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Diffusion of Directed Polymers in a Strong 
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We consider a system of random walks or directed polymers interacting with an 
environment which is random in space and time. It was shown by Imbrie and 
Spencer that in spatial dimensions three or above the behavior is diffusive if the 
directed polymer interacts weakly with the environment and if the random 
environment follows the Bernoulli distribution. Under the same assumption on 
the random environment as that of lmbrie and Spencer, we establish that in 
spatial dimensions four or above the behavior is still diffusive even when the 
directed polymer interacts strongly with the environment. More generally, we 
can prove that, if the random environment is bounded and if the supremum of 
the support of the distribution has a positive mass, then there is an integer do 
such that in dimensions higher than do the behavior of the random polymer is 
always diffusive. 

KEY WORDS: Random walks: directed polymers; random environment: 
martingales. 

INTRODUCTION 

Let  ~(t) ,  t e N o = N  w {0}, be a s y m m e t r i c  nea res t  n e i g h b o r  w a l k  on  7/d 
s t a r t ing  a t  0 and  let h(t, x) ,  t e N, .x'e Z a, be  i n d e p e n d e n t  a n d  iden t ica l ly  

d i s t r i bu t ed  r a n d o m  va r i ab le s  wh ich  are  a lso  i n d e p e n d e n t  o f  (.  W e  d e n o t e  

by ( �9 ) the  e x p e c t a t i o n  wi th  respect  to  ( a n d  by  E ( . )  the  e x p e c t a t i o n  w i t h  

respect  to  the  r a n d o m  e n v i r o n m e n t  h. F o r  any  fl > 0 a n d  for  t ~ N, def ine  

Z( t )=exp[ f l  i h(j,~(j))] 
j = l  

(t, ( ( t ) )  can  be  used  to  m o d e l  a d i rec ted  po lymer .  Phys ic i s t s  a re  in te res ted  
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in determining the growth speed of the directed polymer in the random 
environment, more precisely, the asymptotic behavior of the quotient 

(I~(t)l 2 Z ( t ) )  

(z ( t ) )  

as t ~  ~ .  The parameter fl measures the extent to which the directed 
polymer interacts with the random environment. When fl > 0 is small, the 
interaction is weak, and when fl > 0 is large, the interaction is strong. 

The following result was first proved by Imbrie and Spencer, t3~ and 
later Bolthausen I~ gave a simple proof of it using martingale theory. 

T h e o r e m  1. Suppose that h follows the Bernoulli distribution and 
d/> 3. If fl > 0 is small enough, then 

(Ir z(t)> 
lim - 1 (1) 

, ~  ~ .  t ( Z ( t ) )  

almost surely, where [-[ is the Euclidean norm. 

This theorem tells us that in dimension three or above, when the 
directed polymer interacts weakly with the environment, the behavior of 
the directed polymer is diffusive, which means that the speed of growth of 
the square displacement of the random directed polymer is of order t, the 
same as that of the free random walk. It is conjectured in the physics 
literature that when fl > 0 is large, i.e., when the directed polymer interacts 
strongly with the environment, the behavior of the directed polymer is non- 
diffusive, i.e., the speed of growth of the square displacement of the random 
directed polymer is not of order t (see, for instance, the references in ref. 3). 
There are numerical studies in the physics literature which support the 
conjecture above in the case of d =  3. 

We give here a modification of the argument of ref. 1 to show that the 
conjecture above is incorrect when the environment h follows the Bernoulli 
distribution. More precisely, we are going to show that if h follows the 
Bernoulli distribution and if d>~ 4, then for any fl > 0, (1) is true almost 
surely. More generally, we can prove that if h is bounded and if the 
supremum of the support of h has a positive mass, then there is an integer 
do such that in dimensions higher than do, (1) is true for any fl > 0. 

1. S O M E  BASIC FACTS ON THE S I M P L E  R A N D O M  W A L K  

In order to prove our main results, we need to recall some basic facts 
about the symmetric nearest neighbor random walk ~ on Z a starting from 
the origin first. 
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Let Pa be the probabili ty that a symmetric nearest neighbor random 
walk ~ on Z a starting from the origin ever returns to the origin, i.e., 

Pa = P(~(2s) = 0 for some s > O) 

The following fact is intuitively clear and almost needs no proof. Since we 
could not find a proof  of it in the literature, we present a proof  here which 
was communicated to us (through e-mail) by Greg Lawler. 

Lemma 1. I f d > 3 ,  t h e n p d < p a _ ~ .  

Proof. By symmetry, it is easy to see that Pd equals the probability 
that the d-dimensional random walk starting at (1, 0, 0 ..... 0) ever reaches 
the origin (0,0 ..... 0). However, by considering the embedded ( d - l ) -  
dimensional random walk, we can see that Pd- l  is the probability that a 
d-dimensional random walk starting a t ( 1 ,  0, 0 ..... 0) ever reaches the set 

{(0,  0, 0 ..... 0, n): 17 e N} 

Clearly, this probabili ty is larger than Pd. QED 

For some values of  d, the values of Pd have been calculated; see ref. 5 
for the case of d =  3 and ref. 2 for the other cases. From refs. 5 and 2 we 
know that 

and 

P3 = 0.340537329550999... 

P4 = 0.193201673224984... 

In this note we only need the facts that P3 < 1/2 and P4 < 1/5. 
We are also going to need the following obvious fact: for any 11 > 0, 

there exists a positive integer do such that when d > d 0, Pd < q. 

2. T H E  CASE OF A B E R N O U L L I  E N V I R O N M E N T  

Now we are going to assume that the environment variables follows a 
Bernoulli distribution. That  is, for any tE N, x e Z  d, h ( t , x )  takes on the 
values + l  and - 1  with probability 1/2 each. 

For  any fixed 0 < e < 1 and any t e N, define 

K( t )=  ~ ( l + e h ( j ,  ~(j))) 
j = l  
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If we set e = tanh fl, we can easily see that 

Z(t) = cosh'(fl) x(t) 

Thus 

([~(t)lE Z(t)) (lC(t)12x(t)> 
t (Z( t ) )  (K(t)) 

e = tanh fl gives the relationship between the two parameters fl > 0 and 
0 < e < 1. The parameter fl > 0 being small is equivalent to the fact that 
0 < e  < 1 is small, and f l>  0 being large is equivalent to the fact that 
0 < e < l  is large. So in this section we are going to work with the 
parameter 0 < e < I. 

Let ~ be the a-field generated by the variables h(s, x), s ~< t, x e Z d 
and let ~, be the a-field generated by the variables ~(s), s ~< t. The following 
lemma is due to ref. 1; we give the proof here for the sake of completeness. 

L e m m a  2. ( x ( t ) )  is a nonnegative ~,-martingale satisfying 
E((x(t)))  = 1. 

Proof. E ( ( x ( t ) ) ) =  1 is obvious and 

g((x ( t ) )  [ ~ t - l ) =  (g(x(t)  [ ~ _ l ) )  

= (K(t--  1) E(1 + eh(t, ~(t)))) 

=(~(t-1)) 

Thus the lemma is valid. QED 

The following result is an improved version of Lemma 2 of ref. 1. Here 
we do not require that e > 0 be small. 

L e m m a  3. Ifd>~ 3, then (~c(t)) converges almost surely to a random 
variable ( satisfying 

E(() = 1 and P ( ( =  O)=0 

Proof. ( x ( t ) )  converges almost surely by the martingale limit 
theorem (see, for instance, Theorem II-2-9 of ref. 4), say, to (. 

We consider two independent copies ~(1) and ~(2) of the random walk 
with corresponding quantities 

K(i)Ct) = ~ (1 +ah(j, ~(i)(j))) 
j=] 
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The random environment remains independent of ~ll) and ~z~. Then 

E( ( K( t ) ) 2) = E((KI1)(t) xr t ) ) ) 

\ \ j =  I 

= ((1 +e2) ''(r r 

((1 - ez) ''~r162 ) 

where 

Since 

s = l  

P({~l~(s) = ~Z~(s) for some s > 0) 

= P({(2s) = 0 for some s > 0) 

we know that for any k/> 0, 

P(n~ = k) = pka( 1 -- Pd) 

Therefore 

((1 +e2) ''-Ir162 ~< (2"'*~r 

or5 
y,  k k _ p , , )  = 2 Pd(1 

k = 0  

= ( 1 - - p d )  ~ (2pd) k < ~ 1 7 6  
k = 0  

since pa< 1/2 when d>~ 3. So it follows that 

sup E(<x(t)  >2) < 

731 

Hence we can conclude that ( x ( t ) )  converges to ( in L I and L 2 (see, for 
instance, Proposition IV-2-7 of ref. 4). Therefore, E(() = 1 and from this we 
see that P ( ( = 0 )  is not equal to 1. It is easy to see that the event { ( = 0 }  
belongs to the tail field 

('] a(h(s, x): s >/t, x ~ Z d) 
! 

822/83/3-4-29 
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Thus by Kolmogorov 's  zero-one law we know that P ( (  = 0 ) =  0. 

It is obvious that 

M(t) = I~( t ) l  2 - t 

is a ~-martingale.  If  we define 

Y(t) = ( M(t) x(t) ) 

then Y is an Yt-martingale. In fact, 

E( Y(t) l ~ ,_~ )=(  E(M(t)x(t)  l ~_~)  ) 

= (M(t)  E(x(t) I ~,-~ )) 

= ( M ( t )  x ( t  - 1) )  

= ((M(t)x( t - -  1)1 ~,_,  )) 

= < x ( t -  1 )<M(t )  I ~_~}) 

= < M ( t -  1) h - ( t -  1)) 

The following result is in the same spirit 
do not require that e > 0 be small. 

L e m m a  4. I fd>~4,  then 

almost surely. 

Proof. 

Y(t) 
lim - -  = 0 
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Q E D  

as Lemma 4 of ref. 1. Here we 

We are going to show that the martingale 

~ Y(s ) -  Y ( s -  1) 
s s = l  

remains L2-bounded. Once we prove that, we know that the martingale 
above converges almost surely, and then the result of this lemma will be a 
direct consequence of the Kronecker  Lemma (see, for instance, Lemma 
VII-2-5 of ref. 4). 

So we need only to show that the martingale above remains L2-bounded. 
Noticing that 
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Y(t) -- Y(t -- 1) 

= ( M ( t )  K ( t ) - M ( t -  1) x ( t -  1)} 

= ( m ( t )  e~:(t-  1) h(t, ~(t))} + ( ( M ( t ) - M ( t -  1)) h ' ( t -  1)} 

= ( m ( t )  e x ( t -  1) h(t, ( ( t ) )}  

we get that 

E(( Y ( t ) -  Y ( t - i ) )  2) 

= E ( ( M ( t )  K ( t ) - m ( t -  1) K ( t -  1))  2) 

= E( ( m ( t )  e x ( t -  1) h(t, ~(t))} 21 

=e2E( ( m~l)(t) x(l)(t - 1) h(t, ~(11(t)) 

x M(2)(t) x(2)(t - 1 ) h(t, ~(21(t))} ) 

where ~(i), x(;) are as in p roof  of Lemma 3 and 

M(i)(t) = ]~(i)(t)] 2 - t 

Using the assumptions about  h, we get that 

E( ( M(t)(t) x ( l ) ( t -  1) h(t, ~(I)(t)) 

x M(2)(t) x(2)(t - 11 h(t, ~21(t))})  

= (M( l ) ( t )  M(2)(t) E(x(I)(t - 1)/r 1) 

x h(t ,  ~(t)( t ) )  h(t ,  ~(2)( t ) ) ) }  

= ( M ( 1 ) ( t )  M(2)( t ) (1 + e 21 .... '(':")'r 1r 

<~ (M(l ) ( t )  M(2)(t)(l + e2),,~.(q'",,~ '-')) 1 r162 

~< ( (M( l ) ( t )  M(21(t))50} 1/50 

X ( 1 "}- e2) (50/491m" l~(t)(t)=~P-)(t)> 49/50 

~< ( M ( t ) )  1~176 } 1/50( ( 1 + e2) (5~ 11/51''~ } (49/5015/11 

x (p(~(l)(t) = ~(2)( t)))(49/5016/11 

where in the last and next-to-last relations we used H61der's inequality. 
We know that 

( p ( ~  i)(t ) = ~(21( t))(49/50)6/11 

is of order  

( t --d/2)(49/50)6/11 ~ t - (  12/11)49/50 = t --294/275 

733 
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and that 

It is clear that 

Therefore 

Olsen and Song 

((1 + ez) 15~ <~ (2110/49) " ~ )  

= ~ (5Pa)k(1--pd)<~ 
k = O  

((M(t))l~176 l~176 

(, )2 
s u p E  ~ Y(s)-- Y(s--1) 

t k s =  1 S 

= s u p  ~ s - 2 E ( ( Y ( s )  - Y ( s -  1)) 2) < oo 
t S = I  

The proof  is now complete. Q E D  

From these two lemmas we immediately get the main result of this 
paper. 

T h e o r e m  2. If d>~ 4, then for any e e (0, 1), 

lim ( I#(t)l-~ x(t ) )  _ 1 
,4  ~ t(K(t)> 

almost surely. 

If we introduce the fq,-martingales W,,(t, x) as Bolthausen ('1 did and 
combine the argument in the proof  of Lemma 4 above with the proofs of 
Lemma 4 and Theorem 2 of ref. 1, we can prove the following result, which 
is more general than Theorem 2 above. 

Theorem 3. If d>~4, then for any ee(O, 1) and all n~ ..... nae  No, 

l im ( I - I j ~ ,  (~j(t)/x/-t)"iK(t)> 
, -  ~ ( K ( t ) )  

d 

= r ]  7(nj)d -"j/2 
j = l  

almost surely, where ~ j , j =  1 ..... d, are the components  of ~, and y(n)=0 if 
n is odd, and y(2k) = 1 �9 3 . . .  (2k - 1). 
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For a given realization of the environment h, we define the probability 
measure/t~, on R a by 

( 1.4(~(t)/~/t ) K(t)) 
~, (A)  = 

( x ( t ) )  

Then Theorem 3 implies the following central limit theorem. 

Theorem 4. If d>~4, then for almost all h, /t~, converges to the 
centered normal law with covariance matrix (1/d) times the identity matrix. 

3. GENERALIZATIONS 

Now we are going to generalize the results of the previous section to 
the case where the distribution of h may be more general. Throughout  this 
section we are going to assume that the environment variables h are 
bounded and that the supremum of the support of h has a positive mass. 

For  any fl > O, t E N, and x e Z d, define 

Ap = E exp(flh( t, x )  ) 

exp(flh(t,  x ) )  - A a 
Ha( t, x)  - 

Aa 

Then we have 

Z(t) =A} FI [1 +Ha( j , ~(j))] 
j = l  

Therefore if we define 

then we have 

if(t) = f i  [1 + H p ( j ,  ~:(j))] 
j = l  

(l~(t)l  2 Z(t)}  (l~(t)l 2 i ( t ) )  
a 

(z(t)} (~(t}) 

The following result in an immediate consequence of our assumptions 
on the environment variables h. The proof  is very straightfoward and so we 
omit it. 
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Lemma 5. If the supremum of the support of h is M, then for any 
p>0, 

1-- [P(h = M ) ]  2 
eI-I ~( t, x) 

[ P ( h = M ) ]  2 

The following result is similar to that of Lemma 2 above. 

L e m m a 6 .  (g ( t ) )  is a nonnegative ~,-martingale satisfying 
E( ( ff(t) ) )-- 1. 

Lemma 7. There exists a positive integer d] depending only on the 
distribution of h such that if d>~d~, then (~-(t)) converges almost surely 
to a random variable ( satisfying 

E( ( )=  1 and P ( ( =  0 ) = 0  

Proof. The proof of this result is similar to that of Lemma 3 above; 
we only need to prove the fact that there exists a positive integer d~ 
depending on the distribution of h such that if d>~ d~, then 

sup E( ( ff(t) ) 2) < cr 

The rest of the proof is exactly the same as that of Lemma 3. 
We consider two independent copies ~1~) and (t2) of the random walk 

with corresponding quantities 

K'u)(t) = f l  [ 1 +Hp(j, ~"'(j))] 
j = l  

The random environment remains independent of ~ and ~-'1. Then 

E((g(t))  2) = E(( ff~ J)(t) g(z)(t)) ) 

\ \ j =  I 

~< ((1 + C) '''~"''r 

~< ((1 + C) ''~-1r162 

-- ~. (1 + C)kpk(1 --Pal) 
k = 0  

=(1--pal) ~, ( ( l+C)pd)  k 
k = 0  
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where we have used Lemma 5 and 

C =  l - EP(h = M ) 3  z 

[P(h =M)]  2 

From Section 1 we know that there exists a positive integer d~ such 
that when d~> d~, 

1 
P U < l +  C 

Thus we have that if d>~d~, then 

sup E(<~(t))z)  < ~ QED 

If we define 

~ ' ( t ) = ( M ( t ) ~ ( t ) )  

then similar to Lemma 4 we have the following: 

L e m m a  8. There exists a positive integer d 2 depending only on the 
distribution of h such that if d~> d2, then 

lim = 0 
I ~ O 0  t 

almost surely. 

From this lemma we immediately get the following generalization of 
Theorem 2. 

T h e o r e m  5. If d>_- do = d l  v d2, then for any fl > 0, 

lim ( I~(t)12 Z ( t ) )  _ 1 
, ~  ~ t ( Z ( t ) )  

almost surely. 

Of course Theorems 3 and 4 can also be generalized to this setting. 
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