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Fractal Chemical Kinetics: 
Reacting Random Walkers 1 

L. W. Anaeker,  2 R. Kope lman,  2 and J. S. Newhouse  2 

Computer simulations on binary reactions of random walkers (A + A --* A) on 
fractal spaces bear out a recent conjecture: ( p - ~ - p o  I) oct s, where p is the 
instantaneous walker density and P0 the initial one, a n d f  = d j2 ,  where d s is the 
spectral dimension. For the Sierpinski gaskets: d =  2, 2f = 1.38 (d~ = 1.365); 
d = 3, 2f= 1.56 (d s = 1.547); biased initial random distributions are compared 
to unbiased ones. For site percolation: d = 2, p = 0.60, 2f= 1.35 (d~ = 1.35); 
d =  3, p = 0.32, 2 f =  1.37 (d s = 1.4); fractal-to-Euclidean crossovers are also 
observed. For energetically disordered lattices, the effective 2f (from reacting 
walkers) and d s (from single walkers) are in good agreement, in both two and 
three dimensions. 

KEY WORDS: Fractal; reacting random walkers; spectral dimension; 
Sierpinski gasket; percolation; energy disorder. 

1. INTRODUCTION 

With in  the last  year,  in t r ins ic  d y n a m i c a l  propertieS of  fractals,  e.g., r a n d o m  
walk,  conduct iv i ty ,  pho ton  and  m a g n o n  effects, have been related to an unex-  

pected new d imens i o n  ds, the spectral  ( f rac ton)  d imens ion .  (1-4) Specif ical ly,  

for t--+ oo, the m e a n  n u m b e r  of  d is t inc t  sites visi ted by  a r a n d o m  walker  is 

( S ( t ) )  o~ t I, where ds = 2f~< 2. F o r  f ractal  spaces the fact that  f < 1 (e.g., 

f =  2 /3 )  leads to drast ic  devia t ions  f rom the classical  laws invo lv ing  the 
diffusion cons tant ,  the p h o n o n  dens i ty  of  states and  the conduct iv i ty .  It  has 
also been conjec tured  that  the d i f fus ion- l imi ted  b i n a r y  reac t ion  coefficient is 

related to the same spectral  d imens ion .  (5) Specifical ly,  it was suggested that  
for one k ind  of  reac tan t :  

A + A ~ p roduc t s  (1) 
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where the A species consists of random walkers, the integrated rate law is 
(for long times): 

p-~-pg~ oct -c, f =ds/2<~ 1 (2) 

where p is the walker density at time t and Po- p(t = 0). The concomitant 
differential rate law is 

-dPocpZt~-a, t > 0  (3) 
dt 

The above equations should be contrasted with the classical (Euclidean 
space) equations 

p-~ - p o  ~ oct (2') 

dp 
dt OE p2 (3') 

A more complicated situation exists for the reactions A + B ~ products, 
where B may be a sitter (trap) or walker, and conflicting results have very 
recently been claimed, c6-8) The fluctuation problem, involving the "two-kind" 
reactions (A +B) ,  is an old one and also arises in Euclidean spaces. (9-14) 
For simplicity, we concentrated on the "one kind" reactions (A +A).  This 
has been both our experimental and theoretical approach. (5'15) 

We tested Eqs. (2) abd (3) by performing Monte Carlo simulations on 
(a) deterministic fractals, the two- and three-dimensional Sierpinski gaskets; 
(b) random fractals, the two- and three-dimensional percolating clusters 
(square and simple cubic); and c) possible effective fractals, the two- and 
three-dimensional energetically disordered lattices where the waiting times 
include Boltzmann factors. Only nearest-neighbor steps were allowed. If two 
walkers are simultaneously on the same site, then 

A + A + A  (1') 

We found surprisingly good agreement between f ' ,  the empirical 
exponent, and f = ds/2, the conjectured (5) result, for both Sierpinski gaskets 
and incipient percolating clusters, for both two- and three-dimensional 
topologies. Furthermore, the same asymptotic result was found for a biased, 
rather than a uniformly random, initial P0 on a Sierpinski gasket. Moreover, 
for infinite clusters well above the percolation threshold, the reacting walker 
problem parallels the single walker behavior: A crossover from fractal-to- 
Euclidean law, associated with a correlation length and a crossover time, 
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occurs.~16-2~ Even the energetically disordered lattice shows good agreement 
between f ' ( T )  and f (T),  where f (T)  is the single random walk effective 
fractal exponent ~2x) for the given temperature (T): 

(s(t) ) t (4) 

and S(t) is the number of distinct sites visited at time t. 

2. M E T H O D S  

2.1.  Sierpinski Gasket 

Reacting random walker simulations were performed on an eight-order 
planar two-dimensional (2d) Sierpinski gasket and on a six-order three- 
dimensional (3d) Sierpinski gasket. In both cases, the gaskets were generated 
iteratively and consisted of approximately 10 000 sites (vertices). At each 
step, a walker must move with equal probability to one of its nearest- 
neighbor sites. Walkers moving to one of the vertices of the largest triangle 
are not allowed to leave the finite gasket, but are given an equal probability 
of moving to one of the two (2d) or three (3d) possible nearest-neighbor 
sites. The direction in which each walker moves is decided by the uniformly 
distributed pseudo-random number generator FUNIF. ~2z) 

Walkers were randomly place on the two- and three-dimensional 
gaskets in an unbiased manner (equal probability of landing on any unoc- 
cupied site) and also in a given biased manner on the planar gasket. 
Specifically; the biased placement of walkers preferentially placed them near 
the top of the gasket: the walker is assigned an equal probability of landing 
on any of the gaskets' Ltota I layers (top to bottom); subsequent placement of 
the walker in the L i layer uses a conditional probability, p(Li): 

1L/-l, for 2d 
P(Li) =-- 12/Li(L i + 1), for 3d (5) 

If the walker does not land on a vacant site, a new set of random numbers is 
used to select a layer and position within that layer. 

Simulations for the unbiased placement of walkers started with initial 
walker densities of p0=0 .1  and were followed for 4000steps. These 
conditions were used in both two and three dimensions with 500 runs in each 
dimension. Simulations which included a bias in initial walker placement 
consisted of 3000 runs and were followed for 2000 steps. With the biased 
placement, the initial local density of walkers near the top of the gasket is 
greater than at the bottom. The average initial density was 0.02. 
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2.2. Binary Lattices 

A uniformly distributed pseudo-random number generator ~23~ is used to 
generate both two and three-dimensional binary lattices. Random numbers 
from separate uniform distributions are then used to initially place the 
walkers and to determine the direction in which a surviving walker moves at 
each step. Reacting random walker simulations in two dimensions were 
performed on 200 • 200 square lattices and in three dimensions on 
40 X 40 • 40 cubic lattices. Periodic boundary conditions were imposed, and 
walkers were started on sites in the largest cluster with a probability of 0.02 
which gives (P0} ~ 0.02. At each step a walker was forced to move to one of 
its nearest-neighbor open sites. This method of "forced walk" is analogous to 
the "myopic ant" method. ~24) 

Two-dimensional binary lattices were generated with site probabilities 
of p = 0 . 4 0 ,  0.60, and 0.80 (compared with the critical percolation 
probability p c =  0.593) and three-dimensional lattices with p = 0.32, 0.40, 
and 1.00 (compared with Pc = 0.311). Walks were followed for 2000 moves 
and 100 lattice realizations were performed for each of the above lattices. 
Simulations on 100 • 100 square lattices with p = 0.40 < Pc included walks 
on the 50 largest clusters. The initial condition on this lattice was P0 = 1.0 
and walkers were followed for 1000 steps. 

2.3. Energetically Disordered Lattices 

Lattices with energetic disorder (described in greater detail in Ref. 21) 
were generated as the walker moved on both square and simple cubic 
lattices. Site energies were assigned using the uniform pseudo-random 
number generator FUNIF  c22) and correspond to a normalized distribution of 
bandwidth W. A random number from a separate uniform distribution was 
used in moving each of the surviving random walkers. On these lattices the 
microscopic transfer rates are asymmetric: the probability of a move to a site 
of higher energy includes a Boltzmann weighting factor; the probability of a 
move to a site of equal or lower energy is z -1  where z is the coordination 
number. Thus residual probability of the walker remaining on the same site 
for two consecutive steps is included for a site with at least one higher- 
energy nearest-neighbor site. 

The parameter of interest on the energetically disordered lattices is the 
reduced temperature T"=--kT/W. In two dimensions, reduced temperatures 
of T"=O.1 and 0.2 and the temperature-independent perfect lattice were 
simulated. We imposed periodic boundary conditions with Po = 0.002 on 
256 X 256 square lattices (T" = 0 . 2 )  and on 500 • 500 square lattices 
( T " = 0 . 1  and the perfect lattice). In two dimensions, 12 runs were 
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performed on the perfect lattice (5000 steps), 30 runs at T " = 0 . 2  (4000 
steps), and 52 runs at T"= 0.1 (5000 steps). In three dimensions, ten runs 
were performed on 25 • 25 X 25 cubic lattices with periodic boundary 
conditions, for each of the reduced temperatures T " =  0.03, 0.05, and 0.1. 
An initial walker density of P0 = 0.1 was used and walkers were followed for 
2000 steps. 

3. RESULTS AND DISCUSSION 

3.1. Sierpinski Gasket 

The Sierpinski gaskets represent simple geometric structures with 
known (4'25) fractal dimensions, d s = l n ( d +  l)/ln 2, and spectral (fracton) 
dimensions, d s --2 In(d+ 1)/ln(d + 3) where d is the Euclidean dimension. 
Single random walker simulations on these gaskets in both two and three 
dimensions have been performed ~25) and verify that the mean number of 
distinct sites visited in an N step walk follows the asymptotic ( t ~  oo) 
relation, 

(SN) = aN y, f = as/2 (6) 

reasonably well at all times. In the asymptotic limit, all our reacting walker 
simulations on Sierpinski gaskets satisfy the relation [compare Eq. (2)]: 

( p - l _ p o ~ ) = a , f f  ,, f , ~  ds/2 (7) 

In two dimensions, we obtain values o f f ' =  0.68 and 0.69, respectively, for 
the biased and unbiased initial walker placements. These values are in good 
agreement with the theoretical (analytical) values of ds/2--0.683; a similar 
result is obtained in three dimensions where the asymptotic value of 

f ' =  0.78 compares well with the theoretical d J2 = 0.774. Our simulations 
corresponding to a uniformly random (unbiased) initial placement of walkers 
in both two and three dimensions follow the relationship in Eq. (7) quite well 
over the entire time range, giving values o f f '  = 0.70 (2d) a n d f '  = 0.78 (3d). 
These two curves are surprisingly straight over the entire time range (though 
there is a slightly steeper slope at early times), as is shown for the top (3d) 
and bottom (2d) lines in Fig. 1. The higher curve in Fig. 2, which joins the 
lower curve for the planar Sierpinski gasket at long times, was obtained from 
our simulations which started the walkers with a higher local density near 
the top of the gasket (the density increases from bottom to top of gasket). 
Results of a nonlinear regression analysis on our simulation data are 
presented in Table I. Note that not only the exponents but also the pre- 
exponents are in good agreement with the single walker simulation 
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Fig, 2. Log(p-1 _ p o l )  vs. log t for a planar (2d) Sierpinski gasket with biased (top curve) 
and unbiased (bottom curve--same as the bottom curve in Fig. 1) placement of the walkers. 
Averages for 3000 runs are shown in the top curve with P0 = 0.02. 
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Table h Sierpinski Gasket Fractal Exponents, f ' ,  
and Preexponents, a 

597 

3d 2d 

Unbiased Biased 

Reacting walkers 
f '  0.78 0.69 
a' 1.2 1.3 

Single walker 
f 0.753 ~ 0.686 ~,~ 
a 1.318 a 1.282 a 

ds/2 0.7737 0.6826 

0.68 
1.4 

Blumen et al. (25) 
b Angles D'Auriac et al. (26) give 0.682. 

results. (2s'26) We note that the biased reaction starts with a higher reaction 
rate, but at long times joins the unbiased case. This early time behavior is 
reasonable in light of the higher initial densities and is an extremely 
interesting case since it shows how a large perturbation (from a uniform 
random initial distribution) can be "overcome" within a relatively short time. 

3 .2 .  Binary Latt ices 

For binary lattices near criticality, Eq. (6) holds (~8'2x) for the single 
walker in the asymptotic limit. Here we investigate the reacting random 
walker problem on square and simple cubic binary lattices over a range of 
open site probabilities. The simulation results are shown in the log-log plots 
of  Figs. 3 and 4. In our reacting random walker simulations on lattices just 
above criticality, p = 0 . 6 0  (2d) and p = 0 . 3 2  (3d), we obtain effective 
spectral dimensions of 1.35 (2d) and 1.37 (3d) in the asymptotic limit, 
compared with the spectral dimension, d s ~_ 1.33, at criticality. These results 
are remarkably consistent over the entire time scale (steps 10 ~ 2000), where 
we obtain effective spectral dimensions of 1.35 (2d) and 1.34 (3d). 
Simulations on the three-dimensional perfect lattice, p =  1.0, gives an 
effective spectral dimension of 1.96 which corresponds to the expected 
asymptotic value of 2.0 (classical behavior). Also included are simulations 
on lattices well above the percolation threshold, p = 0.80 (2d) and p = 0.40 
(3d), where we found that the effective spectral dimension lies in the range 
1.33 < d '  < 2.00. The three-dimensional p = 0.40 curve is not straight, but 
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Fig. 3. L o g ( ( p ) - i  ~oo) 1) vs. log t for a two-dimensional square lattice. Top: p = 0 . 8 0 ,  
bottom: p = 0.60. Averages of I00 runs, 2000 steps each, on 200 • 200 lattices, with cyclic 
boundary conditions, (P0)= 0.02. Forced random walks, limited to largest cluster only. 

has a visibly increasing slope, typical of a crossover behavior, from fractal- 
to-Euclidean.(16-2~ 

A linear least-squares regression was used to obtain the effective 
spectral dimension from 

log[(p) 1 _ ~o0)-1] ocf"  log(t) (8) 

where (p) is the mean number of walkers over the mean largest cluster size. 
Results of the regression analysis over the entire time scale and in the 
asymptotic limit are presented in Table II. The two-dimensional lattices with 
p = 0.40 are well below the percolation threshold and an effective spctral 
dimension of d '  = 0.04 is obtained over the time range studied. This result is 
not shown. 

3.3. Energetically Disordered Lattices 

Our simulations for reacting random walkers on lattices with energetic 
disorder exhibit a temperature-dependent fractal-like behavior. Monte Carlo 
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Fig. 4. L~ -~ - ( P 0 )  1) vs. logt  for a three-dimensional simple cubic lattice. Top to 
bottom: p = 1.00, 0.40, 0.32. Averages of I000 runs, 2000 steps each, on 40 • 40 • 40 
lattices, with cyclic boundary conditions, (P0) = 0.02. Forced random walks, limited to largest 
clusters only. 

simulations were performed on these systems for various reduced 
temperatures T "  defined above and for the temperature-independent perfect 
lattices. The temperature-dependent analog of Eq. (7) is 

~o -1 - p o  1) = a ,  tS ' ( r" )  (9) 

Table II. Asymptotic and Overall Percolation Fractal Exponents f' 

2d 3d 

p = 0.60 p = 0.80 p = 0.32 p = 0.40 p = 1.0 

f '  (asymptotic) ~ 0.67(4) 0,87 0.68(7) 0.91 0.98 
f '  (overall) ~ 0.68 0,87 0.67 0.86 0.98 
ds/2 0.68 - -  0.7 - -  1.0 

516--* 2000 steps. 
10 -~ 2000 steps. 
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and a nonlinear regression is performd to evaluate the exponent f ' ( T " ) .  

These results are reported in Table I I I  and log- log plots for the square and 
simple cubic lattices are shown in Figs. 5 and 6, where the straight lines are 
the fitted curves and the symbols  correspond to simulation data. For  two 
dimensions, Fig. 5, for T " =  0.2 and for the perfect lattice, the symbols  sit 
quite nicely on the fitted curves, but at T"  = 0.1 the simulation data exhibit a 
increasing slope when viewed over the entire t ime scale. In three dimensions, 
we see a similar behavior.  However,  the walker in general is less confined for 
the given reduced temperature.  The slightly increasing slope in both two- and 
three-dimensional disordered lattices may  be associated with an effective 
crossover regime (see binary lattice). Table I I I  presents the results of  
nonlinear regressions for both the single random walker and the reacting 
random walkers,  Eqs. (4) and (9), for both two and three dimensions. Here 
we see that  the exponent for the single random walker, f ( T ) ,  and the 
exponent for the reacting random walkers, f ' ( T ) ,  are in reasonably good 
agreement.  These are prel iminary results and the error term on each 
exponent is approximate ly  :t:0.05. 

C O N C L U S I O N S  

The conjecture that  spectral-fractal exponents apply to binary reactions 
of  r andom walkers is borne out by simulations on both deterministic fractals 
(two- and three-dimensional Sierpinski gaskets)  and random fractals (two- 
and three-dimensional percolating clusters). The asymptot ic  behavior  is not 

Table IIh Energy-Disordered Lattice Effective Fractal Exponents, f 

2d 3d 

Perfect 
T" = O. 1 T" = 0.2 latt. T" = 0,03 T" = 0.05 T" = 0.10 

f '  (overall) 0.65 0.91 0.96 0.20 0.40 0.87 
f (overall) 0.60 0.82 0.89 0.20 0.43 0.81 
f '  (asymptotic) 0.71 0.9 0.98 0.22 0.46 0.92 
f (asymptotic) 0.85 0.91 0.93 0.28 0.36 0.89 

f '  (2d asymptotic limit): -o times of 0; 3000~ 5000 except for T"=  0.2, 
which uses 0; 2000 ~ 4000 

f '  (3d asymptotic limit):-o times 0; 1500--* 2000 
f (asymptotic limit): 0; 50,000 ~ 100,000 (2d) 0; 1500-~ 2000 (3d) 

overall: 0 --. 4000 (2d) 0 -~ 2000 (3d). 
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sensi t ive to pe r tu rba t ions  away  f rom a un i fo rmly  r a n d o m  ini t ial  d is t r ibut ion.  

These f indings  m a y  be of  m u c h  re levance  to reac t ions  in mic roscop ica l ly  

he te rogenous  media ,  as shown by  our  s imula t ions  of  react ing walkers  on  

two- and  th ree -d imens iona l  energet ica l ly  disordered lattices. 

NOTE ADDED IN PROOF 

For  the steady state b i n a r y  reac t ion  we find that  the average 

ann ih i l a t i on  rate is d i rect ly  p ropor t iona l  to pX where x = 1 + f - 1  in the low 

dens i ty  limit.  S imula t ions  on  the p l a n a r  Sierpinski  gasket  give x - - 2 . 4 4  
(1 + f - 1  = 2.45);  on  a perfect cubic  latt ice x = 2.01 (1 + f - 1  = 2), i.e., the 

classical  result .  
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