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Existence Theorems for Multidimensional Lagrange Problemsl 

LAMBERTO CESARI 2 

Abstract. Existence theorems are proved for multidimensional Lagrange 
problems of the calculus of variations and optimal control. The unknowns 
are functions of several independent variables in a fixed bounded domain, the 
cost functional is a multiple integral, and the side conditions are partial 
differential equations, not necessarily linear, with assigned boundary 
conditions. Also, unilateral constraints may be prescribed both on the space 
and the control variables. These constraints are expressed by requiring 
that space and control variables take their values in certain fixed or variable 
sets wich are assumed to be closed but not necessarily compact. 

1, I n t r o d u c t i o n  

In the present paper, we consider multidimensional Lagrange problems 
of the calculus of variations of various forms, in particular, Lagrange problems 
where we seek the minimum of a functional of the form 

in certain classes of pairs 

4 0  = ( x1 ..... x~), 

1Ix, u] = f fo(t, x, u) at 
G 

, ( t )  = (ul, . . . ,  u~), t = (ti,..., t9 E a c E , ,  

satisfying (a) a system of partial differential equations each of the form 

a~x* /a~ t~  . . .  a~, t  ~ = f ~ ( t ,  x ,  u ) ,  o~ = (~1 . . . . .  % ) ,  h = e~ 1 + . . .  + % ,  
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(b) constraints of the form 

(t, 4 0 )  e n c E~ × E . ,  x(t) ~ m(t, x(t)) C E.~ 

(where A is a given fixed set, and U(t, x), (t, x) ~ A, is a given variable set 
depending on t and x), and (c) a suitable system of boundary conditions con- 
cerning the values of the functions x i and a number of their partial derivatives on 
the boundary OG of the fixed open set G. Here, x is said to be the space 
variable and u the control variable. 

These problems are called Pontryagin problems when the sets U(t, x) 
are all compact and contained in a fixed bounded part of the u-space. In the 
generality above, in particular when the sets U(t, x) are closed and not 
necessarily compact subsets of Era, these problems are called Lagrange 
problems with unilateral constraints on the control variable u. If U(t, x) ~ Em 
for all t and x, then the same problems are simply called Lagrange problems 
(or problems without unilateral constraints in u). 

In Ref. 1, we have already given existence theorems for optimal solutions 
for Pontryagin problems. In the present paper, we give existence theorems 
for optimal solutions for Lagrange problems with or without unilateral 
constraints. Other existence theorems will be given elsewhere. As in Ref. 1, 
we seek the optimal solutions in classes of pairs of functions x,u, with x 
belonging to suitable Sobolev spaces and u measurable. For the purpose 
of proving existence theorems for Lagrange problems with or without 
unilateral constraints, we use a technique wich is analogous to the one we 
used in previous papers for unidimensional (v = 1) Pontryagin and Lagrange 
problems (Refs. 2 and 3), and for multidimensional (v > 1) Pontryagin 
problems (U compact) (Ref. 1). The present, more difficult situation (v > 1, 
U closed but not necessarily compact) has necessitated a more subtle analysis. 

2. First Closure Theorem 

Let G be a bounded open subset of the t-space E~, t = (tI,..., t~); let 
x = (xl,..., x ~) denote a vector variable in E~ and u = (ul,..., u m) a vector 
variable in E~.  As usual, we shall denote by cl G and by bd G = OG the 
closure and the boundary of G. We shall also denote by co H the convex 
hull of a set H, and thus cl co H is the closed convex hull of H. For every 
t ~ cl G, let A(t) be a given nonempty subset of En, and let A be the set 
of all (t, x) with t e el G, x ~ A(t). For every (t, x) a A, let U(t, x) be a subset 
of Em and let M be the set of all (t, x, u) with (t, x) ~ A, u ~ U(t, x). 
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Th e  set A defined above is a subset of E,  × E~, and its projection on 
E,  is cl G. T h e  set M defined above is a subset of E~ × E~ × E m and its 
projection on E, × E,, is A. 

We shall assume below that G is bounded by a surface S which is a 
regular boundary  in the sense of Sobolev (see Ref. 4, Ch. 1, p. 72) and, for 
the sake of simplicity, we shall say that G is of class K 1 . Thus,  S can be 
decomposed into a finite number  of manifolds S 1 ,..., S s of dimension n --  1 
(and corresponding boundaries), each Sj having the property that it can be 
mapped into a hyperplane Try by means of a transformation of coordinates Ty 
defined on a part  G~ of G and continuous with continuous derivatives up to 
/th order, j = 1,..., J. 

We shall denote by x ( t ) =  (x~,..., x~), u( t )=(uX, . . . ,  urn), t ~ G, vector functions 
of t in G. For  every i = 1,..., n, we shall denote by {@/a given finite system 
of nonnegative integral indices o~ = (c~ 1 ,..., ~),  0 ~< [ ~ I ~< li <~ l, with 
[~ [ = ~1 --  "'" + c~,. We shall assume that each component  xi(t) of x(t)  
is Lpj in tegrab le  in G and possesses the generalized partial derivatives D ~ xi(t) 
of the orders c~ e {@i, all L~ -integrable in G for certain Pi >~ 1, i = 1,..., n. 
We shall assume that each component  uS(t) of u(t) is measurable in G. 

Le t  N denote the total number  of indices c~ contained in the n systems 
{~}i, i = 1,..., n, and let f ( t ,  x, u) = ( f i , )  denote an N-vector  function whose 
components  are real-valued functions f¢~(t, x, u) defined on M. We shall 
consider the system of N partial differential equations in G 

D xi = fib(t,  . ) ,  (=} i ,  i = 1 .... , n, 

or, briefly, 

Dx = f( t ,  x, u). 

We are interested in pairs x, u of vector functions x(t),  u(t), t ~ G, as above, 
satisfying the constraints 

(t, x(t)) A ,  u ( t ,  x(t)) a.e. in C,  

and the system of partial differential equations 

D~xi(t) = fib(t, x(t), u(t)) a.e. in G, c~ E {@i, i = 1,..., n, 

or, briefly, 

Dx(t) = f ( t ,  x(t), u(t)) a.e. in G. 

Given ~ > 0 and a point (to, Xo) ~ A, we shall denote by closed neighborhood 
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Na(to, Xo) of radius ~ of (to, Xo) in A the set of all (t, x) ~ A at a distance ~< 
from (to, Xo). Then, by U(to, Xo ; 5) we shall denote the set 

u(to,  Xo ; 5) = U u(t, x), 

where (] ranges over all (t, x) ~ Ns(to, Xo). We shall say that U(t, x) satisfies 
property (U) at a point (to, Xo)~ A, provided 

that is, 

U(to, Xo) = (3 el V(to, Xo ; ~), 
~>0 

U(to, Xo) = N cl U c~(t, x). 
8 (~,~)~N6(to, %) 

We shall say that U(t, x) satisfies property (U) in A if U(t, x) satisfies property 
(U) at every point (to, x0)~ A. A set U(t, x) satisfying property (U) is 
necessarily closed as the intersection of closed sets. Property (U) is the so- 
called property of upper semicontinuity used for different purposes by 
G. Choquet (Ref. 5), C. Kuratowski (Ref. 6), and E. Michael (Ref. 7). 

We shall consider the sets 

Q(t, x) = f(t, x, u(t, x)) = [z ] z = f(t, x, u), u e u(t, x)] c EN 

or other analogous sets, and assume that they are convex. We shall say that 
a set Q(t, x) satisfies property (Q) at a point (to, Xo) ~ A, provided 

that is, 

9(to,  Xo) = (3 ol oo 9(to,  Xo ; 5), 
8>0 

Q(to, Xo) = N cl co U Q(t, x). 
(~,~)~N~(~o, %) 

We shall say that Q(t, x) satisfies property (Q) in A if Q(t, x) satisfies property 
(Q) at every point (to, x0) ~ A. A set Q(t, x) satisfying property (Q) is neces- 
sarily closed and convex as the intersection of closed and convex sets. 

2.1. Closure  T h e o r e m  1. Let G be a bounded open set of the t-space 
E, of some class K t ,  l ~ 1, for every t ~ el G let A(t) be a nonempty subset 
of the x-space E~, and assume that the set A of all (t, x) ~ E~ × E~ with 
t E cl G, x ~ A(t) is closed. For every (t, x)~ A, let U(t, x) be a nonempty 
closed subset of the u-space E m and assume that U(t, x) satisfies property (U) 
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in A. Le t  M be the set of all (t, x, u ) ~  E ,  × E~ × E m with (t, x ) e  A, 
u ~ U(t ,  x).  For  every i = I,..., n, let (~}t be a finite system of nonnegative 
integral indices ~ ~ (~1 ,.-., ~) ,  1 ~< [~ l  ~ li ~ l, and let N be the total 
number  of elements ~e{~}¢,  i ----- 1 .... ,n.  Le t  f ( t , x ,  u) ~- ( f i~ ,  ~ ~{c~}t, 
i ~- 1,..., n) be a continuous N-vector  function on the set 3/1, and assume 
that the set Q(t,  x) == f ( t ,  x,  U(t ,  x) )  is a convex closed subset of the z-space 
E N for every (t, x) ~ A, and that Q(t,  x) satisfies proper ty  (Q) in A. Let  x, u, 
and x k ,  Uk, k -~ 1, 2,..., be pairs of vector functions x(t)  == (x~ ,..., xr~), u(t)  = 
(u 1 ,..., u~),  xk(t)  = (xkl , . . . ,  o%~), uk(t) = (u~l,..., uk'~), t ~ G, x ~, xk i ~ LI(G), 
i = 1,..., n, u~, uk i measurable in G, j = 1, .... m. Assume that  each component  
x i , xk i of x, x k possesses generalized partial derivatives D~x i , D=xk i ~ L I ( G )  
of the orders a e {a}f, i = l,..., n, k = 1, 2, . . . .  Assume that 

(t, x~(t)) ~ A,  u~(t) ~ U(t, x~(t)) a.e. in G, (1) 

D~x~i(t) = f¢~(t, xe(t), uk(t)) a.e. in G, a e {a}i, i = 1,..., n, (2) 

and that 

x~i(t) --~ xi(t) strongly in LI(G ) as k --* 0% 

D~xj( t )  -+ D~xi(t) weakly in LI(G ) as k -~  oo 

(3) 

(4) 

for all ~ s {@i, i = 1,...,n. Then ,  there is a measurable vector function 
u(t) = (ul,..., urn), t ~ G, such that 

(t, 40)  A, . (0  u(t, x(t)) a.e. in a, (5) 

D~xi(t) = fi~(t, x(t), u(t)) a.e. in G, ~ ~ {~}i, i = 1 .... , n. 

T h e  strong convergence (3) can be replaced by pointwise convergence almost 
everywhere in G. We omit  the proof  of this s tatement since Closure Th e o re m 1 
is a particular case of Closure T h e o r e m  2. A proof  of Closure T h e o r e m  1 
can be obtained by obvious simplifications in the one of Closure Th e o re m 2. 

3. Second Closure T h e o r e m  

Let  us denote by y -~ (xl,..., x s) the s-vector made up of certain com- 
ponents,  say xt , . . . ,  x ~, 0 ~ s ~ n, of the n-vector x ~ (xl,..., x~), and by z the 
complementary  (n-s)-vector z = (x ~+1 ..... x '~) of x, so that  we shall write 
x = (y, z). We shall assume that  f ( t ,  y ,  u) depends only on the coordinates 
xa,..., x s of x. I f  x(t) ,  t ~ G, is any vector function, we shall denote by x( t )  = 



92 LAMBERTO CESARI 

(y(t), z(t)) the corresponding decomposition of x(t) in its coordinates 
y(t)  = (xl,..., x 8) and z ( t ) =  (x~+l,..., xn). We shall denote by A a closed 
subset of the ty-space E~ × Es ,  and then A = A × E~_ 8 will be a closed 
subset of the tx-space E~ × E~.  We shall consider n-vector functions 
x(t) = (y(t), z(t)) for which the first s components,  or vector y(t)  -= (x~,..., xS), 
possess certain generalized partial derivatives D~xi(t) as in Closure Th e o re m 1. 
On the remaining n -  s components,  or vector z ( t ) =  (xS+t,...,x~), we 
shall have a different set of assumptions. 

We shall consider countable systems {I} of intervals I = [a, b] C G, 
a = (a~,..., a~), b = (b ~ .... , b~), aJ < b~, j = 1,..., v, with the property that, for 
any point t ~ G, there are hypercubes I e {I} with t e I and diam I as small 
as we want. For  any given function z(t), t ~ G, we shall consider the usual 
differences of order  v relative to the 2 ~ vertices of IT, say 

A z = A i z = z ( b ) - - z ( a )  if v =  1, 

Az = Aiz = z(b ~, b ~) --  z(b ~, a 2) -- z(a ~, b 2) + z(a ~, a 2) if v = 2, 

and so on. A nonconstant  function z(t), t ~ G, is said to be singular in G with 
respect to the system {I} provided A1z is singular, that is, provided for almost 
all t o e G we have (meas i)-1 Az ~ 0 as diam I ~ 0, with I a hypercube,  
I ~  {I}, t o a I. As we know (Ref. 8), any interval function ~o(I) of bounded 
variation possesses a decomposition cp(I) = ~(I )  -+- S(I) ,  where 45 is absolutely 
continuous and S is singular. I f  ~(I) is nonnegative, then both 45 and S are 
nonnegative. 

3.1. C l o s u r e  T h e o r e m  2. Let  G be a bounded open set of the t-space 
E~ of some class Kz ,  l ~ 1, let A(t)  be a nonempty  subset of the y-space 
E s defined for every t E cl G, and assume that the set A of all (t, y) ~ E~ × E 8 
with t ~ cl G, y a A(t) ,  is closed. Let  A be the closed set A = A × E.~_~ C 
E~ × E~.  Let  U ( t , y )  denote a closed subset of E m for every ( t , y ) ~ A ,  
and let M be the set of all (t, y ,  u) ~ E~ × E 8 × E~ with (t, y) ~ A,  u ~ U(t, y). 
For every i = 1,..., n, let {c~}L be a finite system of indices ~ = (~1 ,..., ~),  
1 ~ < l ~ [ ~ l ~ l ,  and let N be the total number  of elements ~E{~}i, 
i = 1,..., n. We assume that, for every i = s -~ 1,..., n, {~}i is made up of 
only one element c~ ~- n 0 = (1, 1,...,1). I f  N denotes the number  of elements 

~ {c~}~, i = 1,..., s, then 2~ = N ~- (n --  s). Let  f ( t ,  y,  u) ~- (fi~), ~ ~ {@~, 
i = 1,..., n, be a continuous 2~-vector function on M, which we may write in the 
form f ~- (f, fo), where f is the N-vector  of its first N components,  and f0 the 
( n -  s)-vector of its remaining components.  Let  5 = (z 1 .... , z ~) ~ - ( z ,  z0) 
with z ~ (zl,..., zN), z 0 = (z~¢+1,..., z ~7) and, for every (t, y)  ~ A, let O(t, y)  
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deno te  the  subse t  of  the  r - s p a c e  Ex; def ined by  z -~ f ( t ,  y ,  u), z t >/fi fo(t ,  y ,  u), 
i = N q- 1 .... , 2~, u E U(t ,  y ) .  L e t  us a s sume  tha t  ~( t ,  y )  is a closed convex  
subse t  o f  E ~  sat isfying p r o p e r t y  (Q) in A.  Also, a s sume  tha t  fi~(t,  y ,  u) >~ - -  % ,  

6 {c~}f , i - -  1,..., s, for  all (t, y ,  u) ~ A and s o m e  cons tan t s  ci~ > / 0 .  L e t  
x = (y,  z), u, x k = (Yk, zk), uk,  k = 1, 2,.. . ,  be  func t ions  def ined on  G, all 
c o m p o n e n t s  of  x and  x k of  class L I ( G  ) and  all c o m p o n e n t s  of  u and  u~ 
measurab le .  A s s u m e  tha t  each c o m p o n e n t  x k and  xk i of  x and  x k has  
genera l ized  par t ia l  der iva t ives  D~x i, D~xk i of  the  orders  c~ e {a}l, i = t , . . . ,  n, 
all o f  class L I ( G  ), and  tha t  

(t, ye(t)) ~ A,  u~(t) e U(t, yk(t)) a.e. in G, (6) 

D~xki(t) -~ fib(t, yk(t), uk(t)) a.e. in G, (7) 
wi th  

c~e{c~}i, i = 1,..., n, k = 1, 2,... 

A s s u m e  that ,  as k--~-0% we have  

x~t(t) -+ xi(t) strongly in LI(G), i = 1 .... , s, (8) 

D~x~(t) --~ D~xi(t) weakly in LI(G), ~ e {~}i, i = 1 ..... s. (9) 

A s s u m e  tha t  t he re  is a coun tab le  s y s t e m  of  real n u m b e r s  [t] e v e r y w h e r e  
dense  in E 1 such  that ,  for  all po in t s  {tp}, t o ~ G, of  the  f o r m  tp = (t 1 .... , t"), 
# ~ [ t ] ,  j =  1, . . . ,v,  we  have  

x j ( t )  ~ x~(t) at every t ~ {tp} as k --+ 0% i ~ s + 1 .... , n, (10) 

and  for  all in tervals  {I}, I C G, wi th  ver t ices  in {to} , we have  

f D~xj( t )  dt--* f D~xi(t) dt as k - - ~  (11) 
1 I 

wi th  

= % e { ~ } i ,  i = s + l .... ,n .  

A s s u m e  tha t  the re  is a d e c o m p o s i t i o n  xi( t )  = X i ( t )  + S~(t), i = s + 1,..., n, 
of  each  x ~, i ........ s + 1,..., n, in to  two par ts  X i, S i, bo th  of class LI (G) ,  Xi(t) 
with  genera l ized  par t ia l  der iva t ive  D~oX i of class L I ( G  ) and S~(t) singular .  
L e t  Z( t )  deno te  the  ( n -  s ) -vec tor  Z( t )  = (X*+t,... ,  Xr~). T h e n ,  there  is a 
m e a s u r a b l e  vec to r  func t ion  u(t)  = (ul,... ,  urn), t e G, such  that ,  a.e. in G, 
we  have  

(t, y( t))  ~ A ,  u(t) E U(t, y(t)) ,  (12) 

D=x'(t) =- fib(t, y(t) ,  u(t)), ~ e (a},,  i = 1, .... s, (13) 

D~Xi(t) == fib(t, y(t) ,  u(t)), a = a o e {e~}i, i = s ÷ 1 ..... , .  (14) 
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Strong convergence (8) can be replaced by  pointwise convergence almost 
everywhere in G. 

3.2. R e m a r k .  Closure Theo rem 2 reduces to Closure T h e o r e m  1 
when s = - n ,  and then A = A , f = f ,  x = y .  

3.3. P r o o f .  For  every ~ ~ {~}~, i = 1,..., n, let q~l~, 5°i~k denote the 
real-valued functions defined a.e. in G 

9i~k(t) = D~xki(t) = fi~(t, y , ( t ) ,  u~(t)), 

q~t~(t) = D~xi(t), i = 1 ..... s, 

q~i=(t) = D~Xi(t),  i = s + 1 ..... n, 

and let % q~k denote the f - v e c t o r s  

q~l~(t) = (5oi~k(t), e~ ~ {~}i, i = 1 .... , n), k = i, 2,..., 

re(t) = (~dt) ,  ~ E (~}~, i = 1 ..... n). 

By hypothesis,  A is a closed subset of E,  × E s ,  U(t ,  y )  is a closed subset of 
Em for every (t, y ) E  A ,  and U(t ,  y )  satisfies property (U) in A. By Ref. 1, 
Section 4, M is a closed subset of E,  × E s × E m . 

For  every t o~ G, t o = (to 1 .... , to~), let 8 0 = 8o(to) denote the distance 
of t o f rom 9G and let q =qh  = [to, to + h] denote any closed hypercube 
q =  [ i J ~ < t ~ < i J + h ,  j =  1,...,v], where P ' , P ' + h ~ [ t ] ,  h is a positive 
number  with 0 < h < 3o/V, iJ <~ to~ <~ iJ + h, so that to e q C G; and we have 
denoted here, for the sake of simplicity, by h also the v-vector (h,..., h). 
For  almost every t o ~ G, we have, as h -~  0 +, 

f x~(t) dt = xi(to), (15) 
q 

h -~ fq  D~xi(t) dt -+ D~xi(to), (16) 

h -~ fq  X~(t) dt -+ X~(to), (17) 

h-~A~S ~ ~ O, i = s + 1,..., n. (18) 

Also, for almost all t ~ G, we have (t, y k ( t ) ) ~  A for all k = 1, 2, . . . .  T h e  
convergence x J - + x  t in L I ( G  ) as k--+ 0% i = 1 , . ,  s, as stated in (8) 
(that is, Yk --~Y in L I ( G ) )  , implies convergence in measure in G, and hence 

i ~ 1 , , , , ,  S, 

a ~ { ~ } i ,  i ~ 1 ..... s, 

i = s + l , . . . , n ,  
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there is a subsequence [yk~(t)] which converges pointwise a.e. in G. Let  G O 
be the set of all t e G where the relations (15) through (18) hold, where 
(t, yk(t))  ~ d for all k, and yk,(t) ---~y(t) as r --~ co. Then ,  G O is measurable 
with meas G o = meas G. For  every t ~ Go, we have now (t, yk~(t)) ~ A,  where 
A is a closed set, and as r---~ ~ ,  then  ( t , y ( t ) )~  A for t e Go, that is, 
( t , y ( t ) ) ~ A  a.e. in G. 

Because of the convergence yk(t) --~ y(t) in LI(G), and hence in measure, 
and consequent  pointwise convergence yk~( t ) - -+y( t )everywhere  in Go with 
meas Go = meas G, we know that  there are closed sets Ca, A =: 1, 2 ..... with 
Ca C Go, C~ C Ca+l, meas Ca > meas G O - -  )t -1, such that y(t)  is continuous 
on Ca and yk~(t) --~y(t) uniformly on Ca as r --+ oe for every ;~ = 1, 2 , . . . .  
Since G is bounded,  and C~ C G o C G, each set Ca is compact, and hence 
y(t),  yk~(t), r = 1, 2,..., are continuous, uniformly continuous, and equicon- 
t inuous on each Ca. 

Le t  t be any fixed integer with A > (meas G)-I;  hence, meas Ca > 0. 
Le t  E > 0 be an arbitrary number.  There  is some So = So(e, 2~) > 0 such that 
it - -  t'E ~< So,wi th  t, t ' e  Ca, implies [y(t) - -y ( t ' ) l  <~ E, lyk~(t) --yk~(t')l  <~e 
for every r = 1 ,2  . . . . .  Also, there exists some k = k(e,~) such that 
k, ~> k(E, Z), t ~ C~, implies l)%(t) --  y(t)t <~ ~. 

Let  c > 0  be any number  such that 0 ~ < Q ~ < c ,  or 0 ~<Q~/c < 1 ,  
= % e { ~ } ~ ,  i .... s +  1,...,n. 

Let  xa(t), Xff(t),  t ~ G, be the characteristic functions of the sets Ca and 
G -  Ca, so that X~ + X a * =  1 everywhere in G. All functions Xa(t) and 
xa(t) D~xi(t), c~ ~ {@i, i = 1,..., s, are of class LI(G), and for every t o ~ Ca 
we have 

xz(to) = 1, )¢*(t ) D~xi(to) = O. 

Then ,  for almost all t o ~ CA, we have also, as h--~ 0 +, 

h -~ _ fq  xa(t) dt -~ xa(to) = 1, (19) 

and 

h-~ - f a X~(t) D~xi(t) dt --~ x~(to) D~xi(to) = 0, (20) 

with 
E (~}i, i = 1 ..... s. 

Le t  C~ be the subset of Ca where this occurs. Then ,  Ca is measurable, 
C~ C Ca C G O C G, meas C~ = meas Ca > meas G O - -  )t -1 > 0, and, finally, 

meas (?  meas o---- meas  (21) 
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L e t  ~ > 0 be any  posi t ive  n u m b e r  i n d e p e n d e n t  of  E. L e t  t o be  any  po in t  
of  C~, l e t y o  ~ y ( t o ) ,  and let u o be  any  poin t  of  U(to,Yo) .  L e t  M 1 > 0  be 
any  cons tan t  such  tha t  

Ifi~(to ,Yo,  Uo)] ~ M1,  o~c {~}i, i : 1,..., n. 

L e t  us  fix h > 0 so small  tha t  

h < ~/~, h < ~o/~, h < ~;/~, 
where  

~o = ~o(to), ~; = ~;(~, ~), 
and  also so smal l  tha t  

D,xi(to) _ h-~ f D~xi(t) dt I, < ~p}--i, c~ e {oe}i , i = 1,..., s, (22) 
q 

h -~ meas(q n Ca) = h -~ fa  Xa(t) dt >/max[2-*, 1 --  VN-1MI,  1 - -  V J ~ - l c - 1 ] ,  (23) 

t h - ~ f q f f ( t )  D~xi(t)dt[ < ~7~ -1, ~ e { a } i ,  i =  1,..., s, (24) 

t h-~Aa Si I < V 2~-1, i = s + 1 ..... n, (25) 

t D~X*(to) -- h -~ ( D ~ X ~ ( t )  dt ] ~ ~727 -1, ~ = % ~ {a}i, i = s  + 1 .... ,n.  (26) 
I 1 1  q I 

T h i s  is poss ib le  because  of express ions  (15)-(20).  L e t  H and H *  be the  sets 

H = - q n C a ,  H* - ~ q - - H  = q - - q n C a = q - - C  a. 

T h e n ,  we have  

h -~ meas H ~ max[2 -I,  1 - -  ~71~r t21¢~-1, I - -  ~-Sr-lc-1], (27) 

h -~ meas H *  ~< min[2 -1, ~?~-lM~-a, ~7]V-lc-1]. (28) 

F o r  any  k, let ~5i,k(t), t • q, be  the  func t ion  def ined b y  

~i~(t) = 9i~(t) = fi~(t, yk(t), uk(t)) for t • H,  

q,~(t) = f,~(t o , Yo,  %) for t e H *  - -  q - -  H, 

and  let q~k(t) be  the  N - v e c t o r  

cpk(t) = (gi~(t), ~ e {~}i, i = 1 .... , n). 



LAMBERTO CESARI 

F o r  t e H and  k = k r > /k (e ,  A), we have now 

! t - -  t o t <~ vh <~ min[e, ~o, 3;], 

! yk(t)  - -  Yo I = I y~(t) - -  yk(to)l + I Y~(to) - -  y(to)l ~< e + E = 2e, 

and,  hence,  

(t, y,,(t)) e Nz,(t o , Yo) for t E H,  k = k~ >/k(e ,  a). 

T h u s ,  

(o~(t) = f ( t ,  yk(t), ue(t)) = (fib(t, yk(t), uk(t)), ~ ~ (c~}/, i = 1,..., n), 

~,,(t) = / ( t o ,  Yo,  Uo) = (fi~(to,  Yo,  Uo), ~ e {a}i, i = 1 .... , n), 

and, hence,  for  all t ~ q, we have 

fob(t) ~ O(to, yo ; 3 +  

Finally,  

h -~ f q  ~%(t) dt 

t~q,  k = k .  >~k(e,h). 

e cl co O(to ,  yo ; 3,) ,  

t e H ,  

t ~ q - -  H, 
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(29) 

wi th  

s ince the  last set is convex  and  closed. 
N o t e  tha t  the  relat ions 

I j%=(to, Yo, uo)t ~ Mx, = ~ {~}~, 

ce r t a in ly  imp ly  tha t  

h -~' f//. ~i~,(t)dt = h-" fH.fi.(to)Yo, Uo)dt ] 

<~ Mlh-~ meas H *  ~ M~h-~(h~Tl~-lM~ 1) ~- ~7~ -1 (31) 

e{~}i, i =  1 .... ,n.  

shall n o w  obta in  cer ta in  es t imates  first for  i ..... 1,..., s and then  for W e  

i = s +  l , . . . , n .  
L e t  Xaq(t), X*~q(t), t ~ G,  be the  character is t ic  func t ions  of  the sets H and  

H *  in G. Since  H c~ H *  = ~ ,  H u H *  = q, we have 

Xao + X~* = I everywhere in q, 

X~q = X~ = 0 everywhere in G - -  q. 

i - i, . . . ,  n, 

k = k~ >t k(,,  a), (30) 
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T h e n ,  as k - -~  0% 

wi th  

t ha t  is, 

hypo thes i s  (9) impl ies  tha t  

f a X~q(t) ~i~k(t) dt --> f a Xaq(t) ~,=(t) dt, 

f a X:q(t) ~,.~(t) dt--~ i x~(t ) ~i.( t)dt ,  

~ {a}i, i = 1,..., s, 

fHq)i~edt-~ f~,~dt, f.. ~oi=7~dt---~ fH.~,~dt. 
N o t e  tha t  the  s u m  of  these  re la t ions yields 

as k - +  oe. W e  can now d e t e r m i n e  an in teger  k '  = k'(to, e, t, ~7) >~ k(e, t) 
such  that ,  for  k = ha,, k /> k ' ( t o ,  e, ~, ~), we have  

f ncpi=~dt- f nSo,=dt <~ 2~-1h%, 
(32) 

and,  of  course,  also 

Now,  for  

k = he, 

we have  

k = k '( t0,  e, A, ~7), c~ ~ {~)i, i - -  1 ..... s, 

I ~,.(,o)- ~-' j ~,. * I+ I ~-" fo ~,. * -  ~-" fo ~,= * 

+ h-'f..,,=,==-h-"f=.,,.='[+lh-'f..,,o== I 
+lh-'f=.9,o==' :== +== + =°-~ =. +=o. 

(33) 

(34) 
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By (22) we have d 1 ~< _/V-1~7, by (33) we have d 2 ~ 2~-1~, by (32) we 
have d a ~ ~-1~ 7, by (24) we have d~ ~ _/~-1~7, and by (31) we have d 5 ~ ~-1~ 7. 
Thus,  (34) yields 

I D ~ x ' ( t o ) - - h - ~ f  ~,~(t)  dt ~<6N-Lq, ~s{~}i, i = 1  ..... s, (35) 
q 

for k = k r ,  k >/ k ' ( t  o,  ,,~,, ~7). 
We shalI now obtain analogous estimates for i == s -J- 1,..., n. For these 

values of i, we have fi~(t, y ,  u) ~ - - %  and, hence, 

h -~ f . .  ~i~kdt = h -° fn . f ,~( t ,  yk ( t ) ,uKt) )d t  

~/ --h-'ci~ meas H* ~ --h-'ci~(h~ff¢-lc-l~l) > --S-x~/ (36) 

for all k and where c~ = % e {~}i, i = s -k 1,..., n. Since ~ = % = (1, I,..., 1), 
we have 

h -~ ~ ~ ( t )  d t =  h-'Aqx~ ~, i = s -k 1 ..... n, k -= 1, 2 ..... (37) 
q 

h -~ f ~ ( t )  d t =  h- 'AqX i, i = s + 1,..., n. 
, 1  q 

On the other hand, x i = X i -k S i and, by (25), 

h-~A~ xi = h-~Aq X~ + h-~'A~ Si, I h-~Aq Si [ <~ N-l~l 

Also, by force of(10), 
k = h ' ( t o ,  , ,  

t h-~A~xff 

Finally, (37), (38), and (39) yield 

< [ h-,Aax,~' --  h-~Aqx ' I q- I h-~Aq S '  I ~< Nr-x~ + ?~-~ = 2N-x~7. (40) 

For ~ = %~{c~}¢, i = s +  1 .... ,n ,  we have then, as in (34), 

D~X'(to) --  h-" f q ~ ( t )  dt 

= do1 + do~ ÷ do~ + do,. (41) 

(38) 

we can determine k'( to,  e, ~, ~1) above so that, for 
",Are h a v e  

--  h-~Aq xi t <~ ~-1~7, i - s + 1,..., n. (39) 
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By (26) we have do1 >/ _p~- l~ ,  by (40) we have do2 ~> - -2~-1~ ,  by (36) 
we have do3 > _ ~ - 1 ~ ,  by (31) we have do~ > --2~T-1~/, and hence (41) yields 

D~Xi(to) --  h -~ fq  ~ ( t )  dt >~ --52V-1~, ~x = % ~ {c~}i, i = s -+- 1,. n, (42) 

for every k = kr ~ k'(to , ~, A, 71). 
Let us denote now, for the sake of simplicity, by y and Z the s-vector 

y = (xl,..., x 0 and (n -- s)-vector Z = (Xs+l,..., X ~) respectively and, 
hence, by D y  and D Z  the N-vector  and (n -- s)-vector 

Dy = (D~x ', ~ ~ {~}i, i = 1 ..... s), 

D Z  = (D~X *, a --= %e{~}~, i = s + 1 ..... n). 

Also, let z I and z2 denote the N-vector  and the ( n -  s)-vector 

q 

~=(h-~f q~,o~(t)dt,==%~{=},,i=,+l,...,n). 
Then,  relations (35) and (42) can be written in the simple form 

Dy(to) = zl  + ~1, DZ(to) = z2 + ~ + ~+, 

where ] ~11 ~< 67, ] ~2] ~< 5~, and all components of ~+  are nonnegative; 
also, by (30), we obtain 

(Dy(to), DZ(to)) = (zl + ~ ,  z2 + ~z + ~+), 

f (zl,  z2) = h-" ~ ( t )  dt e cl co Q(to, y0 ; 3@ 
q 

Since all components  of ~2 + are nonnegative and because of the particular 
definition of O, we have also 

(z~, z~ + ~:~+) ec l  co 0(to,  Yo ; 3e) 

and, hence, 

o r  

(z~ + 6 ,  z~ + ~ + ~+) e (d co O(to, yo ; 3~))~,, 

(Dy(to) , DZ(to) ) ~ (cl co 0(to, Yo ; 3e))12,. 
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Here,  t o is a fixed point  and, hence, 

(Dy(to) , DZ(to) ) E (~ (cl co ~(to, Yo ; 3e))~e,,, 

(Dy(to), DZ(to) ) ec l  co O(t o , Yo ; 3e), 

since the last set is closed. Also, 

(Dy(to) , DZ(to) ) ~ ~ el co 0(to,  Yo ; 3e) = Q(to, Yo) 
e>O 

with Y0 = Y(t0), because of proper ty  (Q). Here,  t o is an a rbkrary  point of 
C£. Hence,  

(Dy(t), DZ(t)) ~ ~(t,  y(t)) 

for all points t e G" ---- w~C~ and, by (21), meas G" -~ meas G. Thus ,  for 
almost all t e G, there is some zT(t)e U(t, 2(t))  such that 

D~xi(t) = fi~(t, y(t), 5(t)), a ~ {a}i, i = 1,..., s, 

D~Xi(t) = f~(t ,  y(t), a(t)), a = ~o e (a}/, i == s + 1 ..... n. 

T h e  existence of at least one measurable function u(t) as above follows 
by the same argument  used for v---- 1 in Ref. 2, Section 5 (for a general 
s tatement  to the same effect, see also Ref. 9). Closure T h e o r e m  2 is hereby  
proved. 

3.4. R e m a r k .  We mention here variants of Closure Theorems  1 and 2 
which are of some interest. One of these actually will be applied in Section 5. 
We may assume, for instance, that G is made up of components  G 1 ,..., G ,  
and that, in each of these, there is a different system of {c~},, i = 1,..., s, 
and of functions fi~- Another  situation is of interest. Assume that  Go, 
a =  I,...,/x, are finitely many open bounded subsets of E~ and that,  for each 
G~, there is a given set {~}~, i = 1,..., n, a = 1,..., ~, and a system fi~ of 
functions f .  Now, let us consider all possible nonempty  intersections 
F ~ =  G , l n G , ~ n . . . A G %  of p of the sets Go, 1 ~<p ~</x. These  sets 
F r ,  r = I,..., N, are finitely many and each is a nonempty  bounded 
open subset of E~. For  each of these N sets F~ = G,I n -.- n G%, we shall 
consider the vector funct ionf fr~( t ,  x, u) whose components  are all those of the 
fun c t i on s f  = (fi~), ~ ~ {o~},,, i = 1,..., n, cr = el ,-.., % .  We shall then require 
that, for each r, the set ~(~)(t, x) din " ~(r) • subset of correspon g to j is a convex 
the relative Euclidean space EM,+(~_s). Here,  M~ is the total number  of all 
distinct indices ~ ~ {c~}io, i --~ 1,..., n, a = ~1 ,..-, % • In  other  words, in each 
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G, ,  we have a different system of partial differential equations D~x i = fi~ 
and, in each nonempty intersection F,  = Go (3 .-. n G, , we consider the 
logical unmn of the varmus differential systems. We assume that these systems 
are compatible, and then the hypothesis that O(r)(t, x) is convex corresponds 
to the usual hypothesis for these composite differential systems. A further 
extension can be obtained by assuming that the functions fi~ are sectionally 
continuous in each set G¢ but, for instance, coincide on each set F,  with 
functions which are continuous on the closure ofF,.  These variants of Closure 
Theorems 1 and 2 are proved exactly by the same argument. 

4. M o r e  Nota t ions  fo r  the Exis tence  T h e o r e m s  

We shall use the same general notations as in Section 2. Besides the 
N-vector f ( t ,  x, u ) =  (fi=), we now consider a scalar function fo(t, x, u) 
continuous on M, and we shall denote by f ( t ,  x, u) the (N + 1)-vector 
function f ( t ,  x, u ) =  (fo ,fi=) continuous on M. Concerning the n-vector 
functions x( t ) := (xl,..., xn), t ~ G, we shall require that each component 
xi(t), t ~ G, belongs to a Sobolev class W ~ ( G )  for given/.~ and Pi ,  1 ~ l i ~ l, 
Pi > 1, i = 1, 2,..., n. By force of Sobolev's imbedding theorems (Ref. 4), 
each function x i and each derivative D~x i of order a = (al , . . . ,~),  
0 ~ 1~t ~ 1 i -- 1, has boundary values ~ i  defined almost everywhere on the 
boundary S = ~G of G, and each qo~ is of class Lr~ on S. 

We shall now require a set (B) of boundary conditions involving the 
boundary values of the functions x i and their derivatives D~x i, 
0 ~< j~ t ~< li -- 1. On the boundary conditions (B), we assume only the 
following closure property (/)1): If  x(t) = (x 1 .... , xn), xk(t ) = (xkl,..., Xkn), 
t a G, k = 1, 2 , . ,  are vector functions whose components x i, xk i belong to 
the Sobolev class W~(G) ,  if D~xki(t) --~ D~xi(t) as k --~ ~ strongly in Lp,(G) 
for every fl with 0 ~ I t ]  ~ l i -- 1, if D~xki(t)--~ D~xi(t) as k--~ co weakly 
in L~,(G) for every fi with I~} = li ,  and if the boundary values q~, of xki(t), 
i = l,..., n, 0 ~ ] a [ ~ l i -- 1, on ~G satisfy the boundary conditions (B), 
then the boundary values 9~ of xi(t), i =  1,..., n, 0 ~ [ ~1 ~ li - -  1, on aG 
satisfy the boundary conditions (B). 

For instance, if the boundary conditions (B) are defined by stating that 
i t some of the boundary values 9k~() coincide with preassigned continuous 

functions 9 i  on certain parts of S = ~G, then, by force of Sobolev's imbedding 
theorems (Ref. 4), we know that property (P1) is valid. 

We shall need a further property of boundary conditions (B), say (P2): 
If x(t) = (x~,..., x~), t ~ G, denotes any vector function satisfying boundary 
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conditions (B), whose components  x~(t) ~ W~v'(G), Pi > 1, 1 <~ l i <~ l, 
satisfy 

~a ] D~x~(t)f ' dt <~ Mi~ 

for all/3 = (/31 ,...,/3~) with [/3 [ = li, i = 1,..., n, and constants Mio, then there 
are constants Mi~ such that 

f ]  D~xi(t)lvidt <~ Mi~ 

for all ~ ~- (cq ,..., a~) with 0 ~< ] ~ I ~< It -- 1, i = 1,..., n, where the constants 
Mi~ depend only on Pi,  v, all Mi~ , G, and boundary conditions (B), but  
not on the vector function x(t) above. 

For instance, the boundary  conditions (B) defined by preassigning 
the continuous boundary  value functions ~ i  on OB of all derivatives D~xi(t), 

= (,~ ,..., %), 0 ~< [~ I ~< It --  1, i = 1,..., v, satisfy condition (P2). 
A pair x(t) = (xl,..., x~), u(t) = (ul,..., u~), t ~ G, with x i ~ W~(G), 

uJ measurable in G, satisfying (t, x(t)) ~ A, u(t) ~ U(t, x(t)), D~x~(t) = f~(t, x(t), 
u(t)), c~ ~ {c~}i, i = 1,..., n, a.e. in G, and f0(t, x(t), u(t)) ~ LI(G), is said to be 
admissible. A class £2 of admissible pairs is said to be complete if, for any 
sequence xk, uk, k = 1, 2,..., of pairs all in £2 and any admissible pair 
x, u such that xl~ ~ x in the sense described under P1,  the pair x,u belongs 
to £2. The  class of all admissible pairs is obviously complete. 

5. E x i s t e n c e  T h e o r e m s  

5.1. E x i s t e n c e  T h e o r e m  1. Let G be a bounded open set of some 
class Kl ,  l ~> 1, of the t-space E,, for every t ~ cl G let A(t) be a nonempty  
subset of the x-space En, and assume that the set A of all (t, x) ~ E, × E~ 
with t ~ c l G ,  x ~ A ( t ) ,  is closed. For every ( t ,x)  c A ,  let U(t ,x)  be a 
nonempty  closed subset  of the u-space Era, and assume that U(t, x) 
satisfies property (U) in A. Let  M be the set of all (t, x, u) ~ E~ × E~ × E,~ 
with (t, x )~  A and u ~ U(t, x). For every i = 1,..., n, let {a}i be a given 
finite system of indices a = (~1 ,-.-, %), 0 ~< [ ~ I ~< It ~< 1, and let N be the 
total number  of elements a ~ {a}i, i = 1,..., n. Let  f(t ,  x, u) = (]Co, fi=, 

= {~}i, i =  1,..., n ) =  ( f 0 , f )  be a continuous ( N +  1)-vector function 
ola M and assume that the set O(t, x) = f ( t ,  x, U(t, x)) is a convex closed 
subset  of EN+ I for every (t, x) e A and satisfies property (Q) in A. Let  (B) 
be a system of boundary  conditions satisfying properties (P1) and (P2)- 

8o9/~/z-z 
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Let £2 be a nonempty complete class of pairs x(t) = (xl,..., xn), u(t) = (u 1, .... urn), 
t ~ G, xi(t) ~ W ~ ( G ) ,  1 ~ I i ~ l, Pl > 1, i = 1,..., n, uJ(t) measurable in G, 
j = 1,..., m, satisfying (a) the constraints 

(t, x(t)) e A, u(t) e U(t, x(t)) a.e. in G, 

(b) the system of partial differential equations 

D~xi(t) = fi~(t, x(t), u(t)) a.e. in G, a E {a}i , i = 1,...g n, 

(c) the boundary conditions (B) on the boundary ~G of G concerning the 
boundary  values of the functions xi(t) and their generalized partial derivatives 
D~xi(t) of orders /3, 0 <~ I t  I ~ li - -  1, i -= I,..., n, and (d) the system of 
inequalities 

f t D~xi(t)I ~" dt ~ 2 ~  for alI/3 with i/3 t = h ,  
G 

f a I f°(t' x(t), u(t))l~0 dt ~ No,  

i = 1,..., n, 

where 2v~o, No are given constants, and Po, Pi > 1 
cost functional 

I[x, u] = rio(t ,  x(t), u(t)) at 

are given. Then,  the 

possesses an absolute min imum and an absolute maximum in £2. 

5.2. P r o o f .  Let  R be an interval R ---- [a, b] containing cl G in its interior, 
say cI G C int R C E , .  I t  is not restrictive to assume R ---- [0, b] where 0 and b 
represent the v-vectors (0,..., 0) and (b,..., b). Let  x ° denote a new variable 
and x =  (x °,x) = (x ° ,x  1 .... ,x~). Let  l o = v  
scalar function defined by 

fo(t, x, u) = 0 for t ~ R -- el G, 

f o g  x, u) = f o g  x, u) for t E el G, 

and let f o ( t , x , u )  be a new 

x ~ E n, u e E ~ , 

(t, x, u) ~ M.  

We shall denote by x°(t), t ~ R,  a new scalar function which is L-integrable 
in R, possesses the generalized partial derivative ~x°/Ot 1 ... ~t ~, or D~x ° with 

= % = (1,..., 1), which is also Ll-integrable in R, satisfies the partial 
differential equation 

D=x ° = fo(t, x(t), u(t)) a.e. in R, a = (1 .... , 1), 
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and the b o u n da ry  condit ions 

where  t (  
we have 

105 

x°(t~, 0) = 0, (t; ,  0) ~ ~R, i = 1 ..... v 

denotes  the  ( v -  t ) -vector  t ( =  (t 1 ,..., t t_ t ,  tf+ i ,..., t,). Then ,  

xO(b) = .( Rf°(t' x(t), u(t)) dt = f ~ fo(t, x(t), u(t)) dt = I[x, u], 

t 

~o(t) = f Lb-,  4 ~ - ) , - 6 ) )  d~-, 
0 

t ~ R ,  

where the last integral is taken over the interval [0 <~ r i ~ t i, i = 1,..., v], 
and then  

f ] D~x°(t)lVo dt <~ No, 
R 

= % = 0  .... , l). 

Also, if q 0 - 1 + p o  1 =  1, then  

t (f C ° (f 
and thus  I[x, u] is bounded  above and below in Y2. As usual, we shall use the 
vector  variable ~ = (x °, x). I f  i denotes the i n f imum of I[x, u] in £2, let xk, uk ,  
k = 1, 2 , . . . ,  be a sequence of pairs all in X? with  I [ x k ,  uk] = xk°(b)--~ i 
as k --~ oe. By the weak compactness  of the uni t  ball in W~*(G), i = 1,..., n, 
and in Lm(G),  there exists a subsequence,  say still [xk, uk] , and limit funct ions  
x = (xl,..., x n) and ¢, such that,  as k - +  0% we have 

I f  x°(t), 

D~xfl --*- D~x ~ weakly in L.,(G), 

x~ i --~ x i strongly in L,,(G), 

D~xT~ ° -+ ~b weakly in L~o( G), 

t ~ G, is defined, by 

e(~}i ,  i = 1,..., n, 

i = 1,..., n, 

= ao = ( 1 , . . . ,  1). 

x°(t) = f ~(~-) dr, 
0 

where the integrat ion is taken in the interval [0, t], or 0 <~ ~i ~ t i, i = 1 , . ,  v, 
then  

¢(t) -= D~x°(t) a.e. in G, ~ = % = (I,..., t), 
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and since D~xk ° - f o  is zero in R - - c l  G, we know that also ~ b = 0  in 
R -- el G. Finally, the weak convergence D=xk°-+ D~x ° in Lv,(R),  ~ ~ % = 
(1,..., 1), implies that, as k--+ 0% 

where Xt(r) is the characteristic function of the interval [0, t] in R. In other 
words, as k - +  o% 

t 

0 0 
a = % =(1, . . . ,  1), 

or xk°( t ) -+ x°(t) pointwise as k - +  00 for every t s R. We can now apply 
Closure Theorem 1, with pointwise convergence xkV-+ x ° replacing strong 
convergence, with R replacing G for  the component x ° as in the remark at the 
end of Section 3, and with f0 continuous in G and in R -- cl G, precisely, 
sectionally continuous in R. Thus,  by Closure Theorem 1, there exists a 
measurable function u(t) -= (ul,..., u~), t ~ G, such that  

(t, x(t)) ~ A,  u(t) ~ U(t, x(t)) a.e. in G, 

I>x* = fib(t, x(t), u(t)) a.e. in G, o~ ~ {a},, i = 1,..., n, 

D~x ° = fo(t, x(t), u(t)) a.e. in R, o~ = %. 

Hence, 
/ ,  

xO(b) _-- u] = t L at  = I fo at  = x : ( b )  = i, 
d R d G lc'-'>~ 

and the pair x, u belongs to £2, because X? is complete. This proves that 
I[x,  u] has an absolute min imum in D. The  same proof holds for the maximum. 

5.3. Ex i s t ence  T h e o r e m  2. Let G be a bounded open set of class 
K~,  l > 1, of the t-space E~, for every t 6 cl G let A(t)  be a nonempty subset 
of the x-space E~,  and assume that the set A of all (t, x) e E~ × E~ with 
t 6 cl G, x ~ A(t) ,  is closed. For  every (t, x) 6 A, let U(t, x) be a nonempty 
closed subset of the u-space E ~ ,  and assume that U(t, x) satisfies property 
(U) in A. Let  M be the set of all (t, x, u) e E, × E~ × E~, with (t, x) ~ A, 
u e U(t, x). For every i = 1,..., n, let {~}i be a given finite system of indices 

= (% ,..., s~), 0 <~ l ~ t <~ li <~ l, and let N be the total number  of elements 
c~ ~ {s}t , i = 1,..., n. Let  f ( t ,  x, u) = (fo,fi~, o~ ~ {c~}t , i = 1 .... , n) = (fo, f )  



LAMBERTO CESARI 107 

be a continuous (N + 1)-vector function on M, and assume that the set 
~i(t, x) of all 5 = (z °, zl, . . . ,  z n) = (z °, z) ~ E~,+I with z ° ~ fo(t, x, u), z = 
f ( t ,  x, u), u ~ U(t, x) is a convex closed subset of E~,>I for every (t, x) ~ _// 
and satisfies property (Q) in A. Also, assume that fo(t, x, u) >/ --  M o for 
all (t, x, u) ~ M and some constant M o ) 0. Let  (B) be a system of boundary 
conditions satisfying properties (/)1) and (/)2). Le t /2  be a nonempty complete 
class of pairs x(t) = (xl,..., xr~), u(t) = (ul,..., urn), t ~ G, x~(t) ~ I/V~*(G), 
I ~ l i ~ l, Pi > 1, i = 1,..., n, uJ(t) measurable in G, j = 1,..., m, satisfying 
(a) the constraints 

(t, x(t)) ~ A, u(t) e U(t, x(t)) a.e. in G, 

(b) the system of partial differential equations 

D~xi(t) = fi~(t, x(t), u(t)) a . e .  i n  G ,  ot ff {ot}i , i = 1 . . . . .  n ,  

(c) the boundary conditions (B) on the boundary 3G of G concerning the 
boundary values of the functions xi(t) and their generalized partial derivatives 
DCxi(t) of orders fi, 0 ~ ]fil ~< l~ --  1, i =  1,...,n, and (d) the system of 
inequalities 

f a [ D¢xi(t)l ~ dt <~ Ni~ 

for all fi with ]/3] = l i , /3 6 {@t, i .... 1, 2,..., n, where Ni~ are given constants. 
Assume thatf0(t, x(t), u(t)) isLl-integrable in G. Finally, assume that whenever 

f cfo(t, x(t), u(t)) dt <~ L o (43) 

for some constants L o and pairs x(t), u(t) in/2,  then for the same pairs we have 
also 

I O~xi(t)i ~' dt <. L~., ~ E {a}~, i = 1 .... , n, (44) 
d G 

for constants Li~ depending only on L o , /2 ,  P i ,  li on the boundary conditions 
(B), but not on the particular pair x, u. Then,  the cost functional 

I[x, u] =: ~ ( fo(t, x(t), u(t)) dt 

possesses an absolute min imum in/2. If, for given i and/3 as in (d), it happens 
that, for any L 0 /> 0 sufficiently large, there is some A ~  such that I[x,  u] <~ L o 
implies fa I D~xi(t)l p* dt <~ Nt~,  then the absolute min imum still exists, even 
if in defining /2 we disregard the corresponding requirement  in (d); the 
absolute minimum, however, may change. 
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5.4. P r o o f .  By hypothesis, we have f o ( t , x ,  u ) +  JVl o > / 0  for all 
(t, x, u) ~ M. For every pair x, u of the class .O, we have now 

+ oO > I[x, u] = f a f o  dt >~ - - M  o meas G > -- or. 

Then,  the infimum i of I[x ,  u] in the class D is finite. Let  xk(t), uk(t), t ~ G, 
k -= 1, 2,... , be a sequence of pairs all in /2  such that I [ x  k , uk] --~ i as k ~ oo. 
We may assume 

i ~ [ ~ ,  = r i o ( t ,  dt <~ i + k -~ <~ i + 1, k = 1, 2,.... 

Then, by hypothesis, there are constants Li~ such that 

f [ D~xki(t)l~ dt <~ L ~ ,  o~ e {~}¢, i = 1 ..... n, k = 1, 2 ..... (45) 
G 

and, by (d), 

f L D~x~(t)] ~ ~ Ni~ I P t = l~, fi ~ {~}~, = 1,..., n, := 1, ..... dt for all i k 2 
G (46) 

Relations (45) and (46) show that the sequence [xk i] belongs to a well deter- 
mined balls of the Sobolev space W ~ ( G ) ,  i = 1,..., n. By the weak compactness 
of such balls, there is a subsequenee, say still [xk] for the sake of simplicity, 
converging weakly toward a vector function x( t )  = (xl , . . . ,  xn), t ~ G, with 
x i e  W ~ ( G ) ,  and, precisely, by Sobolev's imbedding theorems (Ref. 4), 

D~xk i --~ D~x ~ strongly in Lm(G), I ~ I <~ li - -  1, i = 1,..., n, 

D~x~ i -+ D~x ~ weakly in L~(G) ,  I a t = l i ,  i = 1,..., n. 

By properties (/)1) and (P2), we conclude that x satisfies the boundary 
conditions (B) on 0G. 

Let  R be an interval containing cl G in its interior, G C cl G C int R C R. 
Vqe can assume R = [t3, hi, where 0 and b denote (0 ..... 0) and (b,..., b). 
Let  5%(t) = f 0 ( t ,  xl~(t),ue(t)) for t ~ G , ~ k ( t )  = 0 for t ~ R - -  G, and let 
~-(t) = -- M 0 , t e R, and q~k+(t) = ~k(t) -+-, 340, t ~ R, so that ~k + + q~k- = 
q~k, 9k+(t) > /0 ,  cp-(t) ~ 0 everywhere in R. Let  xk °, Xk +, X-  be the functions 

o ~ 0 ~ 0 
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where the integrals range on the interval [0, tJ, or 0 ~ r i ~ t t, i = 1,..., v. 
Hence,  

x k ° ( b )  
d R "~ G 

x~O(t) = x- ( t )  + x~ +(t), t e R,  k = 1, 2 . . . . .  

For  every integral I C R, we denote as usual by A,x~ °, A~x~+, A x x -  the 
differences of order  v of the indicated functions relative to the 2 ~ vertices o f / ,  
and we have A l x k  ° = Azxk  + + A , x - ,  with 

~,x~O = fl~(t)dt, A,x~+ = fI~+(t)dt, A z x - =  f ~-(t) dt=--MomeasI. 

I f  t = (tl,..., t"), t '  = ( t ' l , . . . ,  t 'v) are any two points of R, then obviously 
I t i  - -  t 'iJ ~ I t  - -  t ' [ ,  i - -  1,..., v. Also, we denote by t o = t l ,  t2 .... , t , =  t', 
the points of R defined by t~ = (t l , . . . ,  t ~-j, t'v-J+l,..., t " ) , j  = 0,1,..., v, and by 
r 3. the intervals 

r j  = [0, t ~1 X "'" X [0, t ~-~+1] × [W -~, t ' ~ j ]  X [0, t '~-]+1] X " "  X [0, t'~], 

j = 0 , 1 ,  .... v - - 1 .  

Then ,  

x~o( t )  - x ~ o ( r )  = z ~ [ x ~ o ( t 3  - x~o( t~+, ) ] ,  

where Z r a n g e s  over a l l j = O ,  1 .... , v - -  1 and 

xk°(t~) - -  x~O(t~+a) = f ,, 9~(t) dt, 

and analogous formulas hold for xk+ and x- .  Since 

meas r~ ~ b~- l l  P - -  t'J[ ~ b "-1 [ t - -  t ' l  

and q~- := - - M 0 ,  we have 

! x- ( t )  - -  x-( t ' ) l  ~ VMo b ~ l  t t - -  t' [, t, t' ~ R.  

On the other  hand, 9k + ~ 0 and, hence, .4ixk + > / 0  for every I C R ,  
k - -  1, 2 , . . . .  
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If  [I 1 ,..., Ix. ] denotes any finite subdivision of R into nonoverlapping 
intervals 18, s ~ 1,..., L, then 

Z~ 1A,x-  i = --~A1,x- = MoZ, meas I, = Mob" , 

~ I A1,x~ + I = Z,Ai, x~ + = Z,At, x~ ° -- Z ,AIx-  = xk°(b) + Mo b~ <~ i + 1 + Mob", 

and, thus, 

Z~]AIx~ °t ~ ZslA1,xk + I + Z~IA lx - ]  ~ i + l + 2Mo bÈ. 

We have proved that the interval functions A~x-, Azxk+ , A~xk ° are of bounded 
variation, namely, of equibounded variation in R. In addition, A~x- is obviously 
absolutely continuous in R. Note that, if I t ~ [0, t] denotes the interval 
0 ~ T  i ~ < t  i, i =  1,...,u, in R, then, 

] xk°(t)l = 1Az, x~° [ ~ i + 1 + 2Mo b", t E R, 

that is, the functions xk°(t) are equibounded in R, and so are the functions 
xk+(t). 

Let us consider the countably many lattice points {tp}, or t = bp ~ R, 
P ---- (Pl ,..., P,), where Pl ,..., P, denote all rational numbers,  0 ~ pj ~ 1, 
j ---- 1,..., v, Let  {I} be the countable system of intervals I C R whose vertices 
are points t e {tp}. We may order the points tp into a sequence. Since the func- 
tions xk°(t), xk+(t), t ~ R, are uniformly bounded in R (and, hence, at each 
t = to) , we can successively select subsequences which are convergent at 
t = tp and then, by the diagonal process, we can select a unique subsequence 
[ks] of integers k such that the limits x°( t )  ~ x°(t), x-~(t) --~ x+(t) as s --~ 
exist, for every t 6{tp}. Here, x-(t)  does not depend on k, and AiXk°= 
AiXa + + A1x-. Thus,  as k = ks--+ ~ ,  Axxk ° and AiXa + have limits, say 
Aix °, A1x +, and Azx ° ~ AIx+ ~- A ix -  for every I ~ {I}, and AzxO , Aix+ , A ix -  
are additive interval functions in {I}. Moreover, A1x- is absolutely continuous, 
A1x+ ~ O, Axx+ is of bounded variation and, hence, Alx° is also of bounded 
variation in {I}. 

By Ref. 8, we know that Axx ° is then the difference A of a function x°(t) 
defined everywhere in R, with a Lebesgue decomposition x°(t) = X( t )  + S(t). 
Hence, Aix ° = AzX @ AzS , where 

xO(t;,  o) = x ( t ; ,  o)  = s ( t ; ,  o)  = o,  ( t ; ,  o) eR ,  i = 1 .... , 

and where AzX is absolutely continuous and AzS is singular. Consequently, 
for every t o e R and interval I ~ {I} with t o ~ I, we can form the quotients 
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A~S/measI .  We know that for t a hypercube, I e  {I}, t o e I ,  and almost all 
t o ~ R,  we have AiS /meas  I - +  0 as diam I - ~  0. On the other hand, the same 
process applied to A I X  yields A ~ X / m e a s I - - ~  z(to). Now, z(t)  is defined 
a.e. in R, is Ll-integrable in R, and 

A , X  --. ~ z(t) dt, I e {I}. 
d 1 

In addition, the decomposition xk ° ...... xk + 4- x - ,  with Axxk + >/O, A i x -  ~ O, x -  
independent of k and A , x -  absolutely continuous, implies x ° = X 4- S = 
X + 4- x - ,  with AIX+ ~ O, zIxx- ~ O. By the uniqueness of the Lebesgue 
decomposition, we conclude that AxX+ has the Lebesgue decomposition 
A~X + = A x ( X  --  x - )  4- AzS,  where A~(X -- x-) is absolutely continuous 
and A I S  is singular. Then AxX+ >~0 implies A I ( X -  x - )  ) O, A I S  ) 0 ,  
in particular S(b) = A ~ S  >~ O. 

We can now apply Closure Theorem 2 with s replaced by n, n replaced by 
n 4- 1, and n -- s replaced by 1; also, xX,..., x s is replaced by xl,..., x ~ and 
xS+~,..., x ~ is replaced by x °. By Closure Theorem 2 with x ° = X 4- S, we 
conclude that there exists some measurable function u ( t ) =  (ul,..., u m) 

U(t, x(t)),  x(t)  = (xl,.. . ,  xn), such that 

(t, x(t)) ~ A, u(t) ~ U(t, x(t)) a.e. in G, 

D~xi(t) = fi~(t, x(t), u(t)) a.e. in G, ~ ~ {a}i, i = 1,..., n, 

D~X(t) -~ fo(t, x(t), u(t)) a.e. in G, ~ ---- %. 

On the other hand, x(t), u(t), t E G, is in £2 since £2 is complete and 

i .~ i[x, u] = X(b) = x°(b) --  S(b) = tim x°(b) -- S(b) = i -- S(b) <~ i. 
8+0o 

Thus, the equality sign holds everywhere in this relation, S(b) = O, I[x, u] = i, 
and, hence, I[x, u] possesses an absolute minimum in £2. 
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