , Aa, B1, . . . , Bb are

updated in accordance with their transition structures. If a generated event is ever
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undefined at the current state of an automaton, the algorithm halts. If a string of events is

generated such that the current states in A1, . . . , Aa are marked and a current state in one

of the automata in B1, . . . , Bb is not marked, we know that L(A1
a) �= L(B1

b).

Keeping track of the current automata states and updating them as nondeterministic

events are generated requires less space than the encodings of Aa
1 and Bb

1 so this

operation takes a polynomial amount of space with respect to the problem encoding.

Therefore, deciding L(A1
a) �= L(B1

b) is in NPSPACE. We therefore know that deciding

L(A1
a) � L(B1

b) is in coNPSPACE. Because NPSPACE = PSPACE = coPSPACE =

coNPSPACE (Du and Ko, 2000) deciding if L(A1
a) � L(B1

b) is also in PSPACE.

By a similar construction, it can easily be shown that deciding L(A1
a) = L(B1

b) is also in

PSPACE. Í
Now that we have shown a class of problems is in PSPACE, we would like to show some

PSPACE-completeness results. Kozen’s proof for DFA-Int depends on a reduction from

the LBA acceptance problem which is given a linear bounded automaton (LBA) � and a

string x, to decide if � accepts x. The LBA acceptance problem is a well-known

PSPACE-complete problem (Hopcroft and Ullman, 1979).

A linear bounded automaton � is a special type of Turing machine with a bounded

tape defined as follows:

� ¼ Q;�;�; �; qo;B;F; pð Þ

where

Q is the finite set of symbols to represent the set of states of �,

� is the finite set of input symbols,

G is the finite set of tape symbols,

d : Q � � Y Q � � � {L, R} is the next move function,

qo is the start state symbol,

$ is a blank symbol,

F is the set of accepting state symbols,

p : N! N is a polynomial function.

A linear bounded automaton operates in a manner similar to a regular Turing machine

except that the single input and work tape is constrained to use at most p(n) cells where

n = |x| is the length of the input x.

Kozen reduces the LBA acceptance problem to the DFA-Int problem by generating a set

of automata B�; x whose composition simulates the set of computations performed by � for

a given input x. The string x is accepted by � if and only if the automaton B�; x equivalent

to the parallel composition of the automata in B�; x accepts a non-empty language.
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Many topics related to modular plants and specifications in discrete-event systems deal

with the prefix-closure of languages so it would be advantageous for us to investigate

whether automata intersection problems are PSPACE-complete when we restrict our

attention to problems dealing with automata accepting prefix-closed languages. We

therefore expand the work in (Kozen, 1977) by exploring parallel composition properties

of automata generating prefix-closed languages.

THEOREM 1 Given a finite-state automaton A and a set of interacting finite-state automata

B1, . . . , Bb all accepting prefix-closed languages, the problem of deciding if L(B1
b) =

L(A) is PSPACE-complete.

Proof: This proof is a modified version of the proof in (Kozen, 1977) that shows the

DFA-Int problem is PSPACE-complete. Because neither the proof of DFA-Int nor our

modifications are trivial, we replicate Kozen’s work and alter as necessary.

Using the definition of � seen above, we reduce in polynomial time the linear bounded

automaton acceptance problem for an instance of an LBA � and a string x to the prefix-

closed case of deciding L(B1
b) m L(A) for a given set of automata {B1, . . . , Bb} and an

automaton A. The comparison problems in Proposition 1 are more general than the

problem in this theorem so we know deciding L(B1
b) = L(A) for the prefix-closed case is

in PSPACE. It is therefore sufficient for us to demonstrate that the deterministic LBA

acceptance problem can be reduced in polynomial-time using a many-one mapping to the

problem of deciding L(B1
b ) m L(A) for the prefix-closed case.

We assume without loss of generality that � has a unique accepting state qf and that �
erases its work tape and moves its read/write head to the left of the tape before accepting.

We also assume that � takes an even number of steps before accepting. These assump-

tions can be made without loss of generality because the size of the Turing machine finite

control will at most double.

The instantaneous description (ID) of a Turing machine represents as a finite string

the current state of the Turing machine, the current contents of the work tape and the

location of the read/write head. Suppose y = y1 y2 where y is the contents of a Turing

machine tape and y1 represents the content of the tape to the left of the read/write head.

Let the first letter of y2 represent the tape cell being read by the read/write head and

let the rest of y2 be the content of the tape to the right of the read/write head. If

q represents the current state, an effective representation of the ID would be the string

y1qy2.

In this proof, we pad the ID representation with a string of normally unwritten blank

symbols $p nð Þ� y1j j þ y2j jð Þ to make explicit in the representation of the ID the fact that the

LBA has a work tape of size p(n) where n is the length of the input string. Therefore with

y = y1y2, an ID of the LBA would be y1qy2$
p nð Þ� y1j j þ y2j jð Þ.

If x is the input string to �, the initial instantaneous description (IDo) would be

qox$p(n)j |x|. Because of our previous assumptions on how � accepts a string, there is

a unique accepting instantaneous description IDf = qf$
p(n). We use the notation

IDj ‘� IDi to represent that according to the transition rules of �, instantaneous

description IDi follows in one step from instantaneous description IDj. It should there-

fore be readily apparent that [x 2 L(�)] if an only if [M(IDo, ID1, . . . , IDf) such that
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8i 2 1; : : : ; f � IDi� 1 ‘� IDið Þ½ �. This means that a string x is accepted by � if and

only if there is a sequence of instantaneous descriptions IDo ‘� ID1 ‘� : : : ‘� IDf

starting with the initial instantaneous description IDo and finishing with the accepting

instantaneous description IDf.

Let D = G ? Q ? {$} and let # be a previously unused symbol. To perform our

reduction from an instance of the LBA acceptance problem to an instance of the prefix-

closed automata intersection problem, we generate a set of prefix-closed interacting

automata B�; x such that the automaton B�; x equivalent to the automaton formed by the

parallel composition of the automata in B�; x accepts the language

� [ #f gð Þ*½ � n � [ #f gð Þ* ##f g � [ #f gð Þ*½ �½ �
[ #IDo#ID1# : : :#IDf ##
� 


� � [ #f gð Þ*
if 8i 2 1; : : : ; ff g IDi� 1 ‘� IDið Þ½ �;

� [ #f gð Þ*½ � n � [ #f gð Þ* ##f g � [ #f gð Þ*½ �½ �

otherwise.

B�; x always accepts all strings not containing ## and B�; x accepts a string ending with

## if and only if there is a sequence of instantaneous descriptions from IDo to IDf that

represent a set of valid computations for �.

We can construct an automaton A�; x in polynomial time with respect to the encoding

of � and x such that

L A�; x

� �
¼ � [ #f gð Þ*½ � n � [ #f gð Þ* ##f g � [ #f gð Þ*½ �½ �:

Note that L B�; x

� �
and L A�; x

� �
are both prefix-closed by construction. For this

reduction L B�; x

� �
6¼ L A�; x

� �
if and only if x 2 L(�) where B�; x and A are constructed

in polynomial time from x and �. Therefore deciding L B�; x

� �
¼ L A�; x

� �
is PSPACE-

complete because PSPACE = coPSPACE.

When the read/write head moves, the state updates, a symbol is written on the

current tape cell and the tape head should move exactly one cell to the left or the right.

Therefore, to verify that IDi ‘� IDj

� �
, we need to verify that the tape contents in IDi

and IDj are identical except for where the read/write head wrote to the tape during the

transition and that the read/write head moved exactly one tape square to the left or

right according to the next move function d. With this in mind, given a three

element string �1�2�3 from IDi and a three element string �1�2�3 from IDj both at the

same relative locations in the instantaneous descriptions, we can verify in polynomial

time that �1�2�3 can follow from �1�2�3. If we verify this for all pairs of three element

strings at the same locations in IDi and IDj, we can verify in polynomial time that

IDi ‘� IDj

� �
.

We now construct two sets of interacting automata, Beven and Bodd . The automata

in Beven verify for a sequence of instantaneous descriptions IDi, . . . , IDj that the instan-

taneous descriptions at odd numbered locations follow from the even instantaneous

descriptions. Similarly, the automata in Bodd verify for a sequence of instantaneous

descriptions IDi, . . . , IDj that the even instantaneous descriptions follow from the odd

instantaneous descriptions.

PSPACE-COMPLETENESS OF MODULAR SUPERVISORY CONTROL PROBLEMS 153



With this in mind, we construct Bi
even to accept the language

#�i� 1�1�2�3�
p nð Þ� i �2#�i� 1�1�2�3�

p nð Þ� i� 2
n o

* ##f g
� �

[ � [ #f gð Þ* n � [ #f gð Þ* ##f g � [ #f gð Þ*½ �½ �

where �1�2�3, �1�2�3 2 D3. A string containing # # (i.e., #ID0#ID1# . . . #IDf # #) is

accepted by Bi
even only if the ith, (i + 1)st and (i + 2)nd symbols in the odd instantaneous

descriptions follow from the ith, (i + 1)st and (i + 2)nd symbols in the even instantaneous

descriptions.

Similarly, let us also construct Bi
odd to accept the language

#�p nð Þþ1
n o

#�i�1�1�2�3�
p nð Þ� i�2#�i�1	1	2	3�

p nð Þ� i�2
n o

* #�p nð Þþ1##
n o� �

[ � [ #f gð Þ* n � [ #f gð Þ* ##f g � [ #f gð Þ*½ �½ �

where h1h2h3, q1q2q3 2 D3. A string containing ## (i.e., #ID0#ID1# . . . #IDf ##) is

accepted by Bi
odd only if the ith, (i + 1)st and (i + 2)nd symbols in the even instantaneous

descriptions follow from the ith, (i + 1)st and (i + 2)nd symbols in the odd instantaneous

descriptions. Remember that we assume without loss of generality that f is odd.

Let us construct Bi
even’s and Bi

odd’s for i ranging from 0 to ( p(n) j 1). This should take

less than 6|D|3p(n) states each, so this construction can be performed in polynomial time

with respect to the encodings of � and x. Note that by their constructions, the languages

accepted by the Bi
even’s and Bi

odd’s are prefix-closed.

Define Beven ¼
�

Beven
0 ; : : : ;Beven

p nð Þ�1



and Bodd ¼

�
Bodd

0 ; : : : ;Bodd
p nð Þ�1



. Beven and Bodd are

respectively the automata equivalent to (B0
even|| . . . ||Bp(n)j1

even ) and (B0
odd|| . . . ||Bp(n) j 1

odd ).

Beven accepts a string containing ## (notably #IDi # IDi + 1# . . . #IDj ##) only if the odd

instantaneous descriptions follow from the even instantaneous descriptions. Likewise,

Bodd accepts a string containing # # (notably #IDi #IDi + 1# . . . #IDj ##) only if the even

instantaneous descriptions follow from the odd instantaneous descriptions.

We construct a final automaton B final that accepts the prefix closure of the following

set of strings:

� [ #f gð Þ* n � [ #f gð Þ* ##f g � [ #f gð Þ*½ �½ �

[ #IDof g #�p nð Þþ 1
n o

* #IDf ##
� 
� �

Bfinal accepts a string of instantaneous descriptions ending with # # only if the first

instantaneous description is IDo and the final instantaneous description is IDf. Note that

Bfinal also accepts a prefix-closed language. Constructing Bfinal takes less than 6|D|3p(n)

states, so this construction can be performed in polynomial time.

Let B�; x ¼ Bfinal
� 


[ Beven [ Bodd . If there is a valid accepting computation for � with

input x then ID0, ID1, . . . , IDf is a sequence of valid accepting computations for � and

#ID0#ID1# . . . #IDf ## is accepted by B�; x. Likewise, if a string containing # # is accepted
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by B�; x, it must be the string #ID0 #ID1# . . . #IDf ## representing a valid computation on

� for accepting input x. A string containing ## is accepted by all the automata in B�; x if

and only if there is a valid computation for � that accepts x. We therefore know

x 2½ L �ð Þ� , L B�; x

� �
6¼ L A�; x

� �� �
. This completes our many-one mapping.

A�; x and the components of B�; x can be constructed in polynomial time with respect

to the size of the encoding of x and �. Therefore, the problem of deciding L Bb
1

� �
¼ L Að Þ

for the prefix-closed case is PSPACE-complete. Í
The primary alterations in the proof of Theorem 1 from the proof of DFA-Int is that the

automata in the Theorem 1 proof accept all prefix-closed strings not containing the

substring ## and they accept a string containing # # if and only if their parts of the LBA

computation are valid. Therefore a string containing ## is accepted by the construction in

Theorem 1 if and only if a string x is accepted by �.

The result of Theorem 1 is particularly discouraging. PSPACE-complete problems are

thought to be rather difficult; they are known to be at least as difficult as NP-complete

problems. However, it is well known that the problems of deciding if L(A) � L(B) and

L(A) = L(B) are in P for monolithic automata. This observation prompts the following

proposition.

PROPOSITION 2 Given an instance of a deterministic finite-state automaton A not neces-

sarily accepting a prefix-closed language and a finite set of interacting deterministic

finite-state automata Bb
1 ¼ B1; : : : ;Bbf g also not necessarily accepting prefix-closed

languages, the problem of deciding if L(A) � L(B1
b) is in P.

Proof: We demonstrate this proposition by presenting a polynomial time procedure to

solve this problem.

Because the automata all have common alphabets

L Að Þ � L Bb
1

� �� �
, 8 i 2 1; : : : ; bð Þ L Að Þ � L Bið Þ½ �½ �

L(A) � L(Bi) can be verified in polynomial time with respect to the length of the

encoding of A and Bi, so [O i 2 (1, . . . , b) [L(A) � L(Bi)]] can be verified in polynomial

time with respect to the length of the encoding of A and Bb
1. Therefore the problem of

deciding L(A) � L(B1
b) is in class P. Í

However, even with the positive results of Proposition 2, the converse problem is very

difficult. For the prefix closed case, given a finite set of interacting deterministic finite-

state automata Bb
1 ¼ B1; : : : ;Bbf g deciding if L(B1

b ) � L(A) is PSPACE-complete.

THEOREM 2 Given a finite-state automaton A and a set of interacting finite-state auto-

mata Bb
1 ¼ B1; : : : ;Bbf g all generating prefix-closed languages, the problem of deciding

if L(B1
b ) � L(A) is PSPACE-complete.

Proof: We already know this problem is in PSPACE due to Proposition 1 above. The

construction used in this proof is identical to the proof used in Theorem 1 above. We do
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not repeat the construction for the sake of brevity. We can show using B�; x and A�; x

from the construction in the proof of Theorem 1 that:

x =2L �ð Þ½ � , L B�; x

� �
6� L A�; x

� �� �

Therefore, the problem of deciding L Bb
1

� �
6� L A�; x

� �
for the prefix-closed case given

{B1, . . . , Bb} and A is PSPACE-complete. We then know that the problem of deciding

L Bb
1

� �
� L A�; x

� �
for the prefix-closed case is PSPACE-complete. Í

We can now extend our results to the non-prefix-closed cases of the problems discussed

above.

COROLLARY 1 The problems of deciding if L(B1
b) = L(A) and L(B1

b ) � L(A) given Bb
1 and A

for the non-prefix-closed case is PSPACE-complete.

Proof: It is easy to see that these problems are a special case of the problem in

Proposition 1 above, so these problems are in PSPACE. It should also be apparent that

these problems are more general than the decision problems in Theorem 1 and Theorem

2 above so these problems are in PSPACE and are PSPACE-hard; consequently these

problems are PSPACE-complete. Í
After Corollary 1 this should be readily apparent, but for the sake of entirety we mention

that the problems discussed in Proposition 1 are PSPACE-complete.

4. Control of discrete-event systems

Discrete-event systems are systems modeled as having discrete states and discrete events

that cause transitions between those states. Following the modeling system of Ramadge

and Wonham (Ramadge and Wonham, 1987; Wonham and Ramadge, 1988), we model

systems as finite-state automata with external supervisors. Control actions are enforced

by selectively disabling controllable events. Supervisors are also modeled as finite-state

automata that can observe some events and control a potentially different set of events.

Supervisors should not be able to disable uncontrollable events and control actions

should not update on the occurrence of locally unobservable events.

Given a supervisor S and a system G, we denote the composed system of S supervising

G as the supervised system S/G. Furthermore, because we assume we are using parallel

supervisors realized as finite-state automata, S/G is equivalent to S ||G. Supervisor S is

said to be nonblocking for system G if S ||G is nonblocking, i.e., if Lm S Gkð Þ ¼ L SkGÞð .

For the case of multiple supervisors (i.e., decentralized supervision), we assume that an

event is disabled if it is disabled by at least one supervisor. For a set of decentralized

supervisors {S1, . . . , Ss}, we adopt a similar notation for Ss
1 ¼ S1; : : : ; Ssf g and S1

s =

S1|| . . . ||Ss as seen above for Hh
1 and H1

h. Hence, a set of supervisors Ss
1 controlling G is

equivalent to S1
s /G. As stated before, a supervisor observes only locally observable events
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and can disable only locally controllable events, denoted by �oi and �ci, respectively, for

supervisor Si.

We now adapt the supervisory control theory concepts of controllability, M-closure,

and coobservability from (Ramadge and Wonham, 1987; Rudie and Wonham, 1992) to

handle the cases where the systems and specifications are modular. These adaptations of

the definitions are intended to highlight the modular nature of the system and

specifications in these properties.

Let Kk
1 andMm

1 be sets of languages. Let �ci and �oi be the locally controllable and

observable event sets respectively for i 2 {1, . . . , s}. Let Pi : �* Y �oi* be the natural

projection that erases events in � \ �oi. Furthermore let �c = ?i = 1
s �ci and �uc = � \ �c.

DEFINITION 1 Consider the sets of languages Kk
1 and Mm

1 such that M1 ¼ M1;M2 ¼
M2; : : : ;Mm ¼ Mm and the set of uncontrollable events �uc. The set of languages Kk

1 is

modular controllable with respect toMm
1 and �uc if Kk

1�uc \Mm
1 � Kk

1
.

DEFINITION 2 Consider the sets of languages Kk
1 and Mm

1 . The set of languages Kk
1 is

modularMm
1 -closed if Kk

1 ¼ Kk
1 \Mm

1 .

DEFINITION 3 Consider the sets of languages Kk
1 and Mm

1 such that M1 ¼ M1;M2 ¼
M2; : : : ;Mm ¼ Mm and the sets of locally controllable, �ci, and observable �oi events

such that i 2 {1, . . . , s}. The set of languages Kk
1 is modular coobservable with respect

toMm
1 , Pi and �ci, i 2 {1, . . . , s} if for all t 2 Kk

1 and for all � 2 �c,

t� =2 Kk
1

� �
and t� 2 Mm

1

� �
)

9i 2 1; : : : ; sf g such that P�1
i Pi tð Þ½ �� \ Kk

1 ¼ ; and � 2 �ci:

When there is only one observer/supervisor, coobservability is called observability for

historical reasons. Note that coobservability is different from non-observability, which is

counter to the usual naming conventions used in theoretical computer science. Using

these definitions we can demonstrate the following theorem for the existence of super-

visors for modular systems.

THEOREM 3 For a given set of finite-state automata system modules Gg
1 and a set of finite-

state automata specification modules Hh
1 such that H1

h is nonblocking, there exists a set

of partial observation supervisors {S1, S2, . . . , Ss} such that

Lm Ss
1=G

g
1

� �
¼ Lm Hh

1

� �
and L Ss

1=G
g
1

� �
¼ L Hh

1

� �

if and only if the following three conditions hold:

1. Lm Hh
1

� �
is modular controllable with respect to L Gg

1

� �
and �uc.

2. Lm Hh
1

� �
is modular coobservable with respect to Lm Gg

1

� �
, P1, . . . , Ps and �c1, . . . , �cs.

3. Lm Hh
1

� �
is modular Lm Gg

1

� �
-closed.
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The proof of this theorem is constructive and is a generalization of the proof of the

Controllability and Coobservability Theorem discussed in (Cassandras and Lafortune,

1999); it depends on a sample-path argument that we do not show here. This result

says that a set of nonblocking supervisors S1, S2, . . . , Ss that achieves a set of modu-

lar specifications Hh
1 for a modular system Gg

1

�
i.e., Lm Ss

1=G
g
1

� �
¼ Lm Hh

1

� �
and

L S s
1=G

g
1

� �
¼ L Hh

1

� ��
exists if and only if the system is modular controllable, modular

coobservable and modular Lm Gg
1

� �
-closed. These properties completely characterize

necessary and sufficient existence conditions for supervisors of modular systems. In turn,

these properties can play a role in safe supervisor synthesis when existence conditions are

not satisfied for a supervised system to match a specification. Safe supervisor synthesis

for monolithic systems is discussed in (Cassandras and Lafortune, 1999).

Given Hh
1, deciding if H1

h is nonblocking is a PSPACE-complete problem. This can be

shown using a simple reduction from the automata intersection problem presented in

(Kozen, 1977). However, we may have enough foreknowledge to decide this property

holds in a computationally feasible manner. We assume that the modular specifications

are given such that H1
h is nonblocking. If the specification is blocking, no nonblocking

supervisors that achieves the specification can exist.

Similarly, the astute reader will note that Lm Hh
1

� �
� Lm G

g
1

� �
is a necessary condition

for both Lm Ss
1=G

g
1

� �
¼ Lm Hh

1

� �
and Lm Hh

1

� �
to be modular Lm Gg

1

� �
-closed. If

Lm Hh
1

� �
�= Lm G

g
1

� �
we can replace Hh

1 with Hh
1 [ G

g
1 so that the specification behavior

is strictly smaller than the specification behavior. H1|| . . . ||Hh||G1|| . . . ||Gg is the

automaton equivalent of the new specification behavior. This substitution will not alter

the computational complexity of the problems we discuss later in this paper.

It is also easy to show a more general theorem concerned only with prefix-closed

behavior when we are not concerned with blocking.

THEOREM 4 For a given set of prefix-closed finite-state automata system modules Gg
1 and

a set of prefix-closed finite-state automata specification modules Hh
1 such that L Hh

1

� �
6¼ ;, there exists a set of partial observation supervisors {S1, S2, . . . Ss} such that

L Ss
1=G

g
1

� �
¼ L Hh

1

� �
if and only if the following three conditions hold:

1. L Hh
1

� �
is modular controllable with respect to L Gg

1

� �
and �uc.

2. L Hh
1

� �
is modular coobservable with respect to L Gg

1

� �
, P1, . . . , Ps and �c1, . . . , �cs.

3. L Hh
1

� �
� L G

g
1

� �

As with Theorem 3, if Lm Hh
1

� �
�= Lm G

g
1

� �
, we can replace Hh

1 with Hh
1 [ G

g
1. This

substitution will not alter the computational complexity of the problems we discuss later

in this paper related to this theorem.

We can also show the following proposition:

PROPOSITION 3 Deciding modular controllability, modular coobservability and modular

Mm
1 -closure for sets of languages specified by sets of finite-state automata is in

PSPACE.
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Proof: Proving this proposition relies on a Btoken^ argument similar to that employed

by Kozen in (Kozen, 1977) for proving automata intersection emptiness is in PSPACE.

Given a set of events �uc and two sets of automata Hh
1 and Gg

1 , we show that the problem

of deciding modular controllability of Lm Hh
1

� �
with respect to L Gg

1

� �
and �uc is in

PSPACE. Similar proofs exist to show deciding modular coobservability and modular

Mm
1 -closure are in PSPACE but are not shown here due to space considerations.

Regarding controllability, it is sufficient to show the complementary problem of deciding

non-controllability is in NPSPACE.

A nondeterministic string of events t is generated one event at a time and used to

model the state transitions in the finite-state automata in Gg
1 and Hh

1 starting from their

respective start-states. The current states of the the automata in Gg
1 and Hh

1 need to be

saved and updated as new events are generated. As each new event is generated and

added to t, we test if M� 2 �uc such that

8j 2 1; . . . ; gf g t� 2 L Gj

� �� ���� �
^ 8i 2 1; . . . ; hf g½ � t 2 L Hið Þð Þj�

^ 9l 2 1; . . . ; hf g t� =2 Lm Hið Þð Þj½ �:

If this property ever holds then modular controllability does not hold. All of these

operations take a polynomial amount of memory with respect to the encodings of Gg
1 and

Hh
1. Because this problem is in NPSPACE, it is also in PSPACE (Savitch, 1970). Í

It should be noted that if we bound the number of supervisors, plants and specifications to

be less than some constant k, then we can decide modular controlabillity, modular

coobservability and modularM-closure in polynomial time if the modular systems and

specifications are given as deterministic finite-state automata. This is why the concepts

of controllability, coobservability and M-closure were extended to the modular cases;

when the systems and specifications are give in modular instead of monolithic form, it is

potentially computationally much more difficult to test these properties if modular to

monolithic conversions are to be avoided.

5. Existence problems for the supervision of modular systems

In this section we explore the computational complexity of deciding supervisor

existence for modular systems under various assumptions. We investigate problems

where we assume the specification is nonblocking and that the uncontrolled system

allows at least as much behavior as the specification (i.e., for the system automata Gg
1

and the specification automata Hh
1Lm Hh

1

� �
� Lm G

g
1

� �
and L Hh

1

� �
� L G

g
1

� �
respective-

ly). This section shows the main result of this paper: a large class of supervisor

existence problems for modular discrete-event systems are PSPACE-complete. From

Theorem 3 and Proposition 3 demonstrated above, it is easy to see that deciding if a

decentralized supervisor exists for a modular specification and modular system is in

PSPACE.
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COROLLARY 2 Given a set of finite-state automata system modules Gg
1 , a set of finite-state

automata specification modules Hh
1, sets of observable events �o1, . . . , �os and sets of

controllable events �c1, . . . , �cs, the problem of deciding if there is a set of decentralized

supervisors Ss
1 such that Lm Ss

1=G
g
1

� �
¼ Lm Hh

1

� �
and L Ss

1=G
g
1

� �
¼ L Hh

1

� �
is in PSPACE.

Similar problems for prefix-closure specifications as seen in Theorem 4 and

centralized supervisors as seen in (Cassandras and Lafortune, 1999) can also be

decided in PSPACE. We now restrict our attention to what should be a relatively simple

problem: given a modular system and monolithic specification marking prefix-closed

languages, is there a single full-observation supervisor such that the system satisfies the

specification? We show that even this restricted subclass of problems is PSPACE-

complete.

THEOREM 5 The problem of deciding if there is a full-observation supervisor S with

controllable event set �c for a set of prefix-closed finite-state automata system modules

Gg
1 and a prefix-closed finite-state specification automaton H such that L S=G

g
1

� �
¼

L Hð Þ is PSPACE-complete even if we know L Hð Þ � L G
g
1

� �
.

Proof: We have already shown in Corollary 2 that this problem is in PSPACE. We

reduce the problem of deciding whether L(B1
b) = L(A) to this problem where A and Bb

1 are

given prefix-closed finite-state automata. Let �c = ;. If there exists a supervisor S such

that L S=Bb
1

� �
¼ L Að Þ then L(B1

b ) = L(A). If there does not exist a supervisor such that

L S=Bb
1

� �
¼ L Að Þ then L(B1

b ) m L(A) because no event can be disabled. Since deciding if

L(B1
b) = L(A) is PSPACE-complete even if we know L(A) � L(B1

b) from Theorem 1, the

supervisor existence problem is also PSPACE-complete. Í
These results are particularly disappointing because they show that a relatively large and

simple class of supervisor existence problems involving modular system automata is

PSPACE-complete. Due to Theorem 5 it should also be apparent that deciding modular

controllability for languages specified by finite-state automata is PSPACE-complete

because modular observability and modular Lm Gg
1

� �
-closure are implied by full obser-

vation and prefix-closure, respectively.

For the case of full control (namely, �c = �) and partial observation, we can show

using similar proof methods that the supervisor existence problem for a modular

system and a monolithic specifications is likewise PSPACE-complete. This implies

that deciding both modular observability and modular coobservability for languages

specified by deterministic finite-state automata is also PSPACE-complete. Inciden-

tally, it is shown in (Rohloff et al., 2003) that the problem of deciding coobservability

for monolithic systems specified by deterministic finite-state automata is PSPACE-

complete.

If we do not know that L Hh
1

� �
6¼ ; or that L Hh

1

� �
� L G

g
1

� �
, supervisor existence

problems remain PSPACE-complete. Likewise, a large class of nonblocking supervisor

existence problems for modular systems specified by finite-state automata are also

PSPACE-complete due to Theorem 3 because the nonblocking supervisor problems are

known to be at least as difficult as prefix-closed specification problems.
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6. Admissible supervisors

As stated before, a supervisor is admissible if it updates control actions on locally

observable events and disables only locally controllable events. Note that a supervisor’s

admissibility when operating on a system is not related to that system’s specification. For

a monolithic discrete-event system, deciding if a supervisor automaton S is admissible

for a given system automaton G can be decided in polynomial time. This is because

testing admissibility of a parallel supervisor S is equivalent to testing that all transitions

occur on observable events and that L Sð Þ is controllable with respect to L Gð Þ and �uc

(Cassandras and Lafortune, 1999). This method of testing admissibility also holds for

modular systems. To test if a parallel supervisor S is admissible for a modular system Gg
1

we first test that state transitions only occur on the occurrence of observable events and

then it is necessary and sufficient to verify that L Sð Þ is modular controllable with respect

to L Gg
1

� �
and �uc. Testing that all state transitions in the controller occur on observable

events takes polynomial time, but, as was stated earlier in the paper, testing modular

controllability of a monolithic specification with respect to a modular finite-state

automata system is PSPACE-complete. This prompts the following theorem whose proof

was outlined above.

THEOREM 6 Verifying the admissibility of a single supervisor with respect to a modular

finite-state automata system is also PSPACE-complete.

When testing the admissibility of a decentralized supervision system {S1, . . . , Ss}, with

respect to a modular system {G1, . . . , Gg} we need to verify first that all state transitions

in {S1, . . . , Ss} occur on locally observable events. We then need to verify that each local

controller disables only locally controllable events when the other controllers are in

operation. More formally: Oi 2 {1, . . . , s}, L Sið Þ is modular controllable with respect to

L Ss
1 [ G

g
1 n Si

� �
and �uci.

Besides having state transitions only on locally observable events, all local supervisors

Si need to be controllable with respect the system it is modifying, i.e., Ss
1 [ G

g
1 n Si. The

following corollary should now be evident:

COROLLARY 3 The problem of testing the admissibility of decentralized control systems

specified by finite-state automata is PSPACE-complete.

7. Complexity of modular supervisor verification problems

Suppose we are given a control system known to be admissible and we want to verify if it

behaves properly with respect to an unsupervised modular system and a set of speci-

fications. This is called the verification problem. We apply our results regarding the

computational complexity of automata intersection problems to verification problems for

supervised discrete-event systems. We start by showing a simple extension of the results

from Proposition 1.
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PROPOSITION 4 Given set of finite-state automata Ss
1; G

g
1 and Hh

1; verifying Lm Ss
1=G

g
1

� �
¼

Lm Hh
1

�
Þ; Lm Ss

1=G
g
1

� �
� Lm Hh

1

�
Þ and Lm Hh

1

� �
� Lm Ss

1=G
g
1

� �
are all problems in

PSPACE.

Proof: This proof is similar to the proof of Proposition 1 above. Using the previously

discussed definitions regarding supervisor operation for the supervisory control set-up,

the proof of this proposition should be apparent and is not included for the sake of

brevity. Í
Using the results of Section 3 and Proposition 4 we can demonstrate the computational

difficulty of verifying a large class properties of modular supervisory control systems.

THEOREM 7 Given supervisor automata S and Ss
1; unsupervised system automata G and Gg

1

and specification automata H and Hh
1: Deciding the validity of each of the following

expressions is PSPACE-complete:

1. L Ss
1=G

� �
¼ L Hð Þ

2. L S=G
g
1

� �
¼ L Hð Þ

3. L S=Gð Þ ¼ L Hh
1

� �

4. L Ss
1=G

� �
� L Hð Þ

5. L S=G
g
1

� �
� L Hð Þ

6. L Hh
1

� �
� L S=Gð Þ

Proof: The listed problems in this theorem are all special cases of the problems in

Proposition 4. Therefore these problems are in PSPACE.

The problem in Theorem 1 can be reduced to Problems 1, 2 and 3 in this theorem. This

reduction is not show for the sake of brevity, but should be readily apparent. Therefore,

Problems 1, 2 and 3 are PSPACE-complete.

The problem in Theorem 2 can be reduced to Problems 4, 5 and 6 in this theorem. This

reduction is also not show for the sake of brevity, but should be readily apparent.

Therefore, Problems 4, 5 and 6 are like-wise PSPACE-complete. Í
It can be easily seen that the problems listed in Theorem 7 above are special cases of

several other problems in PSPACE, notably problems where the marking properties of

supervised modular discrete-event systems are verified. These problems are too

numerous to conveniently list, but their computational complexity can easily be found

as a consequence of Proposition 4 and Theorem 7. Although our listed completeness

results deal only with problems where either the supervisor, plant or specification are

modular, these results can be easily extended to cases where two or three of the

supervisor, plant and specification are modular. It should be noted that if we bound the
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number of supervisors, plants and specifications to be less than some constant k, then we

can decide all of the verification problems listed here in polynomial time.

Despite the seemingly overwhelming number of PSPACE-complete verification

problems, there are several important verification problems that can be decided in

polynomial time even when there is no restriction on the number of modules. We have

already seen in Proposition 2 that given the finite-state automata Bb
1 and A, verifying

L(A) � L(B1
b) is in P. This result can be used to prove the following propositions.

PROPOSITION 5 Given a supervisor automaton S, system automaton G and a set of

specification automata Hh
1, the problem of verifying Lm S=Gð Þ � Lm Hh

1

� �
is in P.

Proof: Because we assume without loss of generality that S, G and Hh
1 all have common

alphabets, we know

Lm S=Gð Þ � Lm Hh
1

� �
, 8 i 2 1; . . . ; hð Þ Lm S=Gð Þ � Lm Hið Þ½ �½ �

Lm S=Gð Þ � Lm Hið Þ can be verified in polynomial time with respect to the encodings

of S, G and Hi, so verifying Lm S=Gð Þ � Lm Hh
1

� �
is also in P. Í

By similar reasoning, we can also show the following proposition:

PROPOSITION 6 Given a set of supervisors S1, . . . , Ss, a set of finite-state automata system

modules G1, . . . , Gg and a finite-state automata specification H, the problem of verifying

Lm Hð Þ � Lm Ss
1=G

g
1

� �
is in P.

Proof: Because we assume without loss of generality that Ss
1, Gg

1 and H all have

common alphabets, we know

Lm Hð Þ � Lm Ss
1=G

g
1

� �
,

8 i 2 1; . . . ; sf g Lm Hð Þ � Lm Sið Þ½ �½ � ^ 8 j 2 1; . . . ; gð Þ Lm Hð Þ � Lm Gj

� �� �� �

Lm Hð Þ � Lm Sið Þ and Lm Hð Þ � Lm Gj

� �
can be verified in polynomial time with res-

pect to the encodings of of Si, Gj and H, so verifying Lm Hð Þ � Lm Ss
1=G

g
1

� �
is in P. Í

8. Online control actions

Previously there have been several attempts in the discrete-event systems community to

use online supervision methods to synthesize supervisors that are difficult to synthesize

in an offline manner. See for instance (Rohloff and Lafortune, 2003; Yoo and Lafortune,

2002) where online methods for safe decentralized supervision are discussed. One might

think that similar online approaches might be used to synthesize safe supervisors for

modular systems that restrict behavior in a non-trivial manner, i.e., enable at least one
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event, but in general this is not possible to do in an efficient manner. A further

discouraging result of the work presented earlier is that for a modular system Gg
1 and a

modular specification Hh
1, calculating if a single controllable event is safe to enable from

the initial state is PSPACE-complete. We call this problem the single event problem.

THEOREM 8 Given a set of modular finite-state automata Gg
1, a modular finite-state

automata specification Hh
1, a set of controllable events �c and a set of observable events

�o, the problem of deciding if a controllable event � is safe to be enabled by itself from

the initial state is PSPACE-complete.

Proof: We first show that this decision problem is in PSPACE. Let S be a supervisor

that enables only � at the initial state and disables all on the occurrence of any more

events. We have already shown that verifying L S=G
g
1

� �
� L Hh

1

� �
is in PSPACE, so we

can use the verification problem in Proposition 4 to solve the problem in this proposition.

We now show that this problem is PSPACE-complete. Suppose we have two

arbitrary sets of automata Bb
1 and Aa

1: We reduce the PSPACE-complete problem of

deciding if L(B1
b) � L(A1

a) to the single event problem using a polynomial-time many-

one reduction. This will show that deciding if a single event is valid to be enabled is

PSPACE-complete.

Let � be the alphabets for Bb
1 and Aa

1 and let � be an event not in �. Suppose for every

Bi, i 2 {1, . . . , b} we create an automaton B
^

i from Bi such that LðB
^

iÞ ¼ f�gLðBiÞ in the

following manner. Suppose x0i is the initial state of Bi. B
^

i is a copy Bi except we create a

new start state x
^

0i and the only transition from x
^

0i is on the occurrence of � and leads to

x0i. We repeat this procedure to create A
^

j from Aj for j 2 {1, . . . , a}. Let B
^b

1 be the

system and let A
^a

1 be the specification. Let �c = {�} and let �o be empty. It should be

apparent that this construction can be completed in polynomial time with respect to the

encodings of Bb
1 and Aa

1.

If L(B1
b) � L(A1

a) then we know we can enable � at the initial state and have a safe

system because enabling � will not allow illegal behavior to occur. Similarly, if

L Bb
1

� �
6� L Aa

1

� �
then we know we cannot enable � at the initial state and have a safe

system because enabling � will lead to further illegal behavior because LðB
^b

1Þ 6� LðA
^a

1Þ.
So, L(B1

b) � L(A1
a) if and only if we can enable � at the initial state and have a safe

system with respect to B
^b

1, A
^a

1, �c and �o. This completes our polynomial-time many-one

reduction. Í
Theorem 8 can also be extended to show PSPACE-hardness or PSPACE-completeness

results for many common online supervision problems where multiple online control

actions for safety or maximality are computed.

9. Discussion

We have shown that a large class of automata intersection problems are PSPACE-

complete, even for supposedly Bsimpler^ prefix-closed cases. This was used in this paper
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to show many supervisor existence decision problems for the supervisory control of

discrete-event systems are likewise PSPACE-complete. Deciding supervisor admissibil-

ity is also PSPACE-complete for modular systems. Calculating safe control actions for

modular systems were shown to be PSPACE-hard. In (Gohari and Wonham, 2000) it is

shown that several modular supervisor existence problems with range specifications are

NP-hard. The results of this paper extend those in (Gohari and Wonham, 2000) using

different methods.

This paper shows that deciding many supervision problems for modular systems

modeled as interacting sets of finite-state automata do not have time-efficient solutions

if P m PSPACE. Supervisor synthesis is known to be at least as hard as deciding

supervisor existence, so supervisor synthesis is therefore known to be similarly com-

putationally difficult. There are polynomial time algorithms to decide the monolithic

versions of the problems discussed in this paper, but the intuitive generalizations of

these algorithms to modular systems take time and space exponential in the number

of automata modules. Note that if the number of automata specifying the systems or

specifications is bounded, all problems discussed in this paper can be solved in poly-

nomial time.

Despite the negative results regarding the time-complexity of the problems discussed

in this paper, it was shown that the problems are in PSPACE. Therefore, there are always

space-efficient solutions to the problems discussed here for deterministic finite-state

automata modules and other more general systems where we can verify modular

controllability, modular coobservability and modular M-closure efficiently in space.

These results are in a sense positive in that we can avoid, as far as computation space is

concerned, the state explosion problem inherent to modular systems. In the worst case

the size of the state space of a composed system is exponential in the number of modules,

but we only have to store at most a small fraction of those modules in memory to decide

supervisor existence.

The results presented herein are also disappointing because (as was mentioned

previously), it is generally believed that deterministic finite-state automata problems are

fairly simple and the results together with their proofs indicate that many modular

problems using more general system and specification models are also intractable. Many

of the PSPACE-completeness results in this paper can be extended to other more

complex bounded memory system models such as large classes of bounded Petri nets,

temporal logic reactive modules and RAM machines where verification of concurrent

behavior can be decided using a polynomial amount of space.

We should focus our attention on special cases of interest if we wish to make

further progress on developing time-efficient methods for deciding supervisor existence

and synthesizing supervisors for modular systems. For instance, it might be helpful to

look at specific network architectures or at problems involving systems amenable to

divide-and-conquer approaches. A possible simplifying assumption that could be in-

vestigated in future research would be to assume that for a set of interacting automata

Gg
1 there exists an automaton G representing a set of Bmost general behavior^ such

that every Gi is a copy of G with some transitions removed. This assumption would

make calculations of Lm Gg
1

� �
much simpler and would aid in the Bmodularization^

of the system. It might also be helpful to restrict our attention to special cases of
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interest where we can make assumptions on the structure of the systems that will

lead to reducing the computational complexity of deciding supervision and veri-

fication problems.
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