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Percolation and Cluster Distribution. III. 
Algorithms for the Site-Bond Problem 
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Algorithms for estimating the percolation probabilities and cluster size 
distribution are given in the framework of a Monte Carlo simulation for 
disordered lattices for the generalized site-bond problem. The site-bond 
approach is useful when a percolation process cannot be exclusively de- 
scribed in the context of pure site or pure bond percolation. An extended 
multiple labeling technique (ECMLT) is introduced for the generalized 
problem. The ECMLT is applied to the site-bond percolation problem 
for square and triangular lattices. Numerical data are given for lattices 
containing up to 16 million sites. An application to polymer gelation 
is suggested. 

KEY WORDS: Percolation zone; Monte Carlo; site-bond; tree; UNION 
operation; FIND operation. 

1. INTRODUCTION 

The concept of percolation has been useful in describing a variety of physical, 
chemical, and biological phenomenaJ 1-3~ Two distinct types of percolation 
processes are recognized. These are bond percolation and site percolation. 
Permeation of  fluids through porous media (4~ and gel formation by polymers 
via cross-linking (5/can be explained in terms of the bond percolation theory, ~ 
whereas crystal phenomena, such as spontaneous magnetization of dilute 
ferromagnets, ~6) diffusion in binary alloys, (7,8) and exciton percolation in 
molecular crystals, (9,1~ are described within the framework of  site percolation. 
Site and bond percolation processes have both been suggested for electrical 
conductivity models of disordered materials. (11-~ 

The calculation of real lattice percolation parameters, such as percolation 
threshold, percolation probabilities, and cluster size distribution, proved not 
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to be a trivial task315,16~ Percolation problems of tree lattices have been 
solved analytically, (lv~ so that exact results are available for these lattices. Real 
lattices contain clusters with cyclic components ~3,5~ which are absent from the 
tree lattices. The existence of irregular ring structures in real lattices precludes 
an analytical solution for the percolation problems of real lattices. 

Real lattices are approached by two basically different methods. (a) 
Series expansion. This method is based on series expansion in terms of site 
or bond probabilities (~8~ for clusters containing up to 20 sites. The results of 
the series expansion method can be extrapolated to determine the critical 
percolation threshold. (b) Monte Carlo simulation. In this method a finite 
crystal is simulated on the computer. The cluster size distribution, the percola- 
tion probability, and the percolation threshold (critical site or bond occupa- 
tion probabilities) are estimated ~9-25~ for the simulated lattice. 

Both the series expansion method and the Monte Carlo simulation have 
shortcomings. The series expansion method is not applicable for large 
clusters, because of the rapid increase in the number of geometrical cluster 
shapes as the cluster size increases. The series expansion method is used for 
short-range interactions and for regular lattices. An extension of the method 
to irregular structures and long-range interactions would not be a simple task 
and probably not practical. The Monte Carlo simulation, on the other hand, 
is relatively easy to apply to regular lattice structures, and can be also used 
on irregular structures which are described in terms of the continuous per- 
colation theory. ~z6'27) The Monte Carlo simulation is applicable on either 
side of the percolation threshold. The major deficiency of the Monte Carlo 
approach is related to the very nature of the procedure, which can only 
provide an estimate for the percolation probabilities and the cluster size 
distribution rather than actually calculate them. Increasing the sample size 
may improve the accuracy and the statistics of the simulation results, but 
may also be very costly in terms of computer time and space. A careful 
construction of efficient computer algorithms is of prime importance for 
treating large samples. r An ill-chosen algorithm may be impractical for 
application to a large system because of inadequate time and space 
complexitiesJ 29) 

In this paper we shall introduce algorithms for the generalized site-bond 
problem. ~26,3~ This generalization is useful when a percolation process cannot 
be exclusively described as a pure bond or a pure site percolation processJ 3~ 
The site-bond problem can be effectively treated by utilizing an extension of 
the cluster multiple labeling technique introduced in a recent paper r (I). 
The extended cluster multiple labeling technique (ECMLT) is applied in 
coniunction with a Monte Carlo simulation of a random lattice. The ECMLT 
determines the duster size distribution from which the pertinent percolation 
parameters can be estimated525~ 
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Dean (2~ proposed a scheme where the bond problem for a crystal 
structure could be transformed to a site problem of another crystal structure 
(usually more complex). This seemed to be a convenient method, as it 
appeared that it would be simpler to simulate the site percolation problem 
rather than the bond problem on a computer. The ECMLT can handle the 
site, the bond, and the site-bond percolation problems on the same basis. 

In Section 2 some definitions pertaining to cluster formation and 
percolation phenomena are given. The basic features of the ECMLT are 
described in Section 3. The algorithms pertaining to the ECMLT are outlined 
in Section 4, and a simple example illustrating the implementation and 
graph-theoretical representation of  the algorithms is presented in Section 5. 
Numerical data are given in Section 6 for the site-bond problem for square 
and triangular lattices. These data are given for large simulated lattices con- 
taining up to 16 million sites, as it has been observed ~31) (paper II) that the 
fluctuations of the Monte Carlo result are relatively large for two-dimensional 
lattices.(32) 

2. T H E  SITE, T H E  B O N D ,  A N D  T H E  
S I T E - B O N D  P R O B L E M S  

Since the site-bond problem has been vaguely addressed in the literature, 
it would be instructive to review the problem. For  this purpose let us consider 
a planar square lattice with nearest neighbor interactions only. The site 
percolation problem for this lattice is that sites on the lattice are occupied 
with a probability c (or unoccupied with a probability 1 - c). In the site 
case once two adjacent sites are occupied, we assume that there exists a bond 
connecting these sites; hence, they are members of the same cluster. 

In the bond percolation problem we assume that all sites are occupied; 
however, the connecting bond is either open with a probability p or blocked 
with a probability 1 - p. Thus, the formation of clusters in the bond case 
depends on the existence (or absence) of bonds connecting sites. 

The site-bond problem is a logical extension of the pure bond and the 
pure site problems. In the site-bond case for a square lattice a site is occupied 
with a probability c and is connected to its occupied neighbors with a bond 
probability p. The square lattice is isotropic, so all bonds are equivalent. I f  
we were concerned with a rectangular lattice, we would have two bond 
probability parameters p{al} and p{a2} corresponding to the al and a2 
primitive lattice vectors. 

This reasoning could be extended to more complex lattices and to neigh- 
bors other than nearest neighbors. In the site-bond problem the percolation 
probability P is 

P = P(c, p{Rd, p{R2},..., p{R~}) (1) 
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where p{Rn} are the bond probabilities that two sites S~ and Sj separated by a 
vector R~ = S~ - Sj are connected. The pure site and the pure bond per- 
colations can be given as limiting cases of Eq. (1). The site percolation 
probability is now given by 

P = P(c, p{R~} = 1, p{R2} = ,..., p{Rh} = 1) (2) 

and the bond percolation probability is given by 

P = P(e = 1, p{R1}, p{R2},..., p{Rh}) (3) 

Equation (1) defines a percolation zone in an (h + 1)-dimensional space. This 
zone is bounded by the critical percolation surface Ps, where 

Ps(e, p(R1}, p{R2},..., p{Rh}) = 0 (4) 

The critical percolation surface shrinks to a single point for the special cases 
of the site and the bond (with a single p parameter) problems. 

3. THE  E X T E N D E D  CLUSTER MULTIPLE 
LABELING T E C H N I Q U E  

The extended cluster multiple labeling technique shares many common 
features with its predecessor the cluster multiple labeling technique, which 
was described in I. (25~ Thus, this discussion will mainly be focused on the 
special characteristics of the ECMLT. The goals of the ECMLT are to classify 
clusters according to their sizes and to determine the cluster size distributions 
for the site-bond problem. A simulated crystal is considered for which the 
site occupation probability is c and the bond connectivity probabilities are 
p{R1}, p{R2},..., p{R~}. A site S~ in the crystal and bonds originating from this 
site are assigned random numbers e~ and/3~j, respectively, where 0 < e~ < 1 
and 0 </3~j < 1. The number of/3~j assigned to a site S~ is equal to the number 
of connecting bonds extending from S~ to sites Sj. These Sj sites are defined 
as neighbors of S~. It should be noted that/3~j =/3j~. Crystal sites are inspected 
sequentially to determine the cluster classification of the sites. If  c h > c, site 
S~ is vacant, and L(i)  is set to 0, where L is the site occupation vector. When 
a~ < c, site St is occupied, and L(i)  is assigned a cluster label mt ~, where 
is a symbolic name for the cluster containing S~. A cluster ~ may be assigned 
several cluster labels. These are given as a set of natural numbers: 

{ m l  ~, m2 ~, . . . .  ms  ~ . . . . .  m,~ , . . . }  (5)  

In this set only one number is regarded as the proper cluster label, which we 
shall designate as ms ~. This is the smallest number of set (5). The following 
set of integers provides the connections between the rnt" labels: 

{N(ml~), N(mz"),..., N(m~ ~) ..... N(m,~),...} (6) 
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In (6), N(rnJ)  is the only positive integer member of the set, and denotes the 
number of occupied sites belonging to the ~ cluster. The remaining members 
of (6) are negative integers, providing links between the other me ~ labels and 
the proper label mJ.  The mt ~ labels are related to the m J  label by 

ms ~ = - N(  - N (  . . . .  N (  - N(mt'~)) ...)) (7) 

The assignment of a cluster label to an occupied site S, depends on the 
cluster assignments of its previously labeled neighbors Sj. The possibilities 
for the cluster label assignment for site S~ are as follows: 

(a) If  the following inequalities hold for all the previously labeled 
neighbor sites Sg 

fl~j > p{S~ - Sj} or L ( j )  = 0 (8) 

then a new cluster label ms" is assigned to site S~ and also N(ms ~) = 1 and 
L(i )  = ms" are set. 

(b) If  the following inequalities hold for some or all previously labeled 
neighbor sites Ss 

L ( j )  > 0 and /3~j < p{S~ - S~} (9) 

then sites Sj that obey inequalities (9) and site S~ are members of the same 
cluster. Let us assume now that site S~ links q distinct fragments, where each 
fragment is denoted by a different proper cluster label mJ. Also, a cluster 
fragment a has the smallest proper cluster label of the q cluster fragments. 
This proper label is mJ,  so L(i)  is set L(i )  = rn~ ~. Now N ( m J )  would denote 
the total number of sites in the linked cluster. The other q - 1 of the N ( m J )  
that correspond to the q - 1 cluster fragments are reset to N ( m J )  = - m J .  

It should be noted that the readjustments of the N's are temporary and that 
only after the entire crystal is scanned and labeled can the cluster sizes be 
determined from the positive members of the N set. 

The probability Pn that a site is occupied and belongs to a cluster of  size 
n given for a set of parameters c, p{R1}, p{R2},..., p{Rh} can be estimated from 

P,~ = inn/T (10) 

where i~ denotes the number of clusters of size n and T is the total number 
of sites in the simulated lattice. The percolation probability (1) can be deter- 
mined from Eq. (10) for n = n . . . .  where n~ax denotes the size of the largest 
cluster. The evaluation of the percolation probability P is performed within 
the percolation zone. The critical percolation surface (4) can be determined 
for the simulated lattice by extending the I~,v criterion introduced in I (25~ for 
the site problem to the general site-bond problem. 
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4. T H E  A L G O R I T H M S  

The multiple labeling process described in Section 3 can conveniently 
be presented in terms of graph theory. Each cluster label set (5) can be 
represented by a tree graph ~33~ (see Fig. 5). The labels are represented by the 
tree vertices, and the cluster proper label m~ ~ is denoted by the root of the tree. 
The length of the path from a given vertex to the root is equal to the number 
of edges connecting the vertex to the root. 

The algorithms to be given in this section involve the following pro- 
cedures: (a) generation of a random crystal; (b) UNION operations on 
disjoint sets [labeled sets (5)]; and (c) FIND operations, to determine the 
proper label (root) of a given labeled site. 

UNION-FIND algorithms analogous to the ones presented here have 
been proposed for data set processing/TM Specifically, UNION-FIND 
algorithms have been applied to perform '~ equivalencing" operations ~35~ on 
identifiers in computer languages such as Assembler and Fortran. 

For the sake of clarity and compactness, we have chosen to present the 
algorithms developed for the ECMLT in Pigin Algol format. ~34~ The lattice 
generation and labeling process is illustrated in Fig. 1. A vector L, whose 
elements represent the lattice sites, provides the data base for the problem. 
Line 1 of Fig. 1 specifies that lattice sites are scanned sequentially from the 
first site to the last site. If  a site is not occupied (line 2) L[SITE] is set to 0; 
otherwise, the labeling process of L[SITE] begins, and all previously neigh- 
boring labeled sites are searched (line 3). Forward neighboring sites are not 
searched, as they have not yet been created or labeled. Thus, for nearest 
neighbors in square and triangular lattices, two and three neighbors are 
scanned, respectively. It should be noted that a simple relationship exists 
between the index SITE and the indices NEIGHBOR of L because of the 
translational symmetry of regular lattices. Line 4 of Fig. 1 corresponds to the 
conditional expressions given by (9). If SITE and NEIGHBOR are connected, 
then routine CLASSIFY is envoked to determine the proper label 
NEIGHBOR__LABEL of L[NEIGHBOR] (line 5). Initially, the parameter 
LABEL is determined by the proper label of the first encountered labeled 
L[NEIGHBOR]. If  there is more than one occupied neighboring site, a UNION 
operation is performed on the labeled sets, provided that the roots of the 
neighboring sites are different from LABEL (line 6). In line 7, LABEL 
becomes the combined root of LABEL and N E I G H B O R _ L A B E L  trees 
if LABEL < NEIGHBOR__LABEL; otherwise, LABEL is set to 
NEI G H B O R _L ABEL.  If  no neighboring sites are occupied (line 8), then 
a new label is generated by the variable COUNT. L[SITE] is labeled with 
LABEL (line 9), and N[LABEL] is incremented by 1 as the cluster size 
increases when L[SITE] is labeled. 
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LATTICE GENERATION AND LABELING ROUTINE 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

-BEGIN 

COUNT-a-O; 

FOR SITE'J-FIRST UNTIL LAST DO 

!IF SRAND[SITE] >c THEN L[SITE] "I"0 

ELSE 

'BEGIN 

LABEL~-O; 

FOR all previously labeled neighbors of SITE DO 

IF L[NEIGHBOR] > 0 AND BRAND[SITE,NEIGHBOR]~p THEN 

[BEGIN 
I CLASSIFY(L[NEIGHBOR],NEIGHBORLABEL); 
=IF LABEL = 0 THEN LAHEL~NEIGHBOR LABEL; 

IF NEIGHBOR LABEL # LABEL THEN 

I WITHOUT LOSS OF GENERALITY assume 
LABEL < NEIGHBOR_LABEL OTHERWISE interchange 

m 

Ithe role of LABEL with NEIGHBOR LABEL 

I [BEGIN 
IN[LABEL]~--N[LABEL] + N[NEIGHBOR_LABEL]; 

I N[NEIGHBOR LABEL]",',--LABEL; 

L;~;GHBOR_ LABEL-LABEL; 

[END 

8. IF LABEL---- 0 THEN 

BEGIN 

COUNT ~-- COUNT + 1 ; 

LABEL 4'- COUNT ; 

N [LABEL] ~ 0; 

END 

9. L[SITE] 4~- LABEL; 

N[LABEL] d~--N[LABEL] + I; 

-END 

"END 

Fig. 1. Lattice generation and labeling routine for the site-bond case. The vector 
SRAND and the matrix BRAND correspond to the site and bond random number sets, 
respectively [see (8) and (9)1. c and p are the site and bond occupation probabilities as 
defined in Section 2. L is the lattice vector, where the elements of L denote the lattice 
sites. The N vector is defined by (6). 

The lattice generation and site labeling algorithm given in Fig 1 can be 
applied to the pure bond and the pure site problems.  This is accompl ished by 
setting c = 1 (line 2) and p = 1 for all neighbors (line 4) for the bond and site 
problems,  respectively. 

The procedure C L A S S I F Y ,  (25) which represents a F I N D  algorithm, (34) 
is displayed in Fig. 2. The parameter M (line 1) is a site label, whereas R O O T  
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DETERMINATION OF THE PROPER CLUSTER LABEL (ROOT) 

ROUTINE 

1 .  

2 .  

3 .  

4 .  

5 .  

PROCEDURE CLASSIFY(M,ROOT): 

-BEGIN 

ROOT'b-M; 

IF N[ROOT] < 0 THEN 

-BEGIN 

ROOT-Q--N[ROOT]; 

IF N[BOOT] <0 THEN 

BEGIN 

REPEAT ROOT'~--N[ROOT] UNTIL N[ROOT] > 0; 

h 
N [ M ] ' , I - - R O O T ;  

END 

"END 

"END 

Fig. 2. Procedure CLASSIFY (25~ determines the proper label ROOT of a given site 
label M. The N vector is defined by (6). 

represents the proper  label for that site. The procedure initially investigates 
the tree vertex corresponding to M (line 2). If  the condition given in line 2 is 
true, then M is the ROOT; otherwise, the procedure moves to a higher vertex 
(line 3). The search for the root continues until the ROOT is found (line 4). 
Line 5 denotes a partial path compression for M, when the path length from 
M to ROOT is greater than one edge. Following the path compression, M is 
attached directly to ROOT through a single edge. The reason for performing 
path compression on the tree vertices is to speed up CLASSIFY for successive 
encounters with the label M. 

The pertinent feature of the ECMLT and the algorithms associated with 
it is that only a single scan of the crystal is required for a given set of param- 
eters c, p{R1},..., p{Rh}. As crystal scanning is performed sequentially, the 
random number sets SRAND[SITE] and BRAND[SITE,NEIGHBOR] need 
not be stored in computer memory; they are generated as a particular site is 
inspected and labeled. Furthermore, only a small fraction of the elements 
of the L vector has to be concurrently stored in computer memory. 

The algorithms given in Figs. 1 and 2 provide the basic approach to the 
ECMLT. However, there is still room for improvements in terms of computer 
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space and time. This can be achieved, for example, by introducing the 
following modifications in the algorithms: 

(a) Cluster labels can be recycled ~25~ because the labeling process 
involves only a single scan of the lattice. As the scanning progresses, many 
clusters would have been completely scanned and their labels could be reused. 
This recycling process of labels would lead to a reduction in the size of the 
vector N. 

(b) Time could be saved for a sequence of simulations, where each 
simulation run 2 would correspond to an increased value of c (while the p 
parameters are held constant). Here, the entire vectors L and N would be 
saved for successive runs. In each successive simulation run, when c is 
incremented by Dc > 0 to c + Dc, only DcT sites would be labeled, as 
opposed to (c + Dc)T sites in the original algorithm. In this approach all 
neighbors of a given site are searched in each run (except for the first run), 
because all neighbors might have been labeled in previous runs. The approach 
suggested here is especially useful for the determination of the critical percola- 
tion surface (4) when series of simulations for small increments in c are called 
for. 

The limiting factor for the above modifications is that they cannot be 
applied simultaneously. In a multiscan approach labels cannot be recycled. 
Thus, by saving time, computer space is lost. 

5. G R A P H - T H E O R E T I C A L  R E P R E S E N T A T I O N  OF  T H E  
L A B E L E D  SETS 

As indicated in previous sections, a graph-theoretical approach can 
provide a convenient representation for the labeled sets (5). This approach is 
illustrated here by following a simple example. We shall consider a square 
lattice shown in Fig. 3. The lattice contains 29 x 29 sites and is occupied 
with probabilities c = 0.57 and p = 1 (site case~25~). We shall focus our atten- 
tion now on a single cluster which is encountered for the first time during the 
lattice scan at the site denoted by a circle in Fig. 3. This site is given aproper 
label 47, as shown in Fig. 4. Whenever sites with proper labels other than 47 
encounter a site belonging to the 47 cluster, a UNIO N  operation is performed. 
The growth of  the 47 cluster through UNION operations on directed trees 
is displayed in Fig. 5. In phase (c) of  the growth, a path compression opera- 
tion is performed on the label 63. This label is now attached directly to the 
root, as illustrated in phase (d). 

2 A simulation run is a run for which the cluster size distribution is determined for a 
single set of c and p parameters. 
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z 2  
-.... 

Fig. 5. Graph-theoretical representation for the labeled sets corresponding to the cluster 
denoted by the proper label 47 in Fig. 4. (Note that edges are entering the roots but none 
are pointing out.) The union of the trees is denoted by the dashed lines. 

By inspecting the various phases of  the growth of the 47 tree in Fig. 5, 
it can be observed that the rightmost vertices, as well as the root, participate 
actively in the U N I O N  operations. The reason for the inactivity of  the other 
labels can be attributed to the application of a single scanning sequential 
process. This feature of  the labeling process permits the recycling of inactive 
labels even if the clusters to which they belong are not completely scanned. 

6. N U M E R I C A L  R E S U L T S  

The algorithms given in this paper were applied to square and triangular 
lattices. Numerical data will be given for these structures. 

In the first example a square lattice is studied for which only four nearest 
sites are considered to be neighbors. The critical percolation curve P~(c, p) = 0 
of the square lattice is determined for various values of  c and p, where p 
denotes the bond probability of  the four equivalent neighbors. Results for a 
lattice containing t00 x 100 sites are displayed in Figs. 6 and 7. In Fig. 6 
the percolation probability P is given as function of c for some values of  
p. The percolation zone bounded by the critical percolation curve (4) is 
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I~O 

0.8 

P 

0.6 

O,4 

02 

I I I I 

0,6 0.7 ~ 8  0.9 I~ 
c 

Fig. 6. Percola t ion  probabi l i ty  P vs. c for 
s o m e  values  o f  p for  a squa re  lattice 
con ta in ing  100 x 100 sites, wi th  free 
boundar ies .  

shown in Fig. 7. It should be noted that for a lattice of a given size and 
structure the same site and bond random number sets are used for all runs 
in order to minimize fluctuations. The waviness of the critical percolation 
curve can be attributed to the small lattice studied in this example. We have 
found ~31~ 1.5~o variations in the percolation threshold values for the site 
problem of 100 x 100 site lattices. 

The change in the percolation threshold in the transition from a tri- 
angular lattice topology to a square lattice topology is given in Fig. 8. In this 
example two bonds of the triangular lattice are assigned a varying bond 
probability p, where p is varied from 1 to 0 corresponding to the transition 
from triangular to square lattice. As lattices containing 2000 x 2000 sites are 
considered, the fluctuations are much smaller than in the previous example. 
Here the labels are recycled to reduce the storage requirements. The triangular 
to square lattice transition seems to follow a straight line, as can be observed 
from Fig. 8. 

The transition from a triangular lattice topology to a square lattice 
topology is further illustrated in Table I, where data on the cluster size 
distribution are given for some values of c and p in the vicinity of the critical 
percolation curve. In Table II the cluster size distribution is given for the site 
problem of large triangular and square lattices. The pertinent feature of these 
distributions is that a number of large and intermediate clusters exist in the 
vicinity of the critical percolation curve. The CPU (central processor unit) 
time for the 4,000,000-site and 16,000,000-site lattices is approximately 10 
and 40 sec, respectively. We ran all the simulations on the University of 
Michigan Ahmdal 470 computer. 
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Fig. 7. Critical percolation curve, Eq. (4), 
for a square lattice containing 100 • 100 
sites, with free boundaries. 

7. D I S C U S S I O N  

I 

0.6 0.7 0.8 Q9 1.0 
o 

In I (~5~ and also in Section 6 o f  this paper, the efficiency of  the multiple 
labeling process has been demonstrated.  I t  was shown that  the C P U  time 
required to perform a simulation run was essentially linear in the number  o f  
lattice sites. <25~ In t roducing bond  probabilities does not  alter the picture 
significantly, as the number  o f  algori thm instructions associated with bonds 
is propor t ional  to the lattice size. Since for each run only a single scan of  the 

0.6C 

C 

0.55 

0,5( 

I i J 
0.25 0.50 0.75 I.O0 

P 

Fig. 8. Critical percolation curve Ps(e, p) = 0 for a triangular to square lattice transition. 
Herep denotes the bond probability for two bonds of the triangular crystal. Free boundaries 
were used. 
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lattice is performed, the contribution to the time complexity (29~ of the bond in- 
structions is linear in the size of the problem. The only nonlinearity associated 
with the algorithms is related to procedure CLASSIFY (see Section 5). 

A useful feature of the ECMLT is the flexibility of the method. Although 
only regular lattices are considered in this paper, it is possible to extend the 
method quite readily to irregular structures encountered in continuous 
percolation processes. ~26'27'a8~ A variety of data bases can be used in con- 
junction with the ECMLT;  however, costly linked lists would not be required 
in most cases. 

In our introductory remarks we emphasized the problems inherent in 
simulating large lattices. A problem of a different nature requiring further 
investigation is that of the random number generator associated with the 
Monte Carlo Simulation. We have used a congruential generator of the IBM 
RANDU type; however, it has been suggested(37~ that pseudo-random-num- 
ber sets based on congruential generators suffer from various correlations 
and fail to satisfy some statistical tests for randomness. (sa~ It is not known 
to what extent the faults in the generators affect the outcome of the percola- 
tion simulations. It would be useful to apply other generators for the Monte 
Carlo simulations in order to establish whether the results depend on the type 
of generator used. Feedback shift register generators ~39~ might be suitable 
candidates for such a test. 

This paper has been devoted mainly to the description of percolation 
algorithms; however, it is instructive to review a situation where the site-bond 
algorithm could be applied for polymer gelation. Here we consider the 
copolymerization of two types of monomeric units A and B. In this model, 
c corresponds to the concentration of type A monomer, while the p param- 
eters correspond to the fraction of functional groups reacted ~~ in the 
condensation reaction. It would be necessary to specify a set o fp  parameters 
p(A, A), p(B, B), and p(A, B), corresponding to A-A, B-B, and A-B bonds, 
respectively. An interesting limiting case arises by setting p(A, A) -- 0 and 
p(B, B) = 0. This limiting case may apply to immunization reactions between 
antibodies and antigens. (42'4s~ It should be noted that the algorithms given here 
should be modified for the copolymerization problem because copolymers 
contain clusters of  both A and B species, a 
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