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Existence Theorems for Multidimensional Lagrange Problemst!

LamperTo CESARE?

Abstract. Existence theorems are proved for multidimensional Lagrange
problems of the calculus of variations and optimal control. The unknowns
are functions of several independent variables in a fixed bounded domain, the
cost functional is a multiple integral, and the side conditions are partial
differential equations, not necessarily linear, with assigned boundary
conditions. Also, unilateral constraints may be prescribed both on the space
and the control variables. These constraints are expressed by requiring
that space and control variables take their values in certain fixed or variable
sets wich are assumed to be closed but not necessarily compact.

1. Introduction

In the present paper, we consider multidimensional Lagrange problems
of the calculus of variations of various forms, in particular, Lagrange problems
where we seek the minimum of a functional of the form

Hx, u] = f . folt, x, u) dt

in certain classes of pairs
M) = (s ), W) = @y, w™), = (..., 2)eGCE,,
satisfying (a) a system of partial differential equations each of the form

Shxt[oeatt - Dt = £, (1, %, u), S C AN h=o + " +o,
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(b) constraints of the form
(tx)eACE, X E,, «(t)e U(t, x()) CE,

(where A4 is a given fixed set, and U(¢, x), (¢, x) € 4, is a given variable set
depending on ¢ and #), and (c) a suitable system of boundary conditions con-
cerning the values of the functions x® and a number of their partial derivatives on
the boundary 9G of the fixed open set G. Here, x is said to be the space
variable and # the control variable.

These problems are called Pontryagin problems when the sets U(Z, x)
are all compact and contained in a fixed bounded part of the u-space. In the
generality above, in particular when the sets U(#, x) are closed and not
necessarily compact subsets of E,,, these problems are called Lagrange
problems with unilateral constraints on the control variable u. If U(¢, x) = E,,
for all # and x, then the same problems are simply called Lagrange problems
(or problems without unilateral constraints in u).

In Ref. 1, we have already given existence theorems for optimal solutions
for Pontryagin problems. In the present paper, we give existence theorems
for optimal solutions for Lagrange problems with or without unilateral
constraints. Other existence theorems will be given elsewhere. As in Ref. 1,
we seek the optimal solutions in classes of pairs of functions x,u, with x
belonging to suitable Sobolev spaces and u measurable. For the purpose
of proving existence theorems for Lagrange problems with or without
unilateral constraints, we use a technique wich is analogous to the one we
used in previous papers for unidimensional (v = 1) Pontryagin and Lagrange
problems (Refs. 2 and 3), and for multidimensional (v > 1) Pontryagin
problems (U compact) (Ref. 1). The present, more difficult situation (v > 1,
U closed but not necessarily compact) has necessitated a more subtle analysis.

2. First Closure Theorem

Let G be a bounded open subset of the f-space E,, ¢ = (,..., #); let
x = (x%,...,x") denote a vector variable in E, and u = (4\,..., ™) a vector
variable in F,,. As usual, we shall denote by ¢l G and by bd G = 4G the
closure and the boundary of G. We shall also denote by co H the convex
hull of a set H, and thus cl co H is the closed convex hull of H. For every
tecl G, let A(f) be a given nonempty subset of E, , and let 4 be the set
of all (¢, x) with ¢ € ¢l G, x € A(¢t). For every (¢, x) € 4, let U(¢, x) be a subset
of E,, and let M be the set of all (¢, x, u) with (¢, x) € 4, u e U(t, x).
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The set A defined above is a subset of E, X E,, and its projection on
E, is cl G. The set M defined above is a subset of £, X E, X E,, and its
projection on E, X E_, is 4.

We shall assume below that G is bounded by a surface .S which is a
regular boundary in the sense of Sobolev (see Ref. 4, Ch. 1, p. 72) and, for
the sake of simplicity, we shall say that G is of class K;. Thus, .S can be
decomposed into a finite number of manifolds S, ,..., S, of dimension # — 1
(and corresponding boundaries), each S; having the property that it can be
mapped into a hyperplane =; by means of a transformation of coordinates 7T}

J
defined on a part G; of G and continuous with continuous derivatives up to

fth order, j = 1,., ]

We shall denote by x(#)=(«,..., x?), u(t)=(u%,...,u™), t € G, vector functions
of ¢ in G. For every 7 = 1l,..., n, we shall denote by {a}, a given finite system
of nonnegative integral indices o = (2 ,..., ), 0 < || <L </, with
la| = oy + - + &, . We shall assume that each component x%(z) of x(f)
is L, -integrable in G and possesses the generahzed partial derivatives D~ xl(t)
of the orders o € {a};, all L, -integrable in G for certain p; > 1, ¢ = 1,..

We shall assume that each component u(t) of u(t) is measurable in G.

Let N denote the total number of indices « contained in the 7z systems
{o};, £ = 1,..., m, and let f(z, x, ) = (f;,) denote an N-vector function whose
components are real-valued functions f(, , #) defined on M. We shall
consider the system of N partial differential equations in G

D"‘xi :fioc(t’ X, u), o E {04}1 3 l == 1,..., n,

or, briefly,
Dx == f(t, x, u).

We are interested in pairs &, # of vector functions x(2), u(t), ¢t € G, as above,
satisfying the constraints

(¢, x(t))e 4, u(t)ye U x(z)) ae inG,
and the system of partial differential equations
Deai(t) = filt, #(2), u(2)) a.e. in G, ae{a};, 1= 1,.,mn

or, briefly,
Dx() = f(¢t, %(1), u(2)) a.e.in G.

Given 8 > 0 and a point (¢, , %) € 4, we shall denote by closed neighborhood
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Ne(ty , x,) of radius & of (¢, , x,) in 4 the set of all (¢, x) € 4 at a distance < §
from (¢, , x,). Then, by U(#,, %, ; ) we shall denote the set

Ulty, 2, 8) = U U(t, %),

where {J) ranges over all (2, x) € Ny(t, , x;). We shall say that U(¢, x) satisfies
property (U) at a point (4, , x,) € 4, provided

Ulty, %) = () L Uty , % ; 9),

>0
that is,
Ulty, %) = () U U, ).

5 (t, 2)eNg(ty, 05

We shall say that U(%, x) satisfies property (U) in 4 if U(t, &) satisfies property

(U) at every point (t,, x,) € A. A set U(t, x) satisfying property (U) is

necessarily closed as the intersection of closed sets. Property (U) is the so-

called property of upper semicontinuity used for different purposes by

G. Choquet (Ref. 5), C. Kuratowski (Ref. 6), and E. Michael (Ref. 7).
We shall consider the sets

O(t, x) = f(t, x, U(t, %)) = [z | 2 = f(¢, x, u), u e U(t, x)] C Ey

or other analogous sets, and assume that they are convex. We shall say that
a set (¢, x) satisfies property (Q) at a point (¢, x,) € 4, provided

Oty , %) = [} cleo Oty , %y ; 8),

that is,
Oty , %) = (Y clco U o(t, x).

2 (£, 2)eN 5lt5,a0)

We shall say that O(z, x) satisfies property (Q) in 4 if O(¢, x) satisfies property
(Q) at every point (t,, x,) € 4. A set O(¢, x) satisfying property (Q) is neces-
sarily closed and convex as the intersection of closed and convex sets.

2.1. Closure Theorem 1. Let G be 2 bounded open set of the t-space
E, of some class K;, I > 1, for every t € ¢l G let A(¢) be a nonempty subset
of the x-space E, , and assume that the set 4 of all (¢, x) e E, x E, with
tecl G, xe A(t) is closed. For every (¢, x) € 4, let U(t, x) be a nonempty
closed subset of the u-space E,, and assume that U(t, x) satisfies property (U)
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in A. Let M be the set of all (f,x,u)eE, X E, X E, with (¢, x)e 4,
ue Ult, x). For every i=1,...,n, let {a}; be a finite system of nonnegative
integral indices a = (oy yoory ), 1 << || </, </, and let NV be the total
number of elements a€{a};, 7= 1,.,n Let f(z, %, u) = (fin, x€{o;,
i = l,...,m) be a continuous N-vector function on the set M, and assume
that the set O(z, x) = f(1, x, U(2, x)) is a convex closed subset of the s-space
Ey for every (¢, x) € A, and that Q(¢, x) satisfies property (Q) in 4. Let x, u,
and &, , uy, k = 1, 2,..., be pairs of vector functions x(f) = (x,..., &%), u(t) =
(1 oo ™), 2 (8) = (WL, %), w(8) = (ihys ™), t€ G, &, % e Ly(G),
i=1,...,m, &,/ measurable in G, j = 1,..., m. Assume that each component
%, %t of x, x; possesses generalized partial derivatives D=x? , Dex,t e Li(G)
of the orders o€ {a};, i = 1,..., n, k = 1, 2,... . Assume that

(t x(D))ed,  w(t)e Ult, %)) ae. in G, )
Dexy(t) = fults 2i(D), wi(t))  ae.in G, «we{s};, i=1Ll.,n (2
and that
2,5(8) — x%(¢) strongly in Ly(G) as & — oo, 3
Dox,i(t) — Deai(t) weakly in L,(G) as & — © 4

for all ae{a};, ¢ == 1,..,m. Then, there is a measurable vector function
u(t) = (u',..., ™), t€ G, such that

(t, (1)) e 4, u(tye Ul x(t)) ae inG, (5
Dew(ty = fi(t, x(2), u(t))  ae. in G, ae{a};, =1,

The strong convergence (3) can be replaced by pointwise convergence almost
everywhere in G. We omit the proof of this statement since Closure Theorem 1
is a particular case of Closure Theorem 2. A proof of Closure Theorem 1
can be obtained by obvious simplifications in the one of Closure Theorem 2.

3. Second Closure Theorem

Let us denote by y = («1,..., %) the s-vector made up of certain com-
ponents, say x%,..., &%, 0 < s < #, of the n-vector x = (x%,..., 2*), and by 2 the
complementary (n-s)-vector 2 = (x%1,..., 5") of x, so that we shall write
% = (y, ). We shall assume that f(¢, y, u) depends only on the coordinates
xl,..., x% of x. If x(¢), t € G, is any vector function, we shall denote by »(¢) =
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(¥(#), 2(t)) the corresponding decomposition of x(f) in its coordinates
y(t) = (¢,...,%%) and 3(f) = (x5*,..., ). We shall denote by 4 a closed
subset of the ty-space E, X E,, and then 4 = 4 X E,_, will be a closed
subset of the tx-space E, X E,. We shall consider #-vector functions
x(t) = (y(1), 2(t)) for which the first s components, or vector y() = (,..., ¥°),
possess certain generalized partial derivatives D*x%(t) as in Closure Theorem 1.
On the remaining # — s components, or vector 2(f) = (x**1,...,x"), we
shall have a different set of assumptions.

We shall consider countable systems {I} of intervals I = [a, 8] C G,
a = (d,.., @), b = (b',..,0), a9 < b, j = 1,...,v, with the property that, for
any point ¢ € G, there are hypercubes I € {I} with ¢ and diam [ as small
as we want. For any given function 2(¢), ¢ € G, we shall consider the usual
differences of order v relative to the 2* vertices of I, say

dz = 4z = 2(b) — z(a) if »v=1,
Az = Az = 2(b%, b%) — 2(b*, a®) — 2(a’, b®) + 2(d', @?) if »v=2,

and so on. A nonconstant function 2(¢), £ € G, is said to be singular in G with
respect to the system {I} provided 4,z is singular, that is, provided for almost
all t,e G we have (measl)™ dz—0 as diam I — 0, with I a hypercube,
Ie{l}, tyel. As we know (Ref. 8), any interval function ¢(f) of bounded
variation possesses a decomposition ¢(I) = @(I) + S(I), where @ is absolutely
continuous and S is singular. If ¢(f) is nonnegative, then both @ and .S are
nonnegative.

3.1. Closure Theorem 2. Let G be a bounded open set of the #-space
E, of some class K;, [ > 1, let A(¢) be a nonempty subset of the y-space
E, defined for every ¢ € cl G, and assume that the set 4 of all (t, y) e E, X E,
with t e cl G, y € A(¥), is closed. Let 4 be the closed set 4 = A x E,_,C
E, X E,. Let U(t,y) denote a closed subset of E, for every (¢, y)e 4,
‘and let M be thesetof all (¢, y, u)e E, X E, X E, with (¢, y)e A, ue U(t, y).
For every i=1,...,m, let {a}; be a finite system of indices « = (o ,..., o),
1< o< </ and let N be the total number of elements « € {a};,
i =1,...,n. We assume that, for every i = s + 1,..., %, {o}; is made up of
only one element « = oy = (1, 1,...,1). If IV denotes the number of elements
wefaly, i=1,.,5, then N = N + (n — s). Let f(¢, 3, u) = (f1), «€{a};,
i=1,...,n, be a continuous N-vector function on M, which we may write in the
form f= (f, f,), where f is the N-vector of its first N components, and f, the
(n — s)-vector of its remaining components. Let & = (&4,..., 2%) = (2, 2,)
with 2 = (21,..., 2V), 2, = (s¥*,..., 2%) and, for every (¢,y)e 4, let O, )
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denote the subset of the r-space Ey defined by 2 = f(2, v, u), 3* = fu (8, 3, w),
i =N+ 1,., N, ue U(t, y). Let us assume that §(¢, y) is a closed convex
subset of Ey satisfying property (Q)in 4. Also, assume that f,(f, y, 4) = —¢,,
a€{a);, = 1,..,5 for all (£, y,u)e A and some constants ¢; > 0. Let
x = (9, 2), %, %, = (Vi » 23)s Uy, B =1,2,..., be functions defined on G, all
components of x and ¥, of class L,(G) and all components of u and #,
measurable. Assume that each component x* and x,° of x and x; has
generalized partial derivatives D=x?, Dx,? of the orders ac{a};, i = 1,..., n,
all of class L,(G), and that
(tyt)ed, w(t)e UL, y(t)) ae inG, (6)
Drag(t) = filts yilt), ul))  2.e in G, (7)
with
welad;, i=1lu,n k=172.

Assume that, as k- c0, we have
2 (8) — x*(t) strongly in Ly(G), i =1,..,5, ®
Do 2(8) — Deat(t) weakly in Ly(G), xe{a};, £ =1, )]
Assume that there is a countable system of real numbers [f] everywhere

dense in E, such that, for all points {¢,}, t,€ G, of the form £, = (#,..., #),
#elt], j=1,.,v, we have

wH(t) — ity at every te{t}ask—> oo, i=s-+1,..,m8 (10)

and for all intervals {I}, I C G, with vertices in {7,}, we have

f Doi(t) dt — f Duwi(t)dt as k> 0 (11)
with ! !

o = oy €{a};, {=ys-+1,.,n

Assume that there is a decomposition x%(t) = X¥(t) + S¥z), i = s + 1,..., n,
of each &%, { = s -+ 1,..., #, into two parts X?, 5%, both of class L(G), X¥¢)
with generalized partial derivative D% X? of class L;(G) and Si(¢) singular.
Let Z(t) denote the (n — s)-vector Z(t) = (X*+,..., X®). Then, there is a
measurable vector function u(t) = (u!,..., #™), € G, such that, a.e. in G,
we have

(Lymyed, u(t)e U y@), (12)
Doty = fult, y(0), u(®)),  ae{ad, =l (13)
DXt = fult, (), (), o =ope{nd;, i=s+1e,n (14
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Strong convergence (8) can be replaced by pointwise convergence almost
everywhere in G.

3.2. Remark. Closure Theorem 2 reduces to Closure Theorem 1
when s = n, and then 4 =4, f=f, x = .

3.3. Proof. For every ac{un};, i = 1,..,n, let ¢, , @, denote the
real-valued functions defined a.e. in G

Pualt) = Dexi(t) = fiult, y2(2), i),
Put) = Dexi(t), i = 1,..,s,
e (1) = D*Xi(1), i=s-F1,.,n

and let ¢, ¢, denote the N-vectors

Pilt) = (Pia(t), v €{ey, 1 = 1,..., 1), k=12,
P(2) = (pault), wefe;, i = 1,...,m).

By hypothesis, 4 is a closed subset of E, X E;, U(t, ¥) is a closed subset of
E,, for every (f,y) e A, and U(t, y) satisfies property (U) in A. By Ref. 1,
Section 4, M is a closed subset of E, X E, X E,, .

For every t,e G, ty = (t,..., £*), let 8, = 8,(¢,) denote the distance
of #, from oG and let ¢ =g, = [4;, t, + %] denote any closed hypercube
=< <V +h j=1,.,v], where # # 4+ helt], h is a positive
number with 0 <<k < 8,fv, # < ¢t < # + h, so that ¢, € ¢ C G; and we have
denoted here, for the sake of simplicity, by % also the v-vector (4,..., h).
For almost every ¢, € G, we have, as 7 — 0t

J f ©(t) dt = x'(t;)), i=1,.,s, (15)
q
B f Dxi(t) dt — Dilty),  acfad, i= 1.5 (16)
q
B f Xi(t) dt — Xi(t,), i=s+1n, (17
q
Bd,SE >0, i=s-+1..,mn (18)

Also, for almost all £e G, we have (f, y,(2))e 4 for all k= 1,2,.... The
convergence ;' — &% in Ly(G) as k— oo, i = 1,...,5, as stated in (8)
(that is, y, — y in L,(G)), implies convergence in measure in G, and hence
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there is a subsequence [y, (£)] which converges pointwise a.e. in G. Let G,
be the set of all #e G where the relations (15) through (18) hold, where
{t, yi{t))€ A for all k, and y, (t) — y(?) as 7 — co0. Then, G, is measurable
with meas G, = meas G. For every t € Gy, we have now (2, y, (¢)) € 4, where
Ais a closed set, and as r — oo, then (¢, y(t))e 4 for te Gy, that is,
(t,y(t))e 4 ae. in G.

Because of the convergence y,(f) — y(¢) in L;(G), and hence in measure,
and consequent pointwise convergence y, (t) — y(f) everywhere in G, with
meas G, = meas G, we know that there are closed sets C,, A= 1, 2,..., with
C,CG,, C,CC,,y, meas C, > meas Gy, — A%, such that y(f) is continuous
on C, and yy (t) — y(¢) uniformly on C, as r — co for every A = 1, 2,....
Since G is bounded, and C,C G, C G, each set C, is compact, and hence
¥(1), yi(t), r = 1, 2,..., are continuous, uniformly continuous, and equicon-
tinuous on each (.

Let A be any fixed integer with A > (meas G)™; hence, meas C; > 0.
Let € > 0 be an arbitrary number. There is some 85 = §(e, A) > 0 such that
t— ] < 8y, with £, £ € C,, implies | (t) — ¥()] < & | (t) — W (£)] <e
for every r = 1,2,.... Also, there exists some k& = k(¢, A) such that
k, = k(e, ), teCy, implies |y, (1) — y(t)] <«

Let ¢ >0 be any number such that 0 < ¢, <¢, or 0 < ¢g,fc < 1,
o = (xﬂe{oa}i, f == -+ 1,...,11

Let x,(t), xa*(t), t € G, be the characteristic functions of the sets C, and
G — C,, so that y, + y,* = 1 everywhere in G. All functions y,(¢) and
x(t) Dowi(t), a€f{a};, ¢ = 1,..., 5, are of class Ly(G), and for every t,€ C,

we have .
x(t) =1, x () D(t,) = 0.

Then, for almost all ¢, C;, we have also, as 2 — 0T,

e [ de— xt) = 1, (19)
and !
e f (2) Di(t) dt — y¥(t)) Di(t)) = 0, (20)
with
wefo, i=l..,s

Let C, be the subset of C, where this occurs. Then, C, is measurable,
C,CC,CG,CG, meas C, = meas C, > meas Gy — A= >0, and, finally,

meas (U CA’) = meas G, = meas G. 21
X
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Let > 0 be any positive number independent of e. Let #, be any point
of C;, let y, = y(¢,), and let u, be any point of U(t,, y,). Let M, > 0 be
any constant such that

[ fiulo » Vo » )] < My, xe{al;, 7= 1,0, %
Let us fix 2 > 0 so small that

h<elv, h<S8fv, k<8,
where
8o = So(to), 8 = 8y(e, ’\),

and also so small that
} Desi(ty) — v | Dexi(r) do ] <N aefal,  i=lu,s  (22)
q
v meas(g N C,) = h—”f X, (f) dt = max[2-1, 1 — qN=1M, , 1 — gN-%c1], (23)
q

| i [ x3) Dty dt‘ <oV aefads,  i= L, 4)
q
|hvA,St| < nN-Y, = 1y, (25)

} DXY)) — I | DeXi(t) ; <N, a—apefad, i=s+1,n (26)
aq

This is possible because of expressions (15)-(20). Let H and H* be the sets
H=¢gnC, Hf=g¢g—-H=gq—gnC,=q—C,.
Then, we have
B~ meas H = max[27%, | — N 1ML 1 — pN-1e 1, (27
B~ meas H* < min[2-1, pN-1MY, pN-1¢1). (28)
For any k, let §;,(t), t€g, be the function defined by

Pinet) = Qi) = fied &> Y2{2), uil2)) for teH,
Biail?) = fiallo s Yo » o) for teH* =g¢—H,

and let @,(t) be the N-vector

o1(f) = (Puat), a€{e;, 1 = 1,..., n)
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For te H and k = k, > k(e, A), we have now
V't — 1] < vh < min[e, 8 , 8],
Lya®) — 5o | = 1 33(8) — 3alto)| -+ | yalt) — ¥(E)| <€ + e =26
and, hence,
(t, yu(t)) € N3 {to » ¥o) for feH, k ==k, 2= ke, A).

Thus,

&il2) = f(&, vild), w(8)) = (fiul® yil8), ma(2)), € {o};, i =1,...,m), teH,

Bil(t) = f(to» Yo o) = (fullo s o o) x€{dy, i = 1,y m),  teq —H,

and, hence, for all ¢ € ¢, we have

@k(t) e@(to »Yos 36)1 teg, k= kr = k(é, A)' (29)
Finally,
i [ @t dt ecloollty, 3053, k= ke > ke X), (30)
¢

since the last set is convex and closed.
Note that the relations

Ifioc(z() s Vo> %ON < Ml 3 ae {&}z 3 == 1"“’ 7,

certainly imply that

thw j Pral®) dtl - },lm f Fulte yo» o) dt
H i
< My meas H* < Mk N-1M;Y) = 7N (31)
with

o€ {af;, i =l,.,n

We shall now obtain certain estimates first for ¢ = 1,..., s and then for
1 =75+ 1,..,n

Let y (1), xi&(2), t € G, be the characteristic functions of the sets H and
H* in G. Since HNH* = g, HU H* = ¢, we have

Xie F xag =1 everywherein g,

Xig = Xay =0 everywhere in G — q.



98 LAMBERTO CESARI

Then, as k-— oo, hypothesis (9) implies that
| %0 geal® dt— [ xa®) put) dt,
G G

| X ety dt— [ x50 eulv) dt,
G G

with
&E{a}i ’ i= 1,..., 8y

that is,

f Piak dt > j Pia di) j % Piok dt — J " P ar.
H H H H
Note that the sum of these relations yields

_" Pt AL —> J. @i dt
aq q

as k— o0. We can now determine an integer k' = k'(¢;, ¢, A, ) = k(e, A)

such that, for 2 = k,, £ > k'(¢,, ¢, A, ), we have

U Piue d1 —f Pis dtl < N1,
H H
If ‘sz«;d?—f %“dii < NV,
H* "*
and, of course, also
l f P AL — f Pia dt ! < ZN'lh”n.
q q

Now, for
k = k’/‘) k :kl(t0’€9 )\3 YI)’ OLE{OC}i, i = 13--"55

we have

| D) — | pualt) a1

= f Pille) — h fq Pior; A1 + H fH* P At — h* f};* Puar A2 !

<

Pislte) — I fq P At } + ] I/ fq Pi At — HY J‘q P A I
+ ) /i fH* Proie 4t — IH* Pio At ; + ’ b fH* Pio di l

+}h—»jH*qsmdz} =dy+dy +dy +dy -+ ds.

(32)

(33)

(34)
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By (22) we have d; < N-1y, by (33) we have dy < 2Ny, by (32) we
have d; << N-1n, by (24) we have d, < N, and by (31) we have d; < N-1n.
Thus, (34) yields

{ Di(te) — b [ Gealt) dt} < 6N,  aefa)s, i=1l..s (35
g

for k=Fk,, kR =k, A ).
We shall now obtain analogous estimates for ¢ = s + 1,..., n. For these
values of 7, we have f,(¢t, v, u) > —c,, and, hence,
o [ puadt = I [ fult 0), udt) dt
b by
> —hc;,, meas H* > —hve, (WN-c'n) > —N-1y  (36)

forall kand where « = aye{a};,7 = s + 1,..., n. Since o = oy = (1, 1,..., 1),
we have

hf pu(t) dt = hdgmd,  i=s4+1,m k=12, (37)
q
h"’f Puft) dt = h—4,X0, i =5+ 1,..,n
q
On the other hand, &' = X* 4- §% and, by (25),
hd gt = A4, X8+ hd,Se, | hvd,5t | < N1y (38)

Also, by force of (10), we can determine &'(%y, ¢, A, ) above so that, for
k =k, = Fk(t, ¢ A, n), we have
| Fod et — hvdgpt | < N1y, =135+ 1., (39

Finally, (37), (38), and (39) yield

i [ gty dt = [ gut)dt| = | hdgnt — oA, X0
q a
< | A — b | + | A, ') < Nty + Nty = 281, (40)

For « = o€ {a};, £ = s + 1,..., n, we have then, as in (34),
DeXHte) — I | Puall) di
= @) — I fq Pty A + B JH* Pior At — B f;;* Piats A
oulte) = [ gudt| | i | e = [ pudr |

W e dt — | B | G dt
-+ f}{* Pinks j‘ H*?Q %
= d01 + d{)z + doa + do4- (41)

/>/,..




100 LAMBERTO CESARI

By (26) we have dy, > —N-13, by (40) we have dy, > —2N-1y, by (36)
we have dyy > — N1y, by (31) we have d,, > — N1y, and hence (41) yields

DeXi(ty) — I | Gra®)dt > 584, a=agefali, i=s+le,n, (&)
a

for every k = k, = k'(t,, ¢ A, 1).

Let us denote now, for the sake of simplicity, by y and Z the s-vector
y = (%%...,%%) and (n — s)-vector Z = (X*H,.., X") respectively and,
hence, by Dy and DZ the N-vector and (n — s)-vector

Dy = (D, aefa};, 1 =1,.,9),
DZ = (D»X?, o= o€ {a;, i=s+41,.,n)

Also, let z; and z, denote the N-vector and the (n — s)-vector
2 =AW | $ualf)dt, ae{a};,i=1,.,5),
o= ([ Gualt) dt ve o) )
2y = (h-v j Frt) dt, o = g€ {ody i = 5 -+ 1,0y n)
4

Then, relations (35) and (42) can be written in the simple form
Dy(ty) = 2 + &1, DZ(t)) = 2, + & + &%

where | ] < 67, | & | < 5%, and all components of £,* are nonnegative;
also, by (30), we obtain

(Dy(te), DZ(1y)) = (21 + &1, 22 + éa + &),
(2, 25) = b f Blf) dt clo Oty » Yo 5 3¢).
Since all components of §,* are nonnegative and because of the particular
definition of 0, we have also
(21,3 + &) eclco Qlty , 3o 5 3¢)

and, hence,
(= + &1, 8 + & + &) e (el co Oltg , Yo 5 36))in
or
(Dy(t), DZ(to)) € (cl co Oty » Fo 5 36))izy -
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Here, t, is a fixed point and, hence,

(Dy(to)s DZ(t,)) € n (Cl co é(to » Yo s 36))12n,

(Dy(ty), DZ(2,)) € cl co @(to y Yo 5 3¢€),

since the last set is closed. Also,

(Dy(to), DZ(ty)) € () clco Oty , yo 3 3¢) = Olty » o)

>0
with y, = ¥(f,), because of property (Q). Here, ¢, is an arbitrary point of
C,. Hence,
(Dy(@), DZ(1)) € 0(t, ()

for all points te G" = U,C; and, by (21), meas G" = meas G. Thus, for
almost all ¢ € G, there is some #(¢) € U(t, y(#)) such that

Da'xi(i) :fics(t’ y(t)’ 5(3))» xE {06}1 s £ = 1§,
DEXUE) = fult, 9(0), WD), o« = mp€fads, Q=5 t L

The existence of at least one measurable function u(t) as above follows
by the same argument used for v = 1 in Ref. 2, Section 5 (for a general
statement to the same effect, see also Ref. 9). Closure Theorem 2 is hereby
proved.

3.4. Remark., We mention here variants of Closure Theorems 1 and 2
which are of some interest. One of these actually will be applied in Section 5.
We may assume, for instance, that G is made up of components G, ,..., G,
and that, in each of these, there is a different system of {o};, i = 1,..., s,
and of functions f,,. Another situation is of interest. Assume that G,,
¢=1,..., u, are finitely many open bounded subsets of E, and that, for each
G,, there is a given set {a};,, £ = 1,..., , 0 = 1,..., , and a system f;, of
functions f. Now, let us consider all possible nonempty intersections
F,=G,NnG,N--NG, of pof the sets G,, 1 < p < pu. These sets
Fo,r=1.,N, are ﬁmteiy many and each is a nonempty bounded

open subset of E,. For each of these N sets F, = G, N - N G, , we shall
consider the vector function f)(t, x, ) whose components are all those of the
functions f = (f;,), « € {a};,, 7 = 1,..., #, 0 = 6y,..., 0, . We shall then require

that, for each 7, the set Q")(t, ) corresponding to f ‘” is a convex subset of
the relative Euclidean space E,, (,_s. Here, M, is the total number of all
distinct indices « € {a};,, ¢ = 1,..., %, 0 = 6y ,..., o, . In other words, in each
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G,, we have a different system of partial differential equations Dxx* = f,,
and, in each nonempty intersection ¥, = G, N N G, , we consider the
logical union of the various differential systems VVe assume that these systems
are compatible, and then the hypothesis that §)(t, x) is convex corresponds
to the usual hypothesis for these composite differential systems. A further
extension can be obtained by assuming that the functions f;, are sectionally
continuous in each set G, but, for instance, coincide on each set F, with
functions which are continuous on the closure of F,. These variants of Closure
Theorems 1 and 2 are proved exactly by the same argument.

4. More Notations for the Existence Theorems

We shall use the same general notations as in Section 2. Besides the
N-vector f(t, x, u) = (fi), we now consider a scalar function f(¢, x, u)
continuous on M, and we shall denote by f(z, x, u) the (N -+ 1)-vector
function f(t, », u) = (fy, f;) continuous on M. Concerning the n-vector
functions x(t) = («%,..., &%), te G, we shall require that each component
«(t), t € G, belongs to a Sobolev class W (G) for given [, and p;, 1 < [; <,
P> 1, i=1,2,.,n By force of Soboievs 1mbedd1ng theorems (Ref 4),
each function %' and each derivative D’ of order o = (ay,...,,),
0 < lo| < ; — 1, has boundary Values @, defined almost everywhere on the
boundary S = &G of G, and each ¢, is of class L, on S.

We shall now require a set (B) of boundary conditions involving the
boundary values of the functions & and their derivatives Dex?,
0 <|af <, — 1. On the boundary conditions (B), we assume only the
following closure property (Py): If x(z) = (a',..., &%), x,(2) = (s, "),
te G, k= 1,2,.., are vector functions whose components &%, x,’ belong to
the Sobolev class Wi (G), if DPx,(t) — DPxi(t) as k — oo strongly in L, (G)
for every 8 with 0 < Bl < — l, if DPyx,i(t) — DPx¥(t) as k— o0 weakly
in L, (G) for every 8 with | 8| = [;, and if the boundary values ¢, of x,¥(2),
= lyu,n 0 <ol <, —1, on 8G satisfy the boundary conditions (B),
then the boundary values ¢, of xi(t), i=1,..,n, 0 < || <[;— 1, on G
satisfy the boundary conditions (B).

For instance, if the boundary conditions (B) are defined by stating that
some of the boundary values ¢}, (t) coincide with preassigned continuous
functions ¢’ on certain parts of S = 0G, then, by force of Sobolev’s imbedding
theorems (Ref. 4), we know that property (P;) is valid.

We shall need a further property of boundary conditions (B), say (P,):
If x() = («%,..., x™), t€ G, denotes any vector function satisfying boundary
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conditions (B), whose components #¥(f)e Wi(G), p;>1, 1<, <],
satisfy

| 1 Do dt < M

G

forall B = (By,..., B,y with | 8| = I, , 7= 1,..., n, and constants M , then there
are constants M,, such that

| 1 Dwiopeedt < M,
G

forall « = (oq ;oo ) With O < | | << Iy — 1,7 = 1,..., n, where the constants
M,, depend only on p;, v, all My, G, and boundary conditions (B), but
not on the vector function x(f) above.

For instance, the boundary conditions (B) defined by preassigning
the continuous boundary value functions ¢,* on 8B of all derivatives Dx(¢),
= (2,0 0), 0 <|a| <l —1, i =1,.,v satisfy condition (P,).

A pair x(f) = (&, ¥7), uw(t) = (ul,..., w), t€ G, with »'e W}(G),
w measurable in G, satisfying (¢, x(2)) € 4, u(t) € U(t, 2(2)), Dx’(t) = f(2, x(2),
ut)), aefa;, i = L., 0, ae inG, and fi(z, x(t), w(t)) € L,(G), is said to be
admissible. A class £2 of admissible pairs is said to be complete if, for any
sequence ¥, i, k=1, 2,..., of pairs all in 2 and any admissible pair
x, u such that x, — x in the sense described under P, , the pair x,u belongs
to £2. The class of all admissible pairs is obviously complete.

5. Existence Theorems

5.1. Existence Theorem 1. Let G be a bounded open set of some
class K;, [ > 1, of the t-space E,, for every t € cl G let A(¢) be a nonempty
subset of the x-space E, , and assume that the set 4 of all (¢, ) e E, X E,
with tecl G, xe A(t), is closed. For every (¢, x)e 4, let U(t, x) be a
nonempty closed subset of the wu-space E,, and assume that U(#, x)
satisfies property (U) in 4. Let M be the set of all (¢, x, u)€ E, X E, X E,,
with (¢, x) € A and ue U(, x). For every ¢ = 1,..., n, let {a}; be a given
finite system of indices o = (o ,.., ), 0 < || < [; </, and let N be the
total number of elements ae{a};, 7= 1,.,n Let f(t, x, u) = (fo > fiu>
o= {o;, i = 1,.,m) = (fy,f) be a continuous (N - 1)-vector function
on M and assume that the set Q(¢, x) = f(t, x, U(¢, x)) is a convex closed
subset of Ey,; for every (f, x) € A and satisfies property (Q) in 4. Let (B)
be a system of boundary conditions satisfying properties (P;) and (P,).

809/1/2-2
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Let£2beanonempty complete class of pairs x(2) = (#%,..., ), u(t) = (u',..., u™),
te G, x(t)e Wy(G), 1 <, <l p,>1,i=1,.,n, ui() measurable in G,
j = 1,..., m, satisfying (a) the constraints

(t,x(t)ed, wt)eU® () aeinG,
(b) the system of partial differential equations
Dra(t) = fi(t, (2), w(®)) ae inG, ac{a);, i= Ly,

(c) the boundary conditions (B) on the boundary G of G concerning the
boundary values of the functions x%(¢) and their generalized partial derivatives
Dexi(t) of orders B, 0 < |8 < I; — 1, ¢ = 1,..., m, and (d) the system of
inequalities

f | Doxi(t)Pidt < N for all Bwith [B| =1, i =1l,.,n,
G
[ 17t s, )i dt < N,

where Ny, N, are given constants, and p,, p; > 1 are given. Then, the

U
cost functional

I, u] = | ot x(0), ) dr
possesses an absolute minimum and an absolute maximum in Q.

5.2. Proof. LetRbeaninterval R= [a, b] containing cl G in its interior,
say cl G Cint R C E, . It is not restrictive to assume R = [0, 8] where 0 and
represent the v-vectors (0,..., 0) and (b,..., ). Let x° denote a new variable
and x = (% &) = (x°, &%,..., 2"). Let [, = v and let fy(¢, », u) be a new
scalar function defined by

fot,,u) =0  for teR—clG, «xekE», uckw,
folt, 2, u) = fo(t, x,w)  for tecdG, (¢ x,u)eM.

We shall denote by %%(¢), # € R, a new scalar function which is L-integrable
in R, possesses the generalized partial derivative &x0/ot' -+ &£, or Dex® with
a = g = (l,..., 1), which is also L-integrable in R, satisfies the partial
differential equation

Dea® = fot, (2), w(t)) ae.inR, o«=(1,.,1),
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and the boundary conditions
At,0)=0, (#,0)€0R, i=l.,»

where £, denotes the (v — 1)-vector ;" = (f;,...,%4, %z, L) Lhen,
we have

20(b) — ( ot 2(2), u(t)) dt = f ot +(2), @) dt = 1Tz, ],

“(t) = | : Jom, ®(r), u(r)) dr,  teR,

where the last integral is taken over the interval [0 < 7' < &, i = 1,..,,v],
and then

f [ D*x0(2)|Po dt < Ny, a = ay = (L., 1),
R
Also, if ¢g* -+ pg* = 1, then
1/‘19 1/;00
= AL 10 N 115,
06 = i < ([ dt) ([ fopedt) < by

and thus I[x, «] is bounded above and below in £2. As usual, we shall use the
vector variable & = (&9, x). If ¢ denotes the infimum of I[x, #] in £, let x;, 4, ,
k=1,2,.., be a sequence of pairs all in 2 with I[x;, u,] = %,°(b) —~1
as k — c0. By the weak compactness of the unit ball in Wf;i(G), == 1,..,mn,
and in L, (G), there exists a subsequence, say still [x; , u,], and limit functions
x = (x',..., «*) and i, such that, as k£ — o0, we have

Dyl > Dot weakly in L, (G),  ae{o};, i=1,.mn,
xit —> af strongly in L, (G), i = 1,..,n,

Doy — o weakly in L, (G), o= oy = (1,ms, 1)
If x%t), te G, is defined by
£
) = [ () dr,
]
where the integration is taken in the interval [0, #], or 0 < #* << 5,7 = 1,..., v,

then
W) = Duo(t)  ae.inG == (L., 1),
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and since Do, = f, is zero in R — cl G, we know that also ¢ = 0 in
R — cl G. Finally, the weak convergence D" — D% in L, (R), o« = oy =
(1,...,, 1), implies that, as & — 0,

| ) Do®(e) dr — [ ) Do) di,
R R

where y,(r) is the characteristic function of the interval [0, ] in R. In other
words, as k- o0,

1 i
f D7) dfﬁf Dud(r) dr, o = ay = (L, 1),
0 [

or x,%(t) — x%(t) pointwise as k— oo for every te R. We can now apply
Closure Theorem 1, with pointwise convergence x,? — x° replacing strong
convergence, with R replacing G for the component &° as in the remark at the
end of Section 3, and with f, continuous in G and in R — ¢l G, precisely,
sectionally continuous in R. Thus, by Closure Theorem 1, there exists a
measurable function u(t) = (u,..., u™), t € G, such that

(¢, x()yed, w(t)eU(t, »(t)) ae inG,
Dt = f, (8, 2(2), ul?)) a.e, in G, ae{o};, 7= 1,0, %,
Dex® = fi(t, x(8), u(t)) ae.in R, o= a.

Hence,

) =Iw, ] = | fodi= [ _fydi=limx3) =i,

and the pair x, # belongs to £, because 2 is complete. This proves that
I[x, u] has an absolute minimum in £2. The same proof holds for the maximum.

5.3. Existence Theorem 2. Let G be a bounded open set of class
K, 1> 1, of the t-space E, , for every ¢ € cl G let A(f) be a nonempty subset
of the x-space E,, , and assume that the set A4 of all (¢, x)e E, X E, with
tecl G, xe A(t), is closed. For every (t, x) € 4, let U(z, x) be a nonempty
closed subset of the u-space E,, , and assume that U(#, x) satisfies property
(U) in A. Let M be the set of all (¢, x,u)c E, X E, X E,, with (¢, x) € 4,
u e U(t, x). For every ¢ = 1,..., n, let {o}; be a given finite system of indices
a = (o ,or, &), 0 <{ || < I; </, and let N be the total number of elements

o€ {O‘}i s i = l,..‘, #n. Let f(i, x, u) = (fo»fim o € {O‘}i , { = 1,..., ?2) = (fo ,ﬂ
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be a continuous (N -+ I)-vector function on M, and assume that the set
O, x) of all & = (2% 2',..., 2%) = (2% 2) € Eyy with 2° > fi(t, 2, u), 2 =
f(t, x, u), ue U(t, x) is a convex closed subset of Ey, for every (4, x)e 4
and satisfies property (Q) in 4. Also, assume that fi(t, x, u) > — M, for
all (¢, x, u) € M and some constant M, > 0. Let (B) be a system of boundary
conditions satisfying properties (P;) and (P,). Let £ be a nonempty complete
class of pairs () = (..., ¥%), u(t) = (u',..., u™), te G, xt)e WH(G),
1 <L <L p;>1,7i=1,..,n, v(t) measurable in G, § = 1,..., m, satistying
(a) the constraints

(t, x()ed, ut)eUt,x(t)) ae inG,
(b) the system of partial differential equations
Dext(t)y = fult, 2(2), u(t)) a.e.in G, a€{n};, 7= 1,..,%,

(c) the boundary conditions (B) on the boundary 0G of G concerning the
boundary values of the functions x%(¢) and their generalized partial derivatives
DBx(t) of orders B, 0 < |B| </, — 1, i=1,...,n, and (d) the system of
inequalities

| | Do)t < Nog

for all Bwith |8| = [;, B¢ {o;, ¢ =1, 2,..., n, where N are given constants.
Assume that f(z, x(t), u(t))is L,-integrable in G. Finally, assume that whenever

[ Jolts x(0), ut2) de < Lo “3

for some constants Ly and pairs #(z), #(¢) in £2, then for the same pairs we have
also

f{D«xi(t)mdtng, welod;, i=1l.,m, (44)
G

for constants L,, depending only on Ly, £, p,, /; on the boundary conditions
(B), but not on the particular pair x, u. Then, the cost functional

I, u] = f ol 3(0), u(t) de

possesses an absolute minimum in £. If, for given ¢ and f as in (d), it happens
that, for any L, > 0 sufficiently large, there is some N such that []x, u] < L,
implies [ | DBx%(#)|P<dt << Ny, then the absolute minimum still exists, even
if in defining 2 we disregard the corresponding requirement in (d); the
absolute minimum, however, may change.
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5.4. Proof. By hypothesis, we have f(¢, x, u)+ M, >0 for all
(¢, x, u)e M. For every pair x, u of the class 2, we have now

400 > Ifx, u) :f Jodt = —M;meas G > —c0.
G

Then, the infimum ¢ of I[x, #] in the class £ is finite. Let x,(2), u,(t), £ € G,
k =1, 2,..., be a sequence of pairs all in £2 such that I[x, , u,] — i as £ — c0.
We may assume

i < Iwg, u] = foo(t, wt) w) dt <i-FkY<i+ 1, k=12...
Then, by hypothesis, there are constants L,, such that
fG | Dai()Pedt <Ly, acfal, i=lu,n k=12., (45
and, by (d),

f | D)7 dt < Ngforall |B] =1, Beé{ak,i=lu,n k=12..
¢ (46)

Relations (45) and (46) show that the sequence [x,¢] belongs to a well deter-
mined balls of the Sobolev space W} (G), i = 1,..., #. By the weak compactness
of such balls, there is a subsequence, say still [x;] for the sake of simplicity,
converging weakly toward a vector function x(#) = («%,..., %), £ G, with
xt € Wii(G), and, precisely, by Sobolev’s imbedding theorems (Ref. 4),

Dexyt — D strongly in L, (G), ol <L—1, i=1..,n
Doy — Dot weakly in L, (G), la| =1, i=1,.,n

By properties (P;) and (P,), we conclude that x satisfies the boundary
conditions (B) on 2G.

Let R be an interval containing ¢l & in its interior, GCcl GCint RCR.
We can assume R == [0, ], where 0 and b denote (0,...,0) and (b,..., b).
Let @u(2) = folt, %(2), () for te G, gty =0 for 1€ R — G, and let
o (f) = — M,,teR, and ¢, H(#) = ¢,{t) + M, , 2 R, so thatg, T + ¢, =
®r > () = 0, ¢(f) < 0 everywhere in R. Let x,%, x;,%, ¥~ be the functions

ot t t
w0 = [ ) dn = [ gitr)dn,  wl) = | p()dn,  teR,
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where the integrals range on the interval [0, ¢], or 0 < 7' < &, i=1,..,»
Hence,

500) = [ put)dt = [ gut)dt =T, ] <i 41,
2, 2(0) = a~(t) + %), te R, E=12...

For every integral JC R, we denote as usual by 4,%° 4x,+, 4d;x~ the
differences of order v of the indicated functions relative to the 2* vertices of ],
and we have 4,%,° = Adx, 7 + 4,x~, with

Aed = [ gut)dt,  dpt = f Pty dt, A = f o~(t) dt = — M, meas .
I I I

If t = (.., 1), t' = (#',..., t"”) are any two points of R, then obviously
et — ¢ < |t — '], i = 1,..,v. Also, we denote by t,=1;,t,.,t, =1,
the points of R defined by t; = (&,..., &, ¢+, t7),j = 0,1,..., », and by

r; the intervals

7= [0’ tl] X e X {0, gv-i—{»l} X {y—é} il;»—-j} X [O, t’})—vj'(”l} X e X [0, tw},

Fi=01.,v—1
Then,

1 (t) — 2 0t) = Zj[xt;) — %"(t40)),
where 2 ranges over all j =0, 1,...,» — | and
5%() — 0(tr) = [ gult) dt
and analogous formulas hold for x,* and x~. Since
measv; < b — | LVt 1
and ¢~ = —M,, we have
Lo (8) — = () < vMb2|2—1t']|, tiekR

On the other hand, ¢, > 0 and, hence, dx,* > 0 for every ICR,
kR=1,2,..
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If [I,...,I;] denotes any finite subdivision of R into nonoverlapping
intervals I,, s = 1,...,L, then

2\ dix | = =T x = MyX; meas I, = Myb,
| Ayt | = Zdpt = 220 — Zdp o = x2(b) + Mob» < i+ 1+ Mpb,

and, thus,
g [ A | < 2\ Aoyt | + 2| Ao | <d+ 14 2Mgbe.

We have proved that the interval functions 4,x~, 4%+, 4,x,0are of bounded
variation, namely, of equibounded variation in R. In addition, 4,5~ is obviously
absolutely continuous in R. Note that, if I, = [0, #] denotes the interval
07K i=1,.,v, in R, then,

|30 = | A0 | <i+ 1+ 2Mp, teR,

that is, the functions x,%(f) are equibounded in R, and so are the functions
x,7(2).

Let us consider the countably many lattice points {¢,}, or ¢ = bpe R,
p = (P15 py), Where p,,..., p, denote all rational numbers, 0 < p; < 1,
Jj = L,..., v, Let {I} be the countable system of intervals I C R whose vertices
are points ¢ € {£,}. We may order the points £, into a sequence. Since the func-
tions x,%(f), x,7(¢), £ € R, are uniformly bounded in R (and, hence, at each
t = t,), we can successively select subsequences which are convergent at
t = t, and then, by the diagonal process, we can select a unique subsequence
[k] of integers k such that the limits af (£) — x°(¢), x7}(2) — x*(2) as s > ©
exist, for every ¢ € {t,}. Here, x~(f) does not depend on %, and 4,x,° =
Aot + dx~. Thus, as kB = k,— 0, 4x,° and 4d,x,t have limits, say
A, dix*, and dx® = At + dx~ for every Ie{l}, and A0, A, A~
are additive interval functions in {I}. Moreover, 4,4~ is absolutely continuous,
Axt = 0, 4,47 is of bounded variation and, hence, 4,x° is also of bounded
variation in {I}.

By Ref. 8, we know that 4,x° is then the difference 4 of a function x°(¢)
defined everywhere in R, with a Lebesgue decomposition %) = X(¢) + S(#).
Hence, 4x% = 4,X - 4,5, where

A, 0) = X(#},0) = S(,0) =0, (#,0)€8R, i=1,.,u

and where 4,X is absolutely continuous and 4,S is singular. Consequently,
for every f, € R and interval I €{I} with #,€1, we can form the quotients
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4,S/meas I. We know that for / a hypercube, € {l}, t,€l, and almost all
t, € R, we have 4,S/meas 7 — 0 as diam [/ — (. On the other hand, the same
process applied to 4,X yields 4,X/measI— 2(t,). Now, 2(f) is defined
a.e. in R, is L -integrable in R, and

4,X = j () dt, Ie{l).
I

In addition, the decomposition x,? = x,+ + x~, with dx,7 = 0, dx— < 0,
independent of k£ and 4,5~ absolutely continuous, implies x® = X + § =
X+t 4+ a~, with 4, X+ > 0, 4,5~ < 0. By the uniqueness of the Lebesgue
decomposition, we conclude that 4,X* has the Lebesgue decomposition
4, X" = A4 (X — x7) + 4,5, where 4, (X — x~) is absolutely continuous
and 4,8 is singular. Then 4,X* >0 implies 4,(X — ™) >0, 4,5 = 0,
in particular S(b) = 4zS = 0.

We can now apply Closure Theorem 2 with s replaced by n, » replaced by
n 1, and n — s replaced by 1; also, «%,..., ° is replaced by &',..., * and
x571,..., ™ is replaced by x°. By Closure Theorem 2 with #® = X + S, we
conclude that there exists some measurable function u(¢) = (u\,..., w™)

e Ult, x(t)), x(t) = (x%,..., %), such that

(t,x(t))ed, u(tye Ut x(z)) ae inG,
Deai(t) = filt, 2(2), u(t))  ae.in G, ac{a),, i=1,.,n
DeX(8) == fo(t, 2(t), w(¥))  ae. in G, o == ot

On the other hand, x(), u(z), € G, is in £2 since 2 is complete and

i <<l u] = X(b) = &%(b) — S(b) = lim «f (b) — S(b) = ¢ — S(b) < .

Thus, the equality sign holds everywhere in this relation, S(b) = 0, I[x, «] = i,
and, hence, Ifx, u] possesses an absolute minimum in £.
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