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Single Random Walker on Disordered Lattices 

P. Argyrakis,  2 L. W. Anaeker,  3 and R. Kopeiman 3 

Random walks on square lattice percolating clusters were followed for up to 
2 • 10 ~ steps. The mean number of distinct sites visited (SN) gives a spectral 
dimension of d s = 1.30 5:0.03 consistent with superuniversality (d S = 4/3) but 
closer to the alternative d s =  182/139, based on the low dimensionality 
correction. Simulations are also given for walkers on an energetically disordered 
lattice, with a jump probability that depends on the local energy mismatch and 
the temperature. An apparent fractal behavior is observed for a low enough 
reduced temperature. Above this temperature, the walker exhibits a "crossover" 
from fractal-to-Euclidean behavior. Walks on two- and three-dimensional 
lattices are similar, except that those in three dimensions are more efficient. 

KEY WORDS: Fractal; energetic disorder; random walk; percolation; spectral 
dimension. 

1. INTRODUCTION 

Does a random walk on a substitutionally disordered binary lattice exhibit a 
fractal behavior? Does a random walk on an energetically disordered lattice 
exhibit a fractal behavior? A random walk on a random binary lattice at 
criticality has not only been claimed (1-18) to exhibit a "fracton" 
(spectral-fractal) dimension, but, moreover, is expected to show superuniver- 
sality i.e., the same spectral dimension (d~=4 /3 )  for all topological 
dimensions d > 2. We have thus performed refined Monte Carlo simulations 
for random walks on percolation clusters bracketing the critical point. The 
mean-squared displacement of the walk, ( R 2 )  1/2, did not exceed the 
correlation length. Data on the crossover from fractal-to-Euclidean behavior 
will be reported elsewhere rig) as well as data on long-range percolation 
clusters t2~ and on early time corrections. (2x) We also report here preliminary 
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data on lattices with random energetic disorder ~22) and nearest-neighbor 
hopping probabilities that depend on energy mismatches and temperature. 
These simulations are not only related to many experimental situations but 
are intended to probe whether the fractal (fracton) approach is indeed useful 
for such systems. The problem of the single random walker is also of much 
current interest because of its relation to the problems of trapping and binary 
reactions of random walkers in disordered media, ~23-31) as well as the 
problem of interacting walkers. ~32) 

Our specific simulations involve the number of distinct sites visited S u 
after N steps: 

(SN) ~: N y, f = ds/2 (1) 

Here f is a "fractal exponent," which, on a genuine fractal, is given, 
asymptotically in terms of the spectral dimension d s. Occasionally we also 
use the heterogeneity exponent (27) h = 1 - f .  For the random binary lattice 
we find that f = d s / 2  agrees With the expectations from scaling 
arguments. (1-6) For the energetically disordered lattice we find t h a t f  = f ( T )  
is a function of temperature, and that Eq. (1) is a reasonable approximation. 

2. METHODS 

We use different approaches for the two different types of disorder. For 
the first case of binary lattices the details of calculations have been reported 
elsewhere/z6'33) Briefly, a lattice is made of two types of sites identified as 
open and closed. Their position is determined at random using a pseudo- 
random number generating routine. A random walker is introduced at a 
random point of origin and the direction of propagation is also determined at 
random at the end of each step. To avoid artificial results that depend on the 
particular structure of the lattice (for example its size) we use a small NIL 
ratio (where L is the size of the lattice and N implies the maximal number of 
steps), of the order of NIL ~ 0.05 for short- and long-time behavior. In this 
work we call the short-time limit the case of N---5000 steps and the long- 
time limit N = 200000 steps. A square lattice topology (two dimensional) is 
employed but all work can be extended to other topologies with no difficulty. 

For the energetically disordered lattice we use periodic boundary 
conditions with L = 5 0 0  • 500 sites and N =  100000steps in two 
dimensions and L = 64 • 64 • 64 sites with N =  10000 steps in three 
dimensions. The walker starts at the center of the lattice with S u = 1 at 
N = 0. A uniformly distributed pseudo-random number generator, FUNIF,  is 
used to move the walker to nearest-neighbor sites. As the walker moves, a 
random number from a separate uniform distribution is used to assign site 
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energies, E,  which correspond to a normal ized  dis t r ibut ion of  bandwidth  W. 
The parameter  of  p r imary  interest  here is the unitless temperature  T " =  - 

k T / W  used in assigning the j ump  probabi l i ty ,  Pi  = z - 1  e x p ( - A E / T ' ) ,  for a 
move to a site of  equal or higher energy;  Pi=-2  -1 for a move to a site of  
lower energy. Hence, the microscopic  transfer  rates are not symmetr ic .  The 
residual,  1 - Y~-= 1 Pi,  is used to assign the probabi l i ty  of  a walker  remaining 
on the same site for two consecutive steps (z is the coordinat ion  number) .  

3. RESULTS 

3.1.  Binary Lattices 

We have reported extensive s imulat ions  on such lattices for short  and 
long times, covering the entire range from the cri t ical  percola t ion threshold,  
Pc, to the pure lattice. "8'33) We have shown that  the effective spectral  
dimension d s lies in the range 1.2-1.8 for the square lat t ice topology.  ~8'33) 
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Fig. 1. Mean number of distinct sites visited, (SN)  , V S .  number of steps, N. Lower curve: 
p = 0.60. Upper curve p = 1.00. Averages of 1000 runs using the cluster growth techniqueJ TM 

However, for p =0.60, runs have been discarded if $2o0oo0-Slo00o0 < 20. This eliminates 
runs on finite clusters, leaving only runs on percolating clusters. Note: Lattice of 
2000 • 2000, but boundaries were never crossed. 
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To investigate the conjectured asymptotic behavior of d~ we take the log of  
both sides of  Eq. (1), 

d $  

lOg(Sx) ~ ~- log N (2) 

and thus plot log(SN) versus log N. Figure 1 shows a linear plot of  
(SN) vs. N, while Fig. 2 is the same plot in logarithmic form. The lines in the 
linear plot of  Fig. 1 are not straight, while the lines of  the logarithmic plot of  
Fig. 2 are quite straight. From the slopes we obtain d s = 1.33 to 1.36 for 
p = 0.60 but 1.28 to 1.33 for p = 0.595. This seems to agree better with 
Alexander's ~6) formula d ~ = 2 D / ( D +  1 ) =  1.31, where D ~ 9 1 / 4 8  is the 
fractal dimension, than with Alexander and Orbach's superuniversatity (~ 
(ds = 4/3). We also obtain an effective d~ = 1.84 forp  = 1.00. If we take into 
account random walks that do not necessarily originate on the largest cluster 
but on any point in a lattice at the critical percolation threshold p~ = 0.593, 
then we obtain d s = 1.24, in good agreement with the expected value, (18'~9) 
d; = 86/91 d~, if d~ = 1.31. 

The following points are in order: The proposed critical behavior holds 
in the asymptotic limit of  large N. For the range of the present study where 

Fig. 2. 
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L o g ( S • )  vs. log N. Lower curve: p = 0.60. Upper curve: p = 1.00. Same data as on 
Fig. 1. 
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N goes to 2 • 105 we are well within this limit. However, the short-time 
behavior is obscured in these figures. In a separate study (21) we cover this 
particular region and its behavior. In the region where the probability of 
open sites increases from the critical threshold value to the pure lattice limit 
one observes the crossovers from fractal-to-Euclidean behavior, This will be 
the scope of another study. (~9'33) 

3.2. Energetically Disordered Lattices 

The parameter of primary interest here is the temperature; we use the 
unitless temperature T" defined above. Monte Carlo simulations were 
performed on square lattices for T" =0.05,  0.08, 0.10, 0.20 and for the 
temperature-independent perfect lattice (Pi =-- z-1), as well as on simple cubic 
lattices for T " = 0 . 0 1 ,  0.03, 0.05, and 0.10. The temperature-dependent 
analog of Eq. (1) for N steps is 

(Su) = aN i(r''), f (T" )  =-- d'(T")/2 (3) 

This is used to obtain the effective spectral dimension, d'(T"), using a 
nonlinear regression. Results of the regression analysis are given in Table I. 
The statistics include data for N =  2000 to 100000 for square lattices and 
N =  0 to 10000 for cubic lattices, where each (SN) used is an average over 
100 realizations. Simulation results (symbols) and fitted curves of (SN) as a 
function of N are plotted for square lattices in Figs. 3a and 3b, using linear 
coordinates and in Fig. 4 using log-log coordinates. The time dependence of 

Table I. Exponent f and Preexponent a for Energetically 
Disordered Lattices 

T w o  dimensions  

T"  = 0.05 T" = 0.08 T "  = 0.10 T "  = 0.20 Perfect  

f(T") 0.32 0.66 0.84 0.91 0.92 

a 1.2 0.11 0.037 0.15 0.62 

Three  dimensions  

T" = 0.01 T '~ = 0.03 T" = 0.05 T" = 0.10 

f(T") 0.046 0.236 0.534 0.922 

a 2.46 1.20 0.307 0.0876 
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Fig. 3. (a) Mean number of distinct sites visited vs. N (d = 2), for the perfect lattice (top 
curve), T " ~ 0 . 2  (middle curve) and T " ~ O . I O  (bottom curve). The symbols are the 
simulation results and the solid curves are the fit to Eq. (3). (b) Same as in (a), but the top 
curve  is T " =  0.1; middle curve is T r' = 0.08; and the bottom curve is T" = 0.05, 
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Fig. 4. Log -Log  plot of (SN) vs. N for d = 2, 
in order from top to bottom: perfect lattice, 
T" = 0.20, T" = 0.10, T" = 0.08, and T" = 0.05. 
The curves are the fit to Eq. (3) and the symbols  
are the simulation results. 
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Fig. 5. Hal f  the effective spectral dimension, d'/2 = f ( T " )  vs. time (N). Top to bot tom at 
long times: perfect lattice, T" = 0.2, T" = 0.1, T" = 0.08, and T" = 0.05, for d = 2. 
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Fig. 6. (a) Mean number of  distinct sites visited, (Str vs. N (d = 3). Upper curve T" = 0.1. 
Lower curve T" = 0.05. The symbols are the simulation results and the solid curves are the Et 
to Eq. (3). (b) Same as in (a), but the top curve is T" = 0.05, the middle curve is T" = 0.03, 
and the bottom curve is T " =  0.01. The symbols are the simulation results and the solid 
curves are the fit to Eq. (3). 
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Fig. 7. Log-Log plot of (SN) vs. N for d = 3, in order from top to bottom: T" = 0.1, 0.05, 
0.03, and 0.01. The curves are the tTt to Eq. (3) and the symbols are the simulation rest~lts. 

the exponent f generated using finite differences of the log-log data is shown 
in Fig. 5 where we may see some effective crossover of fractal-like-to- 
Euclidean-like behavior at higher temperatures. At the temperature 
T " =  0.05 we see that the curve is clearly separated from all other curves. 
Analogous results for simple cubic lattices are given in Figs. 6a, 6b, and 7. 

For the energetically disordered lattice, the temperature dependence is 
very important. As the temperature is raised the probability of moving to a 
site of higher energy increases; the mobility increases and the number of 
distinct sites visited is higher. As the temperature decreases, the walker 
moves primarily to sites of equal or lower energy, getting caught in small 
regions which act as traps. Trapping in these systems is only temporary. 
Nonetheless, the walker is restricted and the number of distinct sites visited 
is lowered. Note that for T" = 0.01 (Figs. 6b and 7), the walker visits only 
three to four sites and is thus effectively trapped. 

4. CONCLUSIONS 

The single random walker on a percolating cluster (in a binary lattice) 
shows the conjectured fractal behavior near the percolation threshold. The 
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spectral  d imension is 1.30 i 0.03. At  higher concentra t ions  the crossover  
to the classical  regime is observed.  The single random walker  on an 
energetical ly disordered lat t ice shows a roughly  analogous  behavior.  This 
may  be related to the self-attracting interact ing random walks studied very 
recently by Stanley et al. ~32~ In any event, at low temperatures  the walk on 
an energet ical ly disordered lat t ice is well character ized by a spectral  
dimension that  is a function of  the tempera ture  and the local  disorder.  The 
implicat ions  for react ing random walkers  are given in the following paper .  (34) 

NOTE ADDED IN PROOF 

The jus t  published paper  by A. Aha rony  and D. Stauffer, Phys. Rev. 

Lett. 52:2368 (1984), gives addi t ional  arguments  in favor of  d s =  
2D/(D + 1 ) =  1.31 for two-dimensional  percolat ing clusters. Our  numerical  
results favor this result (rather than 4/3) :  Our  d s = 1.30 + 0.03 for p = 0.595 

provides an upper bound for d s at Pc ; also our d~ = 1.24 + 0.02 obtained by 
interpolat ing between p = 0.590 and p = 0.595, agrees better with Aharony  
and Stauffer, while ds = 4/3 (resulting in d '  = 1.26) appears  to be jus t  at the 
upper end of  the s imulat ion error. 
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