
Discrete Event Dynamic Systems, 4, 237-268 (1994)
�9 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Supervisory Control Using Variable
Lookahead Policies

SHENG-LUEN CHUNG
Department of Electrical Engineering, National Taiwan hzstitute of Technology,
Taipei, Taiwan 106

slchung@event.ee.ntit.edu.tw

STI~PHANE LAFORTUNE
Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, M148109-2t22

stephane @eecs.umich.edu

FENG L1N
Department of Electrical and Computer Engineering, Wayne State University,
Detroit, M148202

flin @ece.eng.wayne.edu

Received July 14, 1992; Revised March 4, 1994.

Abstract. This paper deals with the efficient on-line calculation of supervisory controls for discrete event systems
(DES's) in the framework of limited lookahead control policies (or LLPs) that we introduced in previous papers.
In the LLP scheme, the control action after a given trace of events has been executed is calculated on-line on the
basis of an N-step ahead projection of the behavior of the DES. To compute these controls, one must calculate
after the execution of each event the supremal controllable sublanguage of a finite language with respect to another
finite larger language. In our previous work, we showed how the required supremal controllable sublanguage
calculation can be performed by using a backward dynamic programming algorithm over the nodes of the tree
representation of these two languages. In this paper, we pursue the same approach for the calculation of LLP
controls, but instead we adopt a forward calculation procedure over the N-level tree of interest. This forward
procedure improves upon previous work by avoiding the explicit consideration of all the nodes of the N-level
tree, while still permitting tree-to-tree recursiveness as enabled events are executed by the system. The forward
search ends whenever a control decision can be made unambiguously or whenever the boundary of the N-level
tree is reached, whichever comes first. This motivates the name "Variable Lookahead Policy" (or VLP) for this
implementation of the LLP supervisory control scheme. This paper presents a general VLP algorithm and studies
the properties of several special cases of it. The paper also discusses the implementation of the VLP algorithms
and presents computational results regarding the application of these algorithms to a "time-varying" DES.

Keywords: supervisory control, limited Iookahead policies, dynamic programming

1, Introduct ion

Thi s pape r dea ls wi th the eff ic ient on- l ine ca lcu la t ion o f superv i so ry con t ro l s for d i sc re te

even t sy s t ems (D E S ' s) in the f r a m e w o r k o f l imi ted l ookahead con t ro l po l ic ies tha t we

i n t r o d u c e d in C h u n g , Lafor tune , and L in (1992) . It bu i lds upon the resu l t s p r e sen t ed in

C h u n g , Lafo r tune , and L i n (1992, 1993a) c o n c e r n i n g this f r amework .

C o n s i d e r a D E S that is be ing con t ro l l ed by dynam ica l l y d i s a b l i n g / e n a b l i n g even ts af ter

the execu t ion o f each even t by the con t ro l l ed sys tem. In superv i so ry cont ro l wi th l imi ted

l o o k a h e a d pol ic ies (or LLPs) , the cont ro l ac t ion af ter a g iven t race o f even t s has been

execu t ed is ca lcu la ted on- l ine on the basis o f an N - s t e p ahead p ro jec t ion o f the b e h a v i o r o f

238 CHUNG, LAFORTUNE, AND LIN

the DES under consideration; this procedure is repeated after the system executes any one of
the enabled events. This is in contrast with the "conventional" supervisory control paradigm
(cf. Lin and Wonham 1988, Ramadge and Wonham 1989) where the complete control policy
is calculated off-line using automaton models of the DES and of the legal behavior. As
discussed in Chung, Lafortune, and Lin (1992), LLPs allow to control certain classes of
"time-varying" DES's and they also provide a means for dealing with the computational
complexity of supervisor synthesis for DES's with large state spaces.

Chung, Lafortune, and Lin (1992) present a detailed study of the LLP scheme along with
its optimality properties (in particular, in terms of N, the size of the "rolling window").
Chung, Lafortune, and Lin (1993a) are specifically concerned with the computation of the
LLP controls. To compute these controls, one must calculate after the execution of each
event by the system the supremal controllable sublanguage (cf. Wonham and Ramadge
1987) of a finite language with respect to another finite larger language. The latter language
is the set of all traces of events that the system can generate in the next N steps, while the
former language is the subset of these traces that are legal according to the specifications
on event ordering. In Chung, Lafortune, and Lin (1993a), the required supremal control-
lable sublanguage calculation is approached as an optimal control problem with a 0/o~ cost
structure. This optimal control problem is solved by using dynamic programming over a
state space consisting of the nodes of a tree representation of the above-mentioned finite
languages. Section 4.2 of Chung, Lafortune, and Lin (1993a) presents a backward dynamic
programming algorithm over a given N-level tree for this calculation; this algorithm em-
phasizes the recursiveness between such calculations from N-level tree to N-level tree as
the N-step window rolls with the execution of one (enabled) event by the DES, in addition
to the inherent recursiveness from level to level of the tree at a given step.

In this paper, we pursue the dynamic programming approach of Chung, Lafortune, and
Lin (1993a) for the calculation of LLP controls, but instead we adopt a forward calculation
procedure over the state space (i.e., N-level tree) of interest. This forward procedure
improves upon the algorithm in Chung, Lafortune, and Lin (1993a) by potentially avoiding
the explicit consideration of all the nodes (or states) of the N-level tree, while still permitting
step-to-step (i.e., tree-to-tree) recursiveness. The forward search ends whenever a control
decision can he made unambiguously with respect to the future behavior or whenever the
boundary of the N-level tree is reached, whichever comes first. This motivates the name
"Variable Lookahead Policy" for this approach to LLP supervisory control.

We thus define a Variable Lookahead Policy (or VLP) to be a limited lookahead super-
visory control policy whose on-line implementation at each step is by means of a forward
search technique over the N-level tree of interest. Thus VLP's are a more efficient imple-
mentation technique of the LLP scheme. In particular, VLP's share all the properties of
the LLP scheme that are presented in Chung, Lafortune, and Lin (1992).. We will call a
VLP algorithm the algorithm employed by a VLP for the required forward search over the
N-level tree.

This paper presents a general VLP algorithm and studies several special cases of it in
terms of maximum allowed value of N and "attitude" (conservative, optimistic, undecided,
cf. Section 3) adopted when the Nth level of the tree is reached during a forward search.
Our presentation is organized as follows. The problem at hand is precisely formulated in

VARIABLE LOOKAHEAD POLICIES 239

Section 2. In Section 3, the general VLP algorithm is stated and its correctness proved.
Section 4 presents some properties of this algorithm. The implementation of this algorithm
is discussed in Section 5 while computational results regarding the application of four
different variations of the general VLP algorithm to the train example of Chung, Lafortune,
and Lin (1992) are reported in Section 6. Section 7 concludes the paper. (A preliminary
and partial version of this work can be found in Chung, Lafortune, and Lin (1993b).)

2. Background and Problem Formulation

Consider a discrete event system G, generator of the closed language L (G) and the marked
language Lm (G) over the set of events I3. 13u _ 13 is the subset of uncontrollable events.
As in Ramadge and Wonham (1987) and Chung, Lafortune, and Lin (1992), we assume that
Lm(G) = L(G) , where the overbar notation denotes prefix closure. G is to be controlled
by means of limited lookahead policies (LLPs), according to the on-line scheme presented
in Chung, Lafortune, and Lin (1992) and depicted in Fig. 1. In the following, we assume
some familiarity on the part of the reader with the results in Chung, Lafortune, and Lin
(1992) and Chung, Lafortune, and Lin (1993a). For convenience, we recall some notation
from Chung, Lafortune, and Lin (1992) that we will be using.

The post-language of language K _ 13" after trace s c 13" is the language

K / s = {t ~ I3" : s t e K}.

The truncation of K _ I3" to N E lN (the set of natural numbers) is the language

KIN = {t ~ K : ItI < N},

where]t l is the length of trace t.
In general, control policies of LLP supervisors are defined as:

~U . L(G) -+ 2 xUl~t, I.a

where I refers to LLP, a refers to the adopted attitude which can be either cons or optm
representing "conservative" or "optimistic" (see below), and N is the size of the lookahead
window. In order to determine the control action Vt~(s) at the current trace s ~ L(G) ,
the supervisor has to first generate the N-step lookahead window, L (G) / s l u , which is
represented as an N-level tree, then classify all the traces in the window according to their
legality properties, and finally perform the calculation of the control action ytU(s). The

resulting behavior when G is controlled by policy Yt~ is denoted by L (G, yt N) and is defined
as follows:

i) ~ 6 L(G, Yl~) ,and

ii) (u ~ L(G, yt~))(Vo" e 13 U {~})scr r L(G, Yt~) .0 cy ~ ytN(s).

The closed-loop marked behavior is

L,,(G, rt~) = L(G, • n L,,(G).

240 CHUNG, LAFORTUNE, AND LIN

Control
specifications

event generated

(y L

I
LLP supervisor

Knowledge base

about G

G

F

control action

~tl~,a (S)

Figure 1. Limited lookahead supervisory control.

The control action yt.Ua (s) depends on the particular control problem under consideration
and on the attitude adopted regarding the uncertainty on the behavior of the system beyond N
steps. In Chung, Lafortune, and Lin (1993a), we have considered the "standard" supervisory
control problem (cf. Ramadge and Wonham 1987) with either a conservative or an optimistic
attitude (cf. Chung, Lafortune, and Lin 1992). Given that the desired legal behavior for
the closed-loop system L(G, Yt~) is the language K- where K c Lm(G), K ~ 0 and

K = --ff N Lm(G), the control action ytu.a(s) at trace s ~ L (G) is defined as in Chung,
Lafortune, and Lin (1992), i.e.,

• = L~I~ u r~,, n ~L~(s)

where

La

L (P)

t

m

conservative : K/s IN -- (K / s IN - - K / s I N - 1) = K/sIN-1
-- Lm(P) = optimistic : K/s IN t.J (K / s IN -- K/SIN-1) (2.1)

= L(G) / s IN

= supremal controllable sublanguage operation with respect to L (P) and Eu,

= {ty ~ E : scr ~ L(G)}.

VARIABLE LOOKAHEAD POLICIES 241

The notation L (P) =-- L (G) / s l N for the uncontrolled behavior and La = L m (P) for the
desired behavior is as in Chung, Lafortune, and Lin (1993a), except that now we explicitly
identify the attitude as a subscript.

In this context, Chung, Lafortune, and Lin (1993a) reformulate the problem of find-
ing the supremal controllable sublanguage in the limited lookahead window L (P) as a
finite-horizon optimal control problem. A tree generator (i.e., a generator whose digraph
representation is a tree) is used to represent the finite language L (P) and thus each trace
in the lookahead window L (P) is a state in the corresponding tree generator state space,
denoted by X. Each state of X is classified, according to La, as a member of one of the
following three sets:

xiallegal : {X E L (P) " x ~ L (P) - La}

X , a, = {x E L (P) : x E La}

Xtaansient = {X (3. L (P) : x ~ La - La}.

The set of legal states is defined as

xtae, at = {X ~ L (P) : x ~ La}

a
which is the union of x,a,z and Xtransien t. The superscripts a in the above partition of X
refer to the fact that the states of X are classified for legality and marking according to the
particular attitude adopted, as can be seen in (2.1). In particular, states on the boundary

XN = Ix c X : lxl = N}

will be either in xallegal or in Xa, c, which is defined as

X~c = {x ~ X~m : XLO')(X) n Xu = 0}.

To reflect both the facts that a supervisor does not disable uncontrollable events and that
we are interested in a nonblocking supervisor, we can appropriately assign the involved
control costs and terminal costs of the optimal control problem under consideration (see
Chung, Lafortune, and Lin 1993a). Furthermore, we have shown in Theorem 3.2 of Chung,
Lafortune, and Lin (1993a) that the cost-to-go function of this optimal control problem,
V Nt.a:X ~ {0, oo}, can be decided as follows:

x ~ X~ t3 Xr~a~sien t
V1.~(x) = 0 r A (u ~ Eu fq EL(e) (x))V t~(xcr) = 0 (2.2)

A (x c x,aa.sie,, ~ (3~ ~ XL~e~(x))Vt~(x~r) = 0).

In relating the cost-to-go function N Vt. ~ (x) to the control action Yt~ (s) under consideration,
we first recall Theorem 3.4 of Chung, Lafortune, and Lin (1993a), which states how to
construct the least-restrictive optimal policy g* from the cost-to-go function V N of the

I,a

optimal control problem (see Definition 2.1 of Chung, Lafortune, and Lin (1993a)):

if Vt~(x) = 0, then g*(x) = {or ~ ZL~e)(X) : Vt~(x~r) = 0}.

242 CHUNG, LAFORTUNE, AND LIN

The control action ytua (s) can then be derived from g*(x0), where Xo is the root of the tree
at L(P) and corresponds to the suffix e of s (see Section 4.2 of Chung, Lafortune, and Lin
(1993a)):

yt~(s) = { g*(xo) U {~} i f Vt~(xo) = 0
�9 E~, A EL(p)(XO) otherwise (i.e., if vtN(x0) = C~).

In a nutshell, the control action ytN(s) equals the set of all next events cr 6 EL(p)(S) with

(xo) = O.

Therefore, to facilitate the determination of the control actions yt N (s), an efficient scheme

to calculate V N is required. In Chung, Lafortune, and Lin (1993a), E N is calculated by l.a l.a
a backward dynamic programming technique, which computes the costs-to-go for all the
states in the limited Iookahead window. However, in general not all the states and their
associated costs-to-go are relevant to specific control actions. Moreover, at any given
window, we are only interested in the control action yr,(s) at the root s, and not in the
complete control policy for the whole tree L(P).

In light of the above considerations, we present in the next section a Variable Lookahead
Policy algorithm which expands the lookahead window L(P) in a forward manner and
computes the associated costs-to-go only as necessary. In particular, only the part of the
limited lookahead window directly relevant to the control action Yt~ (s) is expanded and
evaluated for the cost-to-go, thus potentially reducing significantly the calculations required
to obtain the control action.

3. The Variable Lookahead Policy Algorithm

3.1. The Main Algorithm and its Special Cases

When computing the supremal controllable sublanguage, or equivalently the costs-to-go,
within a given lookahead window, one is faced with the problem of dealing with the un-
certainty on the system behavior beyond N steps. As (2.1) shows, an LLP supervisor with
the conservative (or the optimistic, respectively) attitude introduced in Chung, Lafortune,
and Lin (1992) "fakes" the legal states on the boundary (Nth level of the tree) as illegal (or
marked, respectively), thus assigning a faked or (or 0, respectively) cost-to-go to these legal
states for the dynamic programming algorithm. An VLP algorithm which adopts attitude a
(where a stands for either cons or optm) in resolving the future uncertainty is denoted by
its cost-to-go function VoU~, which is defined as V~.N~ : X ~ {0, ~} ; observe that although
X is fixed, its partition is a function of the attitude a.

In addition to the conservative and optimistic attitudes, we now introduce a new attitude
termed "undecided." A supervisor with an undecided attitude just assigns an "undecided"
cost-to-go, denoted by U, to all the legal states on the boundary, while letting other certain
information (explained below) decide the concerned control action, if possible. An VLP
algorithm which adopts the "undecided" attitude in resolving the future uncertainty is
denoted by its cost-to-go function V~. In this case the costs-to-go derived do not depend

V A RIABLE L O O K A H E A D POLICIES 243

on a faked state classification at the boundary. The associated cost-to-go function is defined
as Vv~ : X ~ {0, U, ec}; this time the previous partitions of X do not apply since no
attitude is adopted; the appropriate partition of X is implicit in the algorithm presented
below for the calculation of V N. (The undecided attitude could also be used with other
types of LLP algorithms, but it was not considered in Chung, Lafortune, and Lin (1992,
1993a).)

We will focus on V21 throughout our presentation due to the following four reasons. First,
besides the structural similarity between V~ and vN~, costs-to-go derived by Vffo can be

obtained directly from those derived by V~ through a simple substitution. Second, by
using Vv~, one can distinguish control decisions affected by the uncertainty on the behavior
beyond the boundary from those that are not. Third, in the context of LLP supervisory
control schemes, V~ permits re-utilization of previous computational results. Finally, with
simple modifications, V~ reduces to Vff. a as well as to Vv, the VLP algorithm without a
boundary, which will be presented in Section 4.

We make three remarks on the notation before we state the main algorithm:

1. We define L, = K/SIN, while leaving L, undefined.

2. Xmc = {x E K /S IN_ 1 : EL(p)(X) M E u = I~l}; therefore, the states in Xmc are marked
states of the legal behavior with no uncontrollable continuation in L(P) .

3. Because U will be assigned to either 0 or ~c when the uncertainty is resolved, we adopt
the following convention in computing max and min : 0 < U _< oe.

Main V L P Algori thm:
(define function cost-to-go (x); this function returns V N (x).
case:

. Ixl = N :

I - N O0 i fx ~ L (P) - L,,
V~u(x)= U otherwise (3.1)

2. Ixl < N A x E Xmc " N Vj,, (x) = 0; return.

- - N 3. lxl < N/x x r L,, : V~,(x) = oe; return.

4. [xI < N m x f ~ X m c A x ~ L . :

case:

(a) r~L(p)(X) N ~u ~ 0:

let N v ~ , (x) - - o

(do for all (a. ~ ELtP)(x) A ~ .) until N

(cost-to-go (xau))
N V~,(x) = max(V~u(xa,,), V~,~(x)))

return.

244 CHUNG, LAFORTUNE, AND LIN

(b) ELW)(x) f3 E,, = 0:

let VvN(x) = oo

(do for all (ac ~ EL(p)(x) f3 ~.,.) until Vo~(xac) = 0:

(cost-to-go (Xac))

Vff (x) = min(V~(xa~), V~(x)))

return.)

Observe that 4(a) and 4(b) are implementations of the following two operations, respec-
tively:

N V~,,(x) = max [V~,N,(xa,,)] (3.2)
,,,~t.(pffx)nE,

U min [Vff(xar V~,,(x) = (3.3)
rrr~tap)(x)nZr

Note that when EL(p)(x) = 0, x must be in Xmc due to the nonblocking assumption
Lm(G) = L(G).

The algorithms voN~o,., and iv V~.op,, are exactly the same as V~,, with the following provisos:

1. L,, is to be replaced by L~o,,.~ and Loprm, respectively.

2. Instead of U, oo (0, respectively) is assigned to the legal states at the boundary in the
second part of (3.1).

In the next section, we show that the V~, N algorithm and its variations V~.co,, s N and V~.opt m N
are correct implementations of the LLP scheme by showing that their costs-to-go for all
relevant states are the same as those of Vff, given either the conservative or the optimistic
attitude.

3.2. Correctness of the Algorithms

In order to show that the costs-to-go derived by V~,t N are the same as the costs-to-go derived
by V s up to a simple substitution, we show that the costs-to-go derived by Vff. a are equal I,r
to those derived by V u with a fixed attitude (Theorems 3.1 and 3.2). Then we show how 1,a

to obtain V~a from Vv~ (Theorem 3.3).
As an intermediate step in showing that the costs-to-go derived by Vffa are equal to those

derived by Vt~, we first define waN " X > {0, oo} as follows (since Wff is attitude
dependent, so is its associated partition of X):

1. If x E X~legal, then WaN (x) = 00.

w,f ' (x) o. 2. I f x E Xmc, then =

VARIABLE LOOKAHEAD POLICIES 245

3. I f x �9 Xr~ee~f - X~, c, then:

[(ZL(p)(x) n z,, :~ q) A (v(r �9 ZL(p)(x) n Z, ,)Wf(x~r) = 0)v
0 if

WaN(x) = t (ZL(p)(X) n Z. = 0 A (~r �9 r,L(p)(x))WN(xcr) = O)
co otherwise.

WaN(x) is always defined for all x �9 X. In particular, since states in XN will be either
in Xi~tee, t or in X,~, WaN will return a well-defined value, either 0 or oo, based on the
first two case conditions.

THEOREM 3.1 Under the same attitude, VvN, (x) = Wff (x) for all x �9 L(P).

Proof: If x satisfies any of the first three case conditions in the algorithm for vuNa, then x

must also satisfy either of the first two case conditions in the definition of WaN. Therefore,
for such x's.

= waN

On the other hand, the third case condition in the definition of W~U(x) can be rewritten as:

1. Z . 1"1 ZL(P)(X) r ~:

If (3(7 �9 Z,, N ZL(p)fX))V~Na(xa) = OC, then w,N(x) = oc; else WaN(x) = O.

2. Z . M ZL(p)(x) = 0:

If (3cr �9 Z~ N ZLr = 0, then w~N(x) = 0; else WU(x) = oc.

This is the fourth case condition in the algorithm for V.ma . Therefore, for all x �9 L(P) ,
v N.(x) = w N(x). �9

LEMMA 3.1] f (Vo �9 ~L(p)(x))VzN(x~) = W N(xo), then V1~(x) = waN(x).

Proof: We only need to show that viNe(x) = 0 r162 WaN(x) = O.
From the definition of w,N(x), we have

Wff (x) = 0

X E XmcV

{x E (Xl~ . t - X,",,~) A [(ZL(p)(x) n z,, 4: ~A r
(Wr e ~,L~p)(X) n I z ,) w ~ (x ~) = O))v
(~L~p)(x) n r~,, = 0 A (3cr �9 r~L~e)(x))WaN (x~r) = 0)]}.

246 CHUNG, LAFORTUNE, AND LIN

Assume (u �9 ZL(e)(x))Vl~(xcr) = W~(xcr) . Then

w ~ (x) = o
a

X �9 Xmc v
{X �9 (X'/egal -- X,~,,c)A r
[(~:uP)(X) n ~;,, # 0 A (wr �9 ~L(p)(x) n r~) Vt~(xcr) = 0))v
(~ u e) (x) n :~,, = 0 A (~ �9 ~uv)(x))V1~(xcr) = 0)]1

(X �9 S a c V x (e X~egal -- X~w))A

~:~ {(X �9 Xalc V [(]~L(p)(X) N ~u # ~ A (Vt7 �9 ~L(p)(X) N ~u)VlN(Xt7) = O)) v

(r , up) (x) n ~,, = 0 /x (3or �9 ~:Up)(x))V~N (x~) = 0))] } .

To facilitate the presentation, we define

Since

A = x � 9
tl

O = x E Xn a U Xtransien t

C = Z u e) (x) fq E , = 0

D = (u �9 EL(p)(X) M Z,)Vl~(xtr) = 0

E = (3or ~ ~;L(e)(x))V1~(x~)= O.

-- Xmc) "(~ x X m U Xtransien t x �9 x,ac v x �9 (X~e~al " �9 ~

and

x E X a t c O X � 9 a A E t (P) (x) M E , , = O c ~ A A C

we have

W ~ (x) = O r B A [(A /x C) v (-~C /x D) v (C /x E)]

r B A (C V D) A (A v D v E) A (~ C V A v E) .

W f (x) = 0 r B A D A (- ~ C v A v E)

r B A D/x ((C A-~A) ::r E)
a

X E X a U Xtransien t A
(Wr �9 ~uP)(X) n ~..)Vz~(x~) = O/x

fl
(Zr(v)(x) M E~ = 0 A x �9 Xt~,sie, t
(3~ e r~L(e)(x))Vl~(x~r)= O)

~. v1~(x) = 0. �9

The following result shows that the costs-to-go derived by V N l.a are the same as those

derived by WaN, and thus the same as those derived by VvW..a.

THEOREM 3.2 Under the same attitude, Vl~(x) = WaN (X) for all x �9 L (P) .

VARIABLE LOOKAHEAD POLICIES 247

Proof:
W,N(x). Recall from Chung, Lafortune, and Lin (1993a) that

i fx 6 XN, then v/N,(x) = { 0 i fx C L a
cx~ otherwise.

However, given a fixed attitude a, states in XN will be either in xiallegal or in xa,~. Thus

I mC i f X E X N , thenVt~(x) = 0 i f X E a Xa
X E Xi l legal .

Therefore, according to the first two case conditions in the definition of W~,

(VX C X N) V I N t (x) = W a N (X) .

According to Lemma 3.1, it suffices to show that for all states x ~ XN, Vt~(x) =

COROLLARY 3.1 gvNa(X) = Vff (x) foral lx E L(P).

The costs-to-go derived by V~ belong to the set {0, U, oo}. If Vv~(x) happens to be
either 0 or cxz, then the cost-to-go is certain, irrespective of the system behavior beyond N
steps�9 This is one of the advantages that Vv N has over VNcons and Vffopt m ; it enables us to
tell whether or not the control action is affected by the uncertainty of the system behavior
beyond N steps away. On the other hand, if vvN(x) turns out to be U, the supervisor still
has the option of taking either the conservative or the optimistic attitude. In fact, Vff, cons (x)
and Vff.om,,(x) can be derived from Vv~(x) by means of a simple substitution as we now
show.

Let us define two new functions over X: I N N u V~u(x) if {0, cx~} V;,, (x) e
V ~ (x) = ~x~ if N v ~ . (x) = u

N N V~u(X) V~.(x) if {0, cxz}
Vg(x) 0 if N v ~ . (x) = v .

LEMMA 3.2

N (i) (u 6 Et(v)(x))VU~(xcr) = V~co..~(x~r) ~ V ~ (x) = VUr

(ii) (u Zc(e~(x))VN(xcr) = VvNoptm(Xff) ~ VoNoo(X) = VvNoptm(X).

Proof: We only prove (i); the proof of (ii) is similar.

1. EL(p)(x) M E~, r 0: According to the algorithms,

U max [Vff(xo',)] v~,,(x) =
cr.C~L~pI(X)N~It

Vff.cons(x) = max [Vffcon~(xcr,)].
�9 auEEL(p)(x)N]~II " ,

248 CHUNG, LAFORTUNE, AND LIN

But it is also the case that vU~(x) = max,,,,~x,.r [Vff~(xc~,,)] because:

R H S = ~a =:~ V f f (x) > U

R H S = o ~ v , N (x) = 0

v f f ~ (x) = o.

. ~] L (P) (x) ('] ~]u = ~: According to the algorithms,

N V,, .(x) = . min [V~(XCrc)]
cEEt.le~(x)nZc

N min [vvUco,,~(XCr~)]. II

Again, it is also the case that Vff~(x) = min.,.~r.,p,~x)n~[Vff~(xac)] because:

R H S = ~ =~ V ~ (x) > U

N V, ,~ (x) =

R H S = o =~ V N (x) = o

voU~(x) = O.

THEOREM 3.3

(i)

(ii)

N V ~ (x) = Vff.c,,,,s(x) f o r all x ~ L (P) .

V ~ (x) = vvNol, t , , (x) f o r all x E L (P) .

Proof: We only prove (i); the proof of (ii) is similar.
N According to Lemma 3.20), it suffices to show that for all states x 6 XN, V~,~(x) =

Vff~:on~ ~ (x). Recall from (3. !) that

i f x e X N , then u cx~ i f x ~ L (P) - L u
V~ , (x)= U otherwise.

N Hence, u c XN, V ~ (x) = ~ . On the other hand, the counterpart of (3.1) for the
conservative case is

N (Vx ~ Xu)V?~ (x) = ~ .

VARIABLE LOOKAHEAD POLICIES 249

Therefore,

N (Vx ~ x N) v ~ x) = vvuco,,.,(x).

4. Properties of the VLP Algorithms

We state in this section two computational properties of the VLP algorithms. The first
property is related to the depth of the underlying forward search, and the second one is
related to the re-utilization of previous computational results.

As suggested by (3.1), when a VLP algorithm is employed, if the forward search hits the
boundary, an undecided cost-to-go can be rippled back to the upstream nodes. This implies
that: (i) the final decision on the control action can be affected by the adopted attitude,
and (ii) the derived path up to the bouncing point may make no decisive contribution to
the control action: derivation on other paths (thus extra computation) is likely to follow.
In general, a larger window size N makes it less likely to hit the boundary, while risking
increased computational complexity. The following result shows that, conditional on N
and on both the uncontrolled system behavior and the associated legal specification, the
forward search of the VLP algorithm is guaranteed to terminate before hitting the boundary.
Moreover, the resultant system behavior equals the optimal solution as would be obtained
by the "conventional" off-line solution.

We first define

max{Itl : (3s ~ K) (s t ~ Kmc U (L(G) - K)

N' = A(VE < p < t) sp r Kmc U (L(G) - K-))}
undefined

if it exists (4.1)
otherwise

where p < t denotes that p is a strict prefix of s and Kmc is defined as

Kmc = {S E K " (Vcr 6 Zu)str r L(G)}.

Note that N' can be undefined either because it is infinite, or in degenerate situations
when the set in the braces in the definition is empty.

Let Nu (K) denote the longest finite subtrace of uncontrollable events in the language K,
i.e.,

N. (K) = I max{Itl �9 t ~ Z,* A (3s, v ~ E*)s tv ~ K} if it exists
/ undefined otherwise.

LEMMA 4.1

(i) I f K = K and K C L(G) , then either N' = Nt,(K) or N' = N,,(K) + 1.

(ii) l f K = K and K = L(G) , then N' = N,,(K).

Proof: The results follow from the definitions of N' and N , (K) .

250 CHUNG, LAFORTUNE, AND LIN

LEMMA 4.2 If N > N 1 + 1 and the VLP algorithms are employed to calculate the costs-
to-go, then the values of the costs-to-go of xo (the root) and xocr, for all tr �9 EL(e)(xo)

1. can be calculated without calculating any of the costs-to-go of the states in XN (the
boundary); and

2. are independent of the particular algorithm employed (i.e., attitude adopted).

Proof: This is immediate from the definition of N I and from the definitions of the VLP
algorithms. �9

Effectively, the boundary condition (3.1) in the VLP algorithm can be removed, as long
as the search depth (or the window size) N is larger than N'. Accordingly, we call the
VLP algorithm without the boundary condition as the "unbounded" VLP algorithm; the
cost-to-go function of this algorithm is denoted by Vv, and its associated control policy is
denoted by 7,% More specifically, we define y~ : L(G) > 2 ~: as follows:

{G �9]FaL(p)(Xo)" Vv(XoG) = 0 } if Vv(xo) = 0

go(s) = Eu N NL(p)(Xo) otherwise.
(4.2)

THEOREM 4.1 Assume that K ~ ~ 0. If N' exists, then the closed-loop behavior under the
control of yv is L(G, Yv) = Kt.

Proof: To show that L(G, Yv) = Kr we first reformulate the problem of finding K t as
an optimal control problem, as we have proposed in Chung, Lafortune, and Lin (1993a).

Consider the cost function corresponding to the control policy g : L(G) --+ 2 ~

J (g) = EssL(C,.g)C(S, g(s))

where c(s, g(s)) is defined as:

c(s, g(s)) = {

m

0 i f s ~ L(G) - K/x Nu 7) ZL(6)(s)C g(s)
A (s �9 (K - K) ~ g(s) 7~ O)

e~ otherwise.
(4.3)

We now make the following claim which follows from the results in Section 2 of Chung,
Lafortune, and Lin (1993a).

Claim. Under the present hypotheses that K t :fi 0 and that N' is finite, the least-restrictive

policy g* that achieves zero cost exists and L(G, g*) = Kt .

Proof of Claim: This result is proved in the same manner as Lemma 2.2 and Theorem 2.1
in Chung, Lafortune, and Lin (1993a) once the following two observations are made. First,

VARIABLE LOOKAHEAD POLICIES 251

the finiteness of N' guarantees that the language K is "livelock-free" (see Chung, Lafortune,
and Lin (1993a) for definition). Second, if Assumption 2.1 (ii) in Chung, Lafortune, and
Lin (1993a) is changed to require that K (L in the notation of that paper) be livelock-free
(as opposed to requiring that L, , (G) be livelock-free), then Lemma 2.2 and Theorem 2.1
in that paper remain true because, in the notation of Chung, Lafortune, and Lin (1993a),
equation (3) in Lemma 2.2 plus the fact that L (P , g) - L , , (P) c L - L m (P) = L -
L fq L ~ (P) = L - L (since L is L~(P)-closed), contradicts the livelock-freeness of L.

In view of this result, in order to prove that L(G, yo) = K i", it thus suffices to show that

},~(s) = g*(s) u ~ L(G, g*).

For this purpose, we define

V~(s) = Z c(st, g*(st)) (4.4)
tEL(G/s.g*/s)

where G / s and g*/s denote the system G and the control policy g* after s has occurred
(see Chung, Lafortune, and Lin 1993a). The superscript ~ reflects the fact that we are
considering an infinite horizon problem.

Equation (4.4) can be rewritten as

= c (s ,g* (s)) + ~ V~(s~r). (4.5) V ~ (s)
crcg*(s)

Observe that the proofs of Theorems 3.2 and 3.4 of Chung, Lafortune, and Lin (1993a)
depend only on the above recursive decomposition (4.5) for the value function V, on the
definition of the cost function c (cf. (4.3)), and on the definition of the least-restrictive
optimal control policy g* (for Theorem 3.4 of Chung, Lafortune, and Lin (1993a)); these
proofs hold for finite as well as infinite horizons. Therefore, similarly to Theorem 3.2 of
Chung, Lafortune, and Lin (1993a), we can show that

S E XnCX~ U XtrC~ansient A
V ~ (s) = 0 r (;a~ru ~ E,, n EL~G)(s))V~(scr,) = oc/x

oo (s e Xtr~, ie , t ~ (9~r E EL~c)(s))V~(s~r) = O)

(4.6)

oo where X,~ is the set of states associated with the traces in K, and Xtransien t is the set of
states associated with the traces in K - K.

Also, similarly to Theorem 3.4 of Chung, Lafortune, and Lin (1993a):

g *(s) = {or e EI46)(s) : V~(s~r) = 0} if V ~ (s) = O. (4.7)

Observe that V ~ (s) = 0 f o r a l l s e L (G , g *) since K t ~ 9J. Takes e L (G , g *) .

252 CHUNG, LAFORTUNE, AND LIN

We argue that V~176 = Vo(xo) and V~ = Vv(xoa) (u 6 Et(a)(s) = ZL(p)(X0)).
Consider an "overlapping" of a finite tree over an infinite tree: the finite tree represents
L (P) = L(G)/SIN with the legal behavior L = K/SIN, and the infinite tree represents
L(G) with the legal behavior K. In the overlapping, Xo of the finite tree of L (P) is placed
over s ~ L(G, g*) of the infinite tree of L(G) to highlight the mapping between L (P) and
L(G) . By Lemma 4.2, Vv(xo) and Vv(xoa) (u 6 Y]L(p)(X)) are all defined. In addition,
because the defining properties of both functions (cf. (2.2) and (4.6)) are identical (up to
the mapping of the associated arguments),

V~176 = Vv(xo) Ys ~ L (G , g *)

V~ = Vv(xoa) 'Ca e Xr (c) (s) = XL(p)(xo).

Therefore, comparing (4.2) and (4.7), we conclude that

gv(s) = g*(s) Ys ~ L(G, g*).

This completes the proof. []

Since the VLP algorithms are implementations of the LLP scheme, the results on suffi-
cient conditions for the validity of limited lookahead policies in terms of Nmcfe and Nmcmc
in Section 5 of Chung, Lafortune, and Lin (1992) hold for the VLP algorithms as well. The-
orem 4.1 strengthens these results in two ways. First, Theorem 4.1 is attitude-independent,
since when N > N' the attitude is irrelevant as shown by Lemma 4.2. Second, N r is smaller
than both Nmcf~ and Nmcmc. Even if both Nmcmc and Nmcfe are undefined, N' can still be
defined. Nonetheless, this sufficient bound N' may not always be finite. In such cases, the
forward search of the unbounded VLP algorithm may continue forever. In order to return
a control action in finite time, we need to impose a bound on the lookahead window and to
adopt an attitude.

In particular, when the undecided attitude is adopted, costs-to-go at some states may be
undefined (i.e., U). However, if the cost-to-go at a state is defined, then, as we show in the
next theorem, it will not change as the system progresses. As this result holds for all N,
we will drop the superscript N. Instead, in order to distinguish successive windows, we
use a superscript t = Is l to index all the relevant notation and the computational results of
the current window rooted at s. We denote s = s'a, where s ' is the previous trace before
the execution of or 6 y~t~-l(s'). In particular, Vtu is now defined as Vt~u : X r --+ {0, U, oo},
where the states in X t are labeled by the unique continuation of s that they correspond to.
Therefore, x ~ X' =-- otx ~ X t- j .

THEOREM 4.2

(1) v~', ,~(~x) = 0 = , v'~,(x) = O.

(2) V~,l(otx) = oc =r Vtw~(X) = oo.

VARIABLE LOOKAHEAD POLICIES 253

Proof: We only prove (1). The proof of(2) is similar.

V[~ -J (otx) = 0 ~ V[.~oJns(oex) = 0 (by Theorem 3.3)

::~ V/.coJ,,.~(~x) = 0 (by Corollary 3.1)

=~ V/.cons(~x) = 0 (by Corollary 4.1 of Chung, Lafortune, and

Lin 1993a)

=~ V~.con.~(otx) = 0 (by Corollary 3.1)

=~ V~, (~x) = 0 (by Theorem 3.3) �9

When the VLP algorithm Vv is applicable (i.e., when N' exists), the costs-to-go derived are
all defined. As a result, all the costs-to-go derived by Vv are final. Similarly, the costs-to-go
derived by N N Vj.cons and will be final whenever the sufficient conditions on N derived Vv.optm
in Section 5 ofChung, Lafortune, and Lin (1992) for the validity of these attitudes hold. On
the other hand, when the sufficient conditions are not satisfied, N N V~.co, s and V~.ortm still can
take advantage of this final value property if the supervisor can distinguish costs-to-go with
the "real" 0 and ec from those with the "faked" ones (i.e., those affected by the attitude at
the boundary level).

5. Implementation of the VLP Algorithm

5.1. VLP Supervisory Control

When VLP algorithms are employed, only a variable lookahead window, instead of a whole
limited lookahead window, is expanded in deriving a control action at any point of the
undergoing system trajectory. A new variable lookahead window is expanded each time the
system advances one step, i.e., executes one event. Between successive steps, some of the
previous calculations can be re-utilized according to the properties stated in Theorem 4.2.

We first discuss how the underlying variable lookahead window can be represented by a
generic tree structure, which is amenable for different system models (e.g., automata, Petri
nets, etc.). Then we focus on how to implement the most general on-line control scheme,
when the legal language is not closed and the V~ algorithm is adopted. Finally, special
cases will be examined.

5.2. Data Structure

During a VLP supervisory control operation, let s be the current event trajectory from the
system behavior L(G). A partial lookahead from s can be viewed as a finite tree, which is
represented as a pair of lists:

tree(s) = (working_plate(s) subtrees(s))

254 CHUNG, LAFORTUNE, AND LIN

where

working_plate(s) = (last_event(s) seed(s) legality_classification(s)

cost_to_go(s))

subtrees(s) = I nil when the depth of tree(s) equals 0

I (tree(scri))i otherwise

and where ~ri ~ I]L~G)(S).
The meaning of each item is as follows.

�9 working_plate(s) carries the information to expand the tree from s and contains all
the computational results relevant to deciding the control action at s.

�9 last_event(s) is the last event of s.

�9 seed(s) contains the required information to expand the tree from s. seed(s), for
instance, can be a state in an automaton model, a token marking in a Petri net model
(see, e.g., Peterson 1981, Murata 1989), or a post-process in a Finitely Recursive Process
model or a Communicating Sequential Process model (see e.g., Inan and Varaiya (1989),
Hoare (1985)), etc.

�9 legality_classification(s) records the legality status ofs against the given legal con-
straint for the system beha ~ !or and can be any of the following: {illegal, marked,
transient}.

�9 cost_to_go(s) is equal to the cost-to-go at the root of the tree, which can be any of
the following: {0, U, ~x~}, depending on the particular variation of VLP employed.
cost_to_go(s) is used to decide the control action at s.

�9 subtrees(s) consists of a list of subtrees, (tree(s~ri))i when tree(s) is not a singleton,
or the associated length is not 0. Each of the subtrees itself is a tree with the root located
at scri. In general, not all events in the active set of ELect(s) are to be generated in the
list by the particular VLP algorithm selected; only those relevant to the computation at
hand will be generated.

5.3. Flow Charts

We first explain how the V~ algorithm operates in an on-line supervisory control scheme.
Then, operation by other variations of the VLP algorithm will be elaborated upon as special
cases of V~.

The overall on-line operation of a VLP supervisor is divided into a startup phase and
successive updating phases. During the startup phase, both the initial system configuration
and the window size N are to be decided. All the required calculations must be performed
from scratch. On the other hand, during the successive updating phases, whose flow chart is
depicted in Fig. 2, many of the previous calculations can be re-utilized from one step to the
next; the only necessary additional calculations are those that reflect the new information

VARIABLE LOOKAHEAD POLICIES 255

gained with the one-step transition of the system. (The flow chart for the startup phase is
similar to that in Fig. 2.)

In order to decide on the control action at the current trace s, the cost-to-go at the associated
root state xo has to be decided first. The cost-to-go routine, depicted in Figures 3 and 4,
decides the cost-to-go at the root of the current working tree. Events in the active set are
generated one by one. Due to the properties of the VLP algorithms, not all of the events in
the active set may have to be generated in deciding the cost-to-go. One reason is that some
of them may have already been generated before. According to Theorem 4.2, all decided
costs-to-go are final, which makes re-utilization of previous results possible, thus sparing
repetitive tree expansion and the associated cost-to-go calculation.

Another reason why not all events may have to be generated is that not necessarily all of
the events in the active set contribute to deciding the cost-to-go at the current node. When
there is at least one uncontrollable event present in the active set, controllable events will
have no say in deciding the current node's cost-to-go. In addition, during the process of
generating the uncontrollable events one by one, if any of them has a cost-to-go equal to oo,
then this will suffice to conclude that the cost-to-go at the current node is also oc. Similarly,
if all the costs-to-go of the uncontrollable events in the active set are 0 with the exception
of one or more with cost U, then the cost-to-go at the current node is also U. On the other
hand, if no uncontrollable event is present in the active set, then the controllable events will
be generated one by one until any one of them is found to have cost-to-go equal to 0. Then
the cost-to-go at the current node will also be 0, unless all of them are U or oo.

If an cc or an U cost-to-go results at the current trace s, the system will be in danger
of being uncontrollably dragged into the illegal region or into blocking, occurrences that
are termed Starting Errors or Run Time Errors in Chung, Lafortune, and Lin (1992). In
particular, if an U cost-to-go results, the supervisor would have the option of taking either
the conservative or the optimistic attitude in resolving the U cost-to-go. Otherwise, a 0
cost-to-go signifies the possibility of obtaining a valid (as defined in Chung, Lafortune, and
Lin 1992) control action.

As mentioned earlier, in order to decide the cost-to-go at the root of the current tree, it
need not be necessary to generate all the events in the active set. However, in order to
decide the control action at s, it is required that the costs-to-go of all events in the active
set of s be determined (cf. definition of yl~(s) in Section 2). This is done by the routine
continue-at-controllable (see Fig. 2), which calls the cost-to-go routine for all controllable
events in the current active set; this routine is necessary because the routine cost-to-go may
have skipped some or all of them, for the reasons described above.

The control-map routine, depicted in Fig. 5, is then called to decide the control action at
s, which corresponds to all the subsequent events leading to costs-to-go of 0. If some of
the events in the active set result in a cost-to-go of U, the supervisor again has the option of
taking a specific attitude in deciding if such an uncertain continuation should be included
or not in the control action. In particular, uncontrollable events leading to a cost-to-go of U
have to be included; otherwise, the supervisor would have to disable uncontrollable events,
thus violating the premise of supervisory control.

After the control action is decided, the system will advance one step, i.e., execute one
event from the control action. Subsequently, the subtree following the event executed can

256 CHUNG, LAFORTUNE, AND LIN

L ~u. ti~e e~or

Figttre 2. Successive updating phases.

cost-to-p I/'(=0)

no . ~

I cont ;nue-at-controllsble J

control-rasp

advance-one-st ep

~]10

recon6gUre working-tr~e

VARIABLE LOOKAHEAD POLICIES 257

yes no

do o E D~(p)(s) n lC. ~,,r
V(S) = oo

-@
15ener~te r

co*t-to-go V(=o) no yeJ ~ . ~ ~ no

~ :Ol~elwatiTe aptimiltlc

t _L 1 t. _L 1
212 T
T

state z

258 CHUNG, LAFORTUNE, AND LIN

co.*-t~so V(zo)

v(=) :=

until V(z) = 0

nt~ase z

no Y~ ~ ~

~c

V(I te) = 0 V(l l (r) = oo ~ t - t o - ~ V (l a)

mla (v(=) , v (= .)) Y(z)

or roll e
done ? �9

v(=e) = ~

Figure 4. Cost-to-go at state x (continued).

VARIABLE LOOKAHEAD POLICIES 259

gracefully exit

I.T~

~ yes

~o (= U)

�9 (') = {o ~ ~', .(p>(:o) : V(| = o}

7(,) = ~ (,) u {o ~ ~-~(p~(:o) �9 V (: o *) = u)

yes

Figure 5. Control-map.

260 CHUNG, LAFORTUNE, AND LIN

be re-utilized in deciding the control action at the next step. However, before doing so, the
supervisor needs to check if the system to be controlled has changed in case it is "time-
varying." If the system has changed (e.g., G consists of the synchronous composition of a
time-varying set of subprocesses and some subprocesses have terminated or new ones have
arrived; see the example in the next section), then a new initial state should be constructed
accordingly and the previous variable lookahead window should be discarded. Then the
whole aforementioned procedure is repeated.

The other VLP algorithms discussed in the preceding sections reduce to special cases
of vN:

�9 If either the conservative or the optimistic attitude is adopted, then the costs-to-go for
legal states at the boundary will be either ~ or O, instead of U.

�9 If the unbounded VLP algorithm Vv is adopted, all the test conditions "xcr hits bound-
ary?" present in the cost-to-go and the continue-at-controllable routines should not be
included. Also, because costs-to-go for all the states generated in the working tree are
final, the following test conditions are automatically satisfied and should be skipped:
the test condition "undecided cost at root?" present in the successive updating phases
and all the test conditions "cost of V(xcr) decided?" in the cost-to-go routine.

In the foregoing discussion, the legal constraint is not assumed to be prefix-closed. When
the legal constraint is closed, the left or "A" branch of the cost-to-go routine will never be
executed. This is because if s is the first instance of this, then when the cost-to-go was
called at the preceding step, the recursive call should have stopped there because the case
condition "mc" in the case test "case of state x~r" should have been satisfied. Thus the
cost-to-go routine at s should not have been called. Consequently, for systems with closed
constraints, tree expansions only trail traces with uncontrollable continuations.

6. Example and Experiments

We use a train example to demonstrate how the proposed VLP supervisory control scheme
can be applied to general "time-varying" open systems. In this context, four variations
of the VLP algorithm have been implemented in LISP. The associated trade-off between
performance and on-line processing time requirement will be discussed.

6.1. Train Example
/

We now revisit the example of a simple train system that was first presented in Chung,
Lafortune, and Lin (1992) to illustrate the LLP scheme. We slightly modify the system to
render it a "time-varying" open system. In addition to showing how the VLP algorithms
perform for the original closed legal constraint, we will also show how the VLP algorithms
perform when the original legal constraint is made non-closed.

The train system consists of three stations, two junctions and two tunnels, as depicted
in Fig. 6. Trains enter the system from stations 1 and 2, while leaving from stations 2

VARIABLE L O O K A H E A D POLICIES 261

Figure 6. A train system.

and 3. Once in the system, a train can go anywhere as long as it does not change direction
when traveling on a track. There are seven tracks connecting various stations and junctions,
labeled T1, T2 T7. In particular, T7 is a two-way track. Each track is divided into four
sections.

To model each individual train, we consider the following events. For i = 1 6,
j = l 4, k = l , 2 , a n d l = 2 , 3 :

i. aj. a train enters section j of track Ti;

ot~: a train leaves section 4 of track T/;

flj: a train traveling from junction 2 to station 2 enters section j of track T7;

fls: a train traveling from junction 2 to station 2 leaves section 4 of track T7;

?'j: a train traveling from station 2 to junction 2 enters section 5 - j of track T7;

Ys: a train traveling from station 2 to junction 2 leaves section 1 of track T7.

Fk: a train entering station k.

0l: a train leaving station I.

Some of these events are made controllable by installing lights at pertinent locations along
a track to halt a train from proceeding.

Zc ={ot~,~j, yj, yk, Ot : j = 1 , 3 , 5 ; i = 1 6 ;k = 1 , 2 ; I = 2 , 3 } .

Each train is modeled by a generator Gi. The states of G; are naturally the set of locations
spanned by the events defined above: the entry/exit points, the stations, the junctions, and

262 CHUNG, LAFORTUNE, AND LIN

the four sections along a track. Trains starting at different entry points are to be modeled
by different Gi 'S. Let G be the set of generators that model all the possible behaviors of a
train in the system. At any time instant t, the system is modeled by

M(t)G
G = i=1 i, Gi E

where M (t) is the number of trains in the system at time t. For simplicity, assume all the
states in Gi are marked. Hence, Lm(G) = L(G) .

In an open system like this, it is not known a priori how many trains are involved in
the synchronous composition nor which Gi E ~ are involved. Thus, the conventional
supervisory control approach is for all practical purposes not applicable here because a G
that could generate all possible future behaviors cannot practically be constructed (unless

has small cardinality and there is a small upper bound to the total number of trains in the
systems).

The legal constraint of the system, in terms of requirements on safety and flow control,
can he specified as follows (a detailed description can be found in Chung, Lafortune, and
Lin (1992)). Let s < t denote that s is a prefix of t.

1. No more than one train is allowed to enter the same section:

K1 = {t ~ L (G) " (u _< t)(Vi = 1 6)(Vj = 1 4) l ~ l (s) - Io~}+j l (s) _< 1

A I/~jl(s) - I ~ j + l l (s) _< 1 A I)'yl(s) - l y y + j l (s) _< 1}

where l a l (s) denotes the number of occurrences of a in s.

2. At least one section is empty between every two trains:

K 2 = { t 6 L (G) : (u 1 6 5 6)(V j = 1 ,2 ,3)

/x I/~yl(s) - I r = 1 ~ I / ~ j + l l (s) - I/~j+21(s) = 0

/x I~'jl(s) - I• = 1 ~ I~'j+ll(s) - I?'j+21(s) = 0}.

3. At most two trains are allowed to occupy junction 1 simultaneously:

K3 = It ~ L (G) " (Vs ~ t)O ~ 1o~ I(s) + Ic~l(s) - I ~ [(s) - 1~41(s) < 2}.

4. At most two trains are allowed to occupy junction 2 simultaneously:

K4 = {t ~ L (G) : (u < t)0 < 1~31(s) + Ir51(s) - local(s) - I~e61(s) - I ~ , l (s) ~ 2}.

5. At any given time, trains on T7 must all travel in the same direction:

K5 = {t ~ L (G) : (Vs < t)l/h I(s) - I/~51(s) = 0 v It'11(s) - lYsl(s) = 0}.

VARIABLE LOOKAHEAD POLICIES 263

6. Flows in T6 and T7 are balanced (the maximum error=10):

K6 = {t E L (G) : (Vs < t) - 10 < I/~ll(S) + [yll(s) - lu61(s) _< 10}.

. Approximately equal numbers of trains pass through tunnels 1 and 2 (the maximum
error=10):

K7 = {t E L(G) : (Vs < t) - 10 < I ~ l (s) - Io~41(s) ~ lO}.

Therefore, the legal behavior is described by the prefix-closed language K = Ki n K2 N
�9 .. n K7. Since the longest uncontrollable trace in any Gi has length one, the longest
possible uncontrollable trace in L(G) has length equal to the total number of trains in the
system. As a result, according to Lemma 4.1 and Theorem 4.1, algorithm Vv of Section 4
guarantees valid control actions during the whole on-line control operation, provided the
number of trains in the system is finite.

The depth of the lookahead window required for a supervisor to be valid in the case of
a non-closed constraint system is in general longer than when the constraint is closed. To
illustrate how all the VLP algorithm variations would perform in the case of a non-closed
constraint, in the following experiments, we select the following states occurring in any Gi
as marked states: the entry/exit points, the stations and the junctions. Let Gnc denote the
result of the synchronous composition of these marked generators. Then the language of
the new marked traces, denoted by L,, (G~c), corresponds to the set of event trajectories
where each train in the system is in any of the new marked states. In this context, we can
define the non-closed constraint K,c to be

Knc = K N Lm(Gnc).

For the non-closed constraint K,,c, the sufficient bound stated in Theorem 4.1 does not
exist in general. For instance, consider a loop, denoted by (loop), from station 2 to station 2
through junction 2. Then for a trace of two trains s = ot~ (loop)* E L(G) , s ~ Lm(Gnc)
while the length of s can be arbitrarily large.

6.2. Results o f the Experiments

Before we present the results of our experiments, we make the disclaimer that while the
proposed VLP algorithms are more efficient than those in Chung, Lafortune, and Lin (I 993a)
in finding on-line control actions in terms of the number of calculations required, their
LISP implementation used for the experiments may be far from the fastest one in terms of
execution time. We have chosen LISP because it is easy to implement. We believe that
the execution time can be significantly reduced if the flow charts outlined in Section 5.3
are implemented in other languages, such as C, or if special techniques are employed to
speed up the time-consuming legality checking procedure (detailed below) during the tree
expansion.

264 CHUNG, LAFORTUNE, AND LIN

Initially, two trains are present at both stations 1 and 2. During the on-line operation,
a random mechanism is included to render the system time-varying. Each time after the
system executes one event and before it moves on to the next window, a random number R is
drawn from a uniform distribution between 0 to !. If either of the following two conditions
is satisfied, then a new train enters the system from station 1 or 2 with equal probability:
(1) R > 0.8 and the number of trains in the current system is less than 10; or (2) R < 0.8
and the number of trains in the current system is less than 2.

The following simulations consider all the variations of the VLP algorithm and were run
on a DEC 5000 workstation. The issues of primary concern in these simulations are:

(i) the number of trains in the system;

(ii) the decision time, in units of seconds, required to reach a control action at each
step;

(iii) the newly generated states between successive steps;

(iv) the depth of the expanded tree (or the variable lookahead window);

(v) the "certainty ratio" of the control actions with regard to the ambiguity given by the
adopted attitude; it is measured by the ratio of the number of events with 0 cost-to-go
to that of events with either 0 or uncertain cost-to-go in the active set. For Vv~, the
uncertain costs-to-go correspond to U; for N N V~.co,, s and the uncertain V~.optm, COSTS-
to-go correspond to the "faked" values of 0 or oo (in our implementation, costs-to-
go derived without hitting the boundary are differentiated from those affected by
the attitude at the boundary).

(vi) the number of arrivals of new trains during the simulation;

(vii) the percentage of decision time spent in legality checking; and

(viii) the percentage of re-utilization of computations between successive steps, which
is measured by the average ratio of the survived portion of a previous window to
the whole window at the following step.

Among these statistics, (i) is the result of the random mechanism involved in generating
new trains and in selecting an event from a control action for execution. (ii), (iii), and (iv)
are particular to the special variation of the VLP algorithm adopted. (v) is always certain
for V~. (vi) and (vii) are similar for all VLP algorithms. (viii) only makes sense for Vv and
V N. We will address all of these statistics for Vo, and only (i)-(v) for the other variations.

For the case of the closed constraint K, only V~ is implemented. As shown in Table 1,
during a one-hundred-step simulation, it takes about 6.5 seconds to calculate a control action
for an average of 7 trains. Almost 90% of the decision time spent to calculate a control
action during each cycle is spent in legality checking. This task consists of comparing
relevant event counters as specified in constraints K1 through KT, one by one. The fact that
legality checking requires a significant portion of the decision time shows that this issue is
a worthwhile direction of investigation for improving the overall system response time.

In addition, as the system "rolls" from one step to another, the percentage of re-utilization is
about 12.5%. On average, the re-utilization rate should be about the inverse of the average

VARIABLE LOOKAHEAD POLICIES 265

Table I. Simulation results of Vv over a 100-step simulation.

constraint

decision time new states tree depth
number of trains per step generated at at each step

(seconds) each step
new arrivals percentage of

during decision time percentage of
simulation min ave max min ave max min ave max min ave max used in legality re-utilization of

checking computations

closed 21 3 7.04 10 0.0 6.438 92.05 0 159.1 2283 2 4.2 7 89.99 12.45

non-closed 21 3 6.78 10 0.016 28.0 178.9 2 693.8 4334 5 22 51 89.24 8.84

Table 2. Simulation results for all variations of VLP algorithms.

decision time new states tree depth
number of trains per step generated at at each step

(seconds) each step
'certainty

constraint length of algorithm window ratio of
simulation size rain ave max min ave max rain ave max min ave max control

actions

non-closed 40 V,~optm 50 4 5.07 7 0.0 61.36 613.2 2 1701 17577 5 26 50 0.93

non-closed 40 V,~opf, ~ 40 4 5 7 0.0 14.02 69.35 0 387.1 1886 5 19 40 0.95

non-closed 40 V,~oplm 30 4 4.18 5 0.0 2.921 11.32 0 83.5 322 5 14 30 0.9

non-closed 40 Vv~opt, n 20 4 4.18 5 0.0 2.81 11.28 0 80.4 322 5 13 20 0.8

non-closed 40 V~,~oplm 10 3 4.1 6 0.1 1.902 7.367 4 53.6 210 5 9.3 10 0.5

non-closed 40 V,~cons 10 3 4.1 6 0.1 49.48 583.8 4 1411 16297 5 9.3 10 0.5

non-closed 40 W v 10 3 4.1 6 0.116 138.6 622.5 4 3963 18149 5 9.3 10 0.62 ~,.~

non-closed 100 1I,, n/a 3 6.78 10 0.016 28.0 178.9 2 693.8 4334 5 22 51 1.0

closed 100 V,, n/a 3 7.04 I0 0.0 6.438 92.05 0 159.1 2283 2 4.2 7 1.0

number of events in an active set. However, the 21 new arriving trains during the one-
hundred-step simulation are partially responsible for such a degradation of re-utilization,
because the resultant structural changes virtually make all previous calculations irrelevant.

In Table 2, we show for comparison purposes the simulation results when the original
closed language K is replaced by the non-closed language Kno While during the one-
hundred-step simulation Vo always terminates with finite computations, the readers are
reminded that the sufficient bound defined in (4. l) does not exist. Table 2 also repeats some
results of Table 1 for comparison purposes.

For the case of Knc, four VLP algorithm variations have been implemented: V N v.optm '
N N V~.cons, V~u, and Vo. Table 2 summarizes the simulation results. In our opinion, these

results, although limited in scope, demonstrate that the VLP approach is feasible for on-line
control applications.

266 CHUNG, LAFORTUNE, AND LIN

Based on all the simulations that we have performed, we make the following observations.
The first one is especially important as it validates, in the context of this example, the
advantages of forward search techniques that were claimed throughout this paper.

(1) The VLP algorithms only expand a small portion of the tree that would have been
expanded by a basic limited Iookahead policy.

Over a one-hundred-step simulation using the Vv algorithm, we have observed the fol-
lowing. For the closed legal constraint K, the maximum number of states ever generated
in a single step is 2283, which is less than 0.04% of the total number of states in the whole
lookahead window with depth 8, the required bound stated in Theorem 4.1. For the non-
closed legal constraint Knc, the maximum number of states ever generated in a single step
is 4334, which is less than 3 • 10 -40 of the total number of states in the whole window with
depth 51, the longest trace ever generated in the simulation.

(2) Longer window sizes reduce the uncertainty of the control actions, while increasing
the required calculations.

During the process of resolving an undecided cost-to-go, the supervisor continues expand-
ing the working tree until either a marked state without any uncontrollable continuation (i.e.,

a a state in X,'~c or "mc state") or an illegal state (i.e., a state in Xillegal) is encountered, or
until the boundary (X~v) is reached, where the attitude is enforced. For a fixed attitude, an
increase in the window size means a longer boundary, which implies that more states may
be generated (and then the associated calculations increased). This results in a higher prob-
ability to reach an mc state or an illegal state, thus decreasing the influence of"faked" states
at the boundary imposed by the adopted attitude, or equivalently reducing the uncertainty
in the final control action.

N N N (3) As compared to VJ.cons and V~.optm, V~,, reduces the uncertainty in control actions at
the cost of more calculations.

Given a fixed window size N, more calculations are required to reach a control action for
the undecided attitude than for either the conservative attitude or the optimistic one. An
undecided cost assignment U at the boundary makes no decisive contribution to resolving
the undecided cost-to-go. In contrast, for V~.co,sN and VvN.opt,,,,. cost assignments with either
0 or oo, imposed at the boundary to reflect the attitude adopted, force the supervisor to
make a decision earlier (or terminate the expansion earlier). However, in V~, there is
supplementary information that is gained with the extra tree expansion (breadth-wise); this
technique then enhances the probability of resolving the undecided cost-to-go with a certain
cost. This is the trade-off gained by the extra time spent.

(4) Vv is better on average than Vv,N,, Vv~.con~ and N V~,optm"
When the sufficient window bound stated in Theorem 4.1 exists, Vv is better than V~,
N N N V~.con. ~ and depth-first search, while V~, N V~.cons and all have V~.optm more V~.optm. Vv is a

characteristics of a breadth-first search. When the bound exists, Vv is preferable to the rest
in general. However, if such sufficient bounds are difficult to check or if the user is willing
to trade performance for decision time, other candidates than Vv should be used to force
the tree expansion to terminate.

VARIABLE LOOKAHEAD POLICIES 267

7. Conclusion

We have presented new algorithms that implement the Limited Lookahead Policy supervi-
sory control scheme more efficiently than the algorithms proposed in previous work. These
algorithms are termed Variable Lookahead Policy algorithms because they perform the cal-
culation of LLP controls by means of a forward search technique over the behavior of the
discrete event system under consideration. While the VLP algorithms have the same worst
case complexity as the algorithm in Chung, Lafortune, and Lin (1993a), namely that of dy-
namic programming, the VLP algorithms are guaranteed to perform as well, and possibly
much better, in any particular instance. In order to quantify this improvement, it would
be necessary to undertake a probabilistic analysis that would depend on assumptions about
(i) the average cardinality of the active set after each trace of events, (ii) the probability that
an event is controllable, (iii) the probability that an event leads to an illegal state, (iv) the
probability that an event leads to a marked state, and so forth. Such an analysis is be-
yond the scope of this paper. Rather, we have chosen to perform experiments to assess the
performance of the VLP algorithms. A detailed example, that would be intractable using
conventional supervisory control (cf. Chung, Lafortune, and Lin 1992), was considered for
this purpose. For this example, the VLP approach proved feasible and resulted in significant
computational savings over the algorithms in previous work. As a final remark, we men-
tion that an illustrative application of the VLP algorithms to the familiar "Cat-and-Mouse"
example of the DES literature is discussed in Chung, Lafortune, and Lin (1993c).

Acknowledgements

We wish to thank the reviewers for their useful comments and suggestions.
Research supported in part by the National Science Foundation under grants ECS-9057967

and ECS-9008947. The first two authors also acknowledge support from GE and DEC.

References

S. L, Chung, S. Lafortune, and E Lin. Limited lookahead policies in supervisory control of discrete event systems.
IEEE Trans. Automat& Control, 37(12):1921-1935, December 1992.

S. L. Chung, S. Lafortune, and E Lin. Recursive computation of limited Iookahead supervisory controls for
discrete event systems. Journal of Discrete Event Dynamic Systems: Theory and Applications, 3(1):71-100,
March 1993.

S. L. Chung, S. Lafortune, and E Lin. Supervisory control using variable lookahead policies. In Proc. 1993
American Control Conf., pp. 1203-1208, San Francisco, CA, June 1993.

S. L, Chung, S. Lafortune, and E Lin. Supervisory control with variable lookahead policies: Illustrative example.
In S. Balemi, P. Kozfik, and R. Smedinga, editors, Discrete Event Systems: Modeling and Control--Proceedings
of a Joint World, hop on Discrete Event Systems, pp. 207-214. Birkh~iuser Basel Verlag, 1993.

C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer Science. Prentice-Hall,
Englewood Cliffs, N J, 1985.

K. M. lnan and P. P. Varaiya. Algebras of discrete event models. Proc. IEEE, 77(1):24-38, January 1989.
E Lin and W. M. Wonham. On observability of discrete-event systems. Information Sciences, 44:173-198, 1988.
T. Murata. Petri nets: Properties, analysis, and applications. Proc. IEEE, 77(4):541-580, April 1989.
J. L. Peterson. Petri Net Theol. and the Modelling of Systems. Prentice-Hall, 198 !.

268 CHUNG, LAFORTUNE, AND LIN

E J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes. SlAM J. Control
and Optimization, 250):206-230, January 1987.

E J. Ramadge and W. M. Wonham. The control of discrete event systems. Proc. IEEE, 77(I):81-98, January
1989.

W. M. Wonham and E J. Ramadge. On the supremal controllable sublanguage of a given language. SIAM J.
Control and Optimization, 25(3):637-659, May 1987.

