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A Stochastic Model for Wound Healing
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We present a discrete stochastic model which represents many of the salient features of
the biological process of wound healing. The model describes fronts of cells invading
a wound. We have numerical results in one and two dimensions. In one dimension we
can give analytic results for the front speed as a power series expansion in a parameter,
p, that gives the relative size of proliferation and diffusion processes for the invading
cells. In two dimensions the model becomes the Eden model for p ≈ 1. In both one
and two dimensions for small p, front propagation for this model should approach that
of the Fisher-Kolmogorov equation. However, as in other cases, this discrete model
approaches Fisher-Kolmogorov behavior slowly.

KEY WORDS: front propagation, wound healing, stochastic modeling, Fisher-
Kolmogorov equation.

1. INTRODUCTION

The biology of wound healing is fairly well understood(10). A simplified version
of the process may be given as follows: a layer of undamaged cells is usually
quiescent, so that the birth rate of cells matches the death rate, and both are
quite small. When a wound is suffered, there is a rapid signal the wakes the cells
up–perhaps a pulse of ATP or a calcium wave. Cells at the edge of the wound
become more mobile, and also enhance their proliferation rate. (Otherwise the
healed layer would not have the right density.) A typical experiment to study this
process consists in plating suitable cells (e.g. epithelial cells) on a substrate so
that they form a confluent monolayer. Then a scratch is made in the layer, and the
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process of filling in the scratch is studied. For example, the speed of advance of
the invading cells, v, is easily measured.

There have been many modeling studies of wound healing(8,12−14) . In many
cases (Ref. (14) is an exception) the process is studied using some variant of the
Fisher-Kolmogorov (FK) equation(4,7). This is an obvious model to use. It builds
in diffusion with diffusion constant D and proliferation with growth rate k (related
to inverse doubling time). It also shuts off growth for the confluent layer at density
co.

∂c/∂t = D∇2c + kc(1 − c/co) (1)

The justification for using a continuum equation for a cellular process relies on
the common experience that coarse-graining is reasonable for dynamic processes
involving a large number of agents. In this particular case, we expect that the FK
equation should be useful if the characteristic length of the pattern predicted by
Eq. (1) is much larger that the size of a cell.

However, it is well known(2,6,9) that coarse-graining the FK equation has
many pitfalls even in this limit, and that the transition to the continuum limit is
often very slow. This motivates the present investigation: we present a discrete
stochastic model for wound healing, and study it in various limiting regimes.
It is quite similar to a model previously introduced and studied for flame-front
propagation(1,5). Thus, our results and methods should be of interest beyond the
explicit biological context. We will give new numerical and analytical results, and
show how, in one and two dimensions, our model aproaches the FK limit. We will
show that in the biologically relevant regime there are corrections to FK due to
discreteness.

2. FORMULATION OF THE MODEL AND KNOWN PROPERTIES

Consider a set of sites that form a linear or square lattice, corresponding to
one or two dimensional ‘tissues.’ We allow each site to be occupied by zero or
one cells. Our initial configuration is an occupied half space: if i labels the x
coordinates of the sites, then we have all sites with i ≤ 0 occupied. The dynamical
rules are as follows: we choose a parameter p which specifies the proliferation
rate of the cells. Then at any time step we choose a cell at random, and an adjacent
site at random as a target for diffusion or proliferation. E.g., in 1d if we choose a
cell at site i , we also pick site i + 1 or i − 1 as a target. If the target site is empty,
with probability p we put a new cell at the target, and with probability q = 1 − p
we move the chosen cell to the target. If the target site is filled, we do nothing.

These are examples of the elementary processes allowed:

• (. . .1111000. . .) → (. . .1111100. . .); probability p
• (. . .1111000. . .) → (. . .1110100. . .); probability q
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As time advances cells appear for i > 0. These form a front or chemical
wave. We will examine the speed, v(p), and front width, w(p) for the invading
cells. Precise definitions for these quantities will be given below.

An essentially identical model was devised by Kerstein(5) to describe flame-
front propagation. He studied it numerically in 1d, and Bramson et al.(1) found
some analytic results, also in 1d. In their formulation there is a parameter γ which
may be identified as (1 − p)/p in our notation. Also, in their model the time unit
is different from ours by a factor 1 + γ . If V (γ ) denotes the front speed in the
Kerstein model, we have:

v(p) = V (γ )/(1 + γ ). (2)

In(1) there are two exact results. In our notation these are:

• v(p) → 1/2 + O(q2) as p → 1,
• v(p) → √

2p as p → 0.

The first of these two is obvious. In the limit p = 1 there is no diffusion, only
proliferation, and the half space advances with no vacancies. The only process
allowed is to choose the leading cell at site i and proliferate at site i + 1. Since
half the moves are wasted by choosing as a target the filled site at i − 1 the front
speed is 1/2. The lack of a term linear in q will be derived below.

The second result may be understood by comparison with Eq. (1). Consider
the coarse-grained limit of our discrete model using the lattice constant as the unit
of space, and a computer time step as the time unit. It is elementary to see that the
diffusion coefficient, D, is 1/2. Now consider a collection of cells distant from one
another with concentration c. In unit time the number will increase to (1 + p)c.
By integrating Eq. (1) over space in the low density limit, we see that we must
identify k = p. The front velocity given by Eq. (1) is well known for bounded
initial conditions(11):

v = 2
√

Dk =
√

2p. (3)

Kerstein(5) verified both limits numerically. We will extend these one dimensional
results below both numerically and analytically, and also investigate the two-
dimensional case.

We note for future reference that the solutions of Eq. (1) generate an interface
with an intrinsic width (see Fig. (1)) given by:

w =
√

D/k ∝ 1/
√

p. (4)

Previous authors have not discussed the front width, but, as we will see, it is
relevant to a biological interpretation of the results.
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3. NUMERICAL RESULTS

3.1. Defining the Front

The solution to Eq. (1) is a traveling front of the general form shown in the
sketch in Fig. 1. Our data for the discrete model is the form of occupancies of
sites as a function of time. We present here a useful way to analyze such data that
allows easy comparison to continuum theories.

We start by defining the occupancy of a given column of our numerical data,
P(i). In 1d this is simply 1 or 0, depending on whether site i is occupied. In 2d it is
the average occupancy of column i , that is, the number of occupied sites with first
coordinate i divided by the width of the system (the total number of such sites)
which we denote by L . We also define the negative of the discrete derivative of P;
it is localized near the interface:

�(i) = P(i) − P(i + 1). (5)

Note that at long times we certainly have P(0) = 1, and for large enough i, P(i) =
0. Thus:

∞∑
i=0

�(i) = 1. (6)

Fig. 1. Sketch of traveling wave solution to the FK equation. The front position and width can be
defined as shown. � is the negative derivative of c, see text.
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That is, we can use � as a weight function to define averages. However, note that
�(i) can be negative for a realization with ‘holes’ behind the front. We mostly
work with ensemble averages for which � is positive except at a few points.

We put:

〈i〉 =
∞∑

i=0

i�(i) =
∞∑

i=1

P(i) = n p (7)

〈i2〉 =
∞∑

i=0

i2�(i) =
∞∑

i=1

(2i − 1)P(i), · · · (8)

Here, n p is the number of particles for i ≥ 1 in 1d, or that number divided by L in
2d. That is, we get the position of the front by the total mass of created particles.

We can show that even if � is negative for some i , 〈i2〉 ≥ 〈i〉2. From Eq. (8)
〈i2〉 = 2

∑
i P(i) − n p. However, for any realization (in 1d) we must have exactly

n p points where P(i) = 1. Thus

∑
i=1

i P(i) ≥
n p∑

i=1

i = n p(n p + 1)/2.

Therefore:

〈i2〉 − 〈i〉2 ≥ n p(n p + 1) − n p − n2
p = 0.

The front speed is defined as

v = lim
t→∞〈i〉/t.

The front width is given by

w =
√

〈i2〉 − 〈i〉2.

3.2. One Dimension

The results of our simulations are shown in Figs. (2) and (3). The front speeds
were found by fitting 〈i〉 to vt . It is remarkable that the front speed is quite well
defined even for very small p. Of course, for p = 0 the speed is not defined at all.

The convergence to the continuum predictions is quite evident in the figures.
Note that the prediction for v(p) does not contain an adjustable constant, so the
agreement is quite remarkable. However, following the work of (2,9) we would
expect the corrections to the continuum prediction, Eq. (3), to follow:

v(p) =
√

2p − A/ ln2(p), (9)
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Fig. 2. The front speed, v(p) in one dimension. The numerical simulations are averaged over 50
realizations for large p and up to 1000 for the smallest p to give the errorbars. Upper line is the
continuum approximation, Eq. (3).

Fig. 3. The front width, w(p) from the same simulations as Fig. (2). The width is arbitrary up to a
numerical factor. Hence the continuum approximation (upper line), Eq. (4) is multiplied by a fitting
factor.
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Fig. 4. The front speed in two dimensions. The continuum approximation is from Eq. (10).

where A is a factor of order unity. In fact, this expression does not fit our results
very well. We think that the smallest p that we can reasonably attain in this model
do not allow us to test the asymptotic formula of Eq. (9).

3.3. Two Dimensions

Our numerical results for v(p) in 2d are given in Fig. 4. Note that as p → 1
v(p) > 0.5. Analysis of the processes the contribute to front motion in 2d is more
complex than in 1d where v(1) = 0.5 is an exact result. In particular the front will
always be rough (see below) so that particles behind the leading particle will not
be blocked from advancing.

For p � 1 we expect that we should converge to the result of the FK equation,
namely that v(p) ∝ √

p. However, for 2d we have no convincing a priori estimate
of the prefactor. Following the treatment above, we might proceed by noting that
in 2d D = 1/4 for the discrete model. We then have:

v(p) ≈ √
p. (10)

As we can see from the figure, this is a reasonable estimate for small p. The best
fit is v(p) ≈ 0.87

√
p.

In two dimensions the width of the interface is a more complicated object
than in one dimension(11). The reason for this is that in the presence of fluctuations
the front can do two different things: it can spread so that it has an intrinsic width
(as in 1d) by having a reduced density in the interface region, but also it can
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Fig. 5. Scaling of w2(p = 1) with time. From bottom to top, L = 64, 128, 256, 512. Also shown are
lines giving the expected scaling for early times, w2 ∝ t2/3, and late times, w2 ∝ L .

wander. Indeed, for p = 1 wandering is the only effect possible. (Recall that in 1d
w(p = 1) = 0.) In fact, in the large p regime this model is identical to the Eden
model(3) where perimeter sites all grow with equal probability.

The phenomenology of the Eden model is well understood(11). The wandering
of the interface is time-dependent and obeys (in our system of units):

w ∝ t1/3 t � L3/2

∝ L1/2 t 
 L3/2. (11)

This is indeed the case here: see Fig. 5. The agreement with the Eq. (11) is
reasonable. We have verified that the scaling behavior given in Eq. (11) persists
down to p = 0.5.

However, as p decreases the intrinsic width grows rapidly. As soon as the
intrinsic width exceeds the saturated width from wandering (the second line of
Eq. (11)) we will loose the power-law time dependene of w. In Fig. 6 we show the
saturated width for a range of p.

4. RESULTS FOR p ≈ 1 IN ONE DIMENSION

For p ≈ 1 the dominant process is proliferation. For p = 1 this gives rise to
a simple configuration as we have mentioned above: all sites behind the front are
occupied, and the front advances because the leading cell proliferates. For q � 1
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Fig. 6. The saturated value of w2 in 2d. Also shown is the continuum approximation, w2 ∝ 1/p. The
proportionality constant is the best fit.

there is a small probability q/2 of creating a configuration with a ‘hole.’ Because
the model is very simple we can use this observation to work out the power series
expansion of v(q).

4.1. Exact Solution of Model for States with One Hole

Suppose we consider only states with zero holes or one hole at any position.
We expect these to be the dominant configurations small q. Define the states:

• |0〉 = (. . . 11111000 . . .)
• |1〉 = (. . . 11101000 . . .)
• |2〉 = (. . . 11011000 . . .)
• |3〉 = (. . . 10111000 . . .), etc.

We allow transitions only between these states. The transitions and their associated
probabilities Wi j ≡ W (|i〉 → | j〉) are:

W00 = p/2 W01 = q/2

W10 = (1 + p)/2 W12 = 1/2

Wn0 = p Wn,n−1 = q/2 Wn,n+1 = 1/2 (n > 1) (12)

Note that in many of these transitions the actual location of the rightmost 1 changes.
We always define states in a frame moving with the front.
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The equations for the probabilities are:

P0W01 =
∞∑

n=1

Pn Wn0

P1(W10 + W12) = P0W01 + P2W21

Pn(Wn0 + Wn,n−1 + Wn,n+1) = Pn−1Wn−1,n + Pn+1Wn+1,n (n > 1) (13)

Using Eq. (12) we have:

(q

2

)
P0 =

(
1 + p

2

)
P1 + p

∞∑
n=2

Pn

(
3 − q

2

)
P1 =

(q

2

)
P0 +

(q

2

)
P2

(
3 − q

2

)
Pn =

(
1

2

)
Pn−1 +

(q

2

)
Pn+1 (n > 1) (14)

For n > 1, we make the ansatz Pn = an−1 P1, and inserting this in the last
equation above, we find:(

3 − q

2

)
a = 1

2
+

(q

2

)
a2

a = 3 − q −
√

9 − 10q + q2

2q
= 1

3
+ 4q

27
+ 2q2

243
. . . . (15)

Next, we substitute P2 = a P1 into the second line of Eq. (14) and use∑∞
n=2 Pn = 1 − P0 − P1, in the first line of Eq. (14). Solving these two equa-

tions we find:

P0 = 2(1 − q)(3 − (1 + a)q)

6 − (5 + 2a)q + aq2

= 1 − q

2
− q2

12
− 11q3

216
− 137q3

3888
. . . (16)

Thus

P1 = q

3
− q2

54
− 19q3

972
+ . . .

P2 = a P1 = q

9
+ 7q2

162
+ 53q3

2916
+ . . .

P3 = a P2 = q

27
+ 5q2

162
+ 7q3

324
+ . . .



A Stochastic Model for Wound Healing 919

Fig. 7. Results for v(p) in one dimension for 0.5 < p < 1. The �’s are the numerical results, the dotted
line is the quadratic approximation, and the solid line the power series of Eq. (27).

The velocity can be found from

v = 1

2
− q P(×01)

2
, (17)

where × is any string of 0’s and 1’s, and we omit the zeros to the right. In this case,
P(×01) = P1, because |1〉 is the only one-hole state that ends with (01). Thus, we
have

v = 1

2
− q2

6
+ q3

108
+ 19q4

1944
. . . (18)

We have precise numerical data for v(q) for small q; see Fig. 7. We find that
Eq. (18) is correct only up to quadratic order, as we might expect in the one-hole
approximation. For example, for q = 0.1, we find numerically that v = 0.498292,
while 1/2 − q2/6 = 0.49833, so that the coefficient of q3 should be negative, not
positive. Note q3/108 ≈ 0.00001.

4.2. Reduced Distribution Functions

We now return to the solution of the full model as a power series in q. In the
previous section we got results accurate to second order in q. To go further we
introduce reduced distribution functions. This method would, in principle, allow
the power-series expansion to be carried to arbitrary order.
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A reduced distribution function is probability to have a given pattern near the
front for any pattern to the left. For example, as in Eq. (17):

P(×01) = prob(. . . xxx0100 . . .)

where the sites marked as x are any string. Likewise, we define P(×11),
P(×001), P(×101), and so forth. Note that, for example:

P(×001) + P(×101) = P(×01)

P(×011) + P(×111) = P(×11).

We can derive a hierarchy of equations based on events that change the last
n sites. For n = 2, consider all events that change the probability that the last two
sites are (11). We have:

( p

2
+ p

2

)
P(×001) +

(
1

2
+ 1

2
+ p

2

)
P(×101)

−
(q

2
+ q

2

)
P(×011) −

(q

2

)
P(×111) = 0. (19)

The positive terms represent events that increase the population of states ending
with (11), and the negative terms represent events that decrease that population.
Next we write all states in terms of P(×01), P(×001), P(×011), i.e., states that
have a leading zero on the left. For the other states, we use:

P(×101) = P(×01) − P(×001) (20)

P(×111) = P(×11) − P(×011) = 1 − P(×01) − P(×011). (21)

Then Eq. (19) becomes:

q

2
−

(
3

2

)
P(×01) +

(
1 + q

2

)
P(×001) +

(q

2

)
P(×011) = 0. (22)

Now, we expect that P(×01) = O(q), P(×011) = O(q), and P(×001) = O(q2),
because a diffusive move (weight q/2) is required to produce each empty site
starting from state |0〉. To order q we find from Eq. (22)

P(×01) = q

3
+ O(q2) (23)

which agrees with the leading behavior found in the one-hole approximation. This
implies that the velocity is given by:

v = 1

2
− q P(×01)

2
= 1

2
− q2

6
+ O(q3) (24)

Note that there is no linear term, as mentioned above.
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For the next-order behavior, we use:

P(×011) = q

9
+ O(q2) (25)

P(×001) = q2

9
+ O(q3) (26)

where the leading behavior in Eq. (25) is from the one-hole approximation. The
second line follows from a simple argument: the leading behavior of P(×001)
is determined by P(. . . 1001), and its leading behavior is determined by the
equation:

P(. . . 1001)(3/2) = P(. . . 101)(q/2) + P(. . . 10001)(p/2 + q/2) + . . .

Again . . . represents a string of all 1’s to the left. The second and higher-order terms
on the right-hand-side are of order q3, so to leading order we find P(. . . 1001) =
(q/3)P(. . . 101) = q2/9, which proves Eq. (26).

Using these results, Eq. (22) implies

P(×01) = q

3
+ 2q2

27
+ O(q3)

which yields

v = 1

2
− q2

6
− q3

27
+ O(q4).

For the case q = 0.1, these three terms give v = 0.498296, in close agreement
with the numerical simulations, which give 0.498292.

We have carried this procedure to the next order, n = 3, by straightforward
extensions of what we have given above. The result for the velocity is:

v = 1

2
− q2

6
− q3

27
− 49q4

1215
+ O(q5) (27)

For q = 0.1, the predicted velocity is now 0.4982923, in complete agreement
with the numerical result 0.498292. Even at q = 0.5, the prediction of Eq. (27),
v = 0.4511831, is within 0.2% of the measured value, 0.45014.

5. APPLICATION TO BIOLOGY

Our emphasis in this paper has been an analysis of the model introduced in
the introduction. It is interesting, nevertheless, to make some comments on the
relationship of this model to real biological systems. Needless to say, our view of
wound repair is very much oversimplified. In a real tissue there are various types of
cells such as stem cells which have different behavior with respect to proliferation
than others. Further, the proliferation cycle is complex, and involves time delays
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that we have not considered except in a rough way. Also, the initiation of wound
healing is probably mediated by chemical signals rather than cell proximity as we
have assumed(14).

However, if we are interested in macroscopic features such as the velocity
and shape of the moving front, we are entitled to hope that many of these details
will be unimportant. We can then ask how to translate the parameters of our model
to a real system. We will take as an example the experiment of Sheardown and
Cheng(12) on the wounding of rabbit corneas.

In(12) the emphasis was on modeling with the FK equation. To this end
the authors measured D in Eq. (1) by looking at the initial stage of invasion of
cultured cells, and found D = 1.61 · 10−6mm2/s. The parameter k in Eq. (1) is
related to the mitotic rate of cells which was measured by labeling with a dye:
k−1 = 4.3 days. Using these parameters the authors found reasonable agreement
for the velocity of the front. Further, for these parameters, the shape of the front
is quite ‘fuzzy’, that is, the width, w, is many cells across so that the wound fills
in gradually, as observed. We should note that this is in sharp contrast to other
observations(8,13) where the advancing front is quite sharp. We will return to this
point below.

We now attempt to translate these observations into the parameters of our
discrete model. We need to define units of length and time. For length it is natural
to take a typical cell size, d = 10µ as the lattice unit. It is clear that we can define
the hopping time, τhop by D = d2/2τhop. This turns out to be about 108 seconds
for the rabbit cornea. However, there is another characteristic time, the cell cycling
time, τcyc = 1/k. This is 3.7 · 105 seconds for the same experiment. In our model,
in N computer cycles there are N p cell cycles and Nq hops. Thus our time unit
should be qτhop + pτcyc.

To determine the biological p note that p/q = τcyc/τhop. For the rabbit ex-
periment we get p = 3 · 10−4. This is the regime of very diffuse, fuzzy inter-
faces, as observed. In this regime FK modeling should be reasonable, though, as
Fig. 2 shows, there are still differences between FK and the discrete model in this
regime.

If we apply the same set of considerations to the systems studied in(8,13) we
find a contradiction. The width of the interface should be quite substantial for the
small p’s relevant to biological experiments, cf. Fig. 3. In fact, FK modeling shows
the same thing. However, direct observation in these cases shows that the front is
quite sharp.

A possible solution to this quandary is given by(14) where it is pointed out that
cell-cell adhesion can have an effect on wound healing in some systems. In fact,
for the cells that they study they can regulate the adhesion, and hence the front
width, by controlling the supply of Ca++ ion in the solution bathing the cells. A
detailed discrete model in their paper shows these effects too. This is an interesting
avenue for future work.
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6. SUMMARY AND CONCLUSIONS

In this paper we have extended the work of (1,5) on a discrete model. We
have shown that the model can be interpreted as a representation of the important
biological process of wound healing. We have given numerical results in one and
two dimensions, and a power-series expansion of the velocity around q = 0 in
one dimension. We have shown that the biologically interesting regime is that of
p � 1.

There are a number of further extensions of this work that could be pursued.
Our method of reduced distribution functions should be applicable to models with
more complex rules as long as a sensible expansion parameter, analogous to q, is
present. We do not understand why the convergence to the FK limit is different
in our case than in the generic cases discussed in(9). A more extensive numerical
study may be called for.

We think that the most interesting extension of the model would be to include
cell-cell adhesion, in the spirit of(14,15). This work is in progress.
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