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Remarks on Bang-Bang Control in Hilbert Space ~ 

E. D. ROGAK g AND N. D. KAZARINOFF 3 

Communicated by L. Cesari 

A b s t r a c t .  In  this note, a natural definition of bang-bang control 
in Hilbert space is given, and some of the theory of the authors' 
paper (Ref. 1) is rebuilt upon it. An elliptic boundary-value problem 
illustrating the theory is given. In the last part of this note, the results 
of Ref. 1 are extended to nonlinear perturbations of linear operators 
and to homogeneous nonlinear operators. 

1. I n t r o d u c t i o n  

Le t  H i and  H 2 be two, real Hi lbe r t  spaces with inner  p r o d u c t  and  
n o r m  ( , )~ and  IJ [li, i = 1, 2. L e t  d be a l inear opera tor  with dense  
doma in  in H 1 m a p p i n g  1-1 into H 2 . W e  admi t  as control  sets U b o u n d e d  
closed convex  subsets  of  R(A), the  range  of  A.  

I n  Ref. 1, we defined an extremal poin t  o f  U to be any  po in t  u ~ U 
such  tha t  ) m ¢  U for  each A > 1. W e  cons idered  there  the  fol lowing 
prob lem.  

P r o b l e m  1.1. G i v e n r ~ D ( A  - I* )CH landf i  > 0 ,  to f i n d u ~ U  
and  x(u) ~ D(A) such tha t  

(i) A x  = u 

and 

(ii) J(u) = (r, x)l q- p(x, X)l is min imized .  

O u r  main  result  was the  following.  
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T h e o r e m  1.1. I f  U is a closed convex subset of the unit  bali in H 2 
containing 0 and if A has a bounded inverse with ]I A-1 L] 2 = K, then 
an optimal control for Problem 1.1 is bang-bang (extremal) provided 

where 

0 <~ 5 <~ I 0 I/2K, 

0 = min J(u). 
u~U 
,8==0 

The definition of an extremal or bang-bang control used above, 
however, is not always a natural extension of the usual non-Hilbert  space 
definition. For example, let U = {u eL2(£2) I J u(t)I ~ 1 a.e.}, D = [0, 1], 
H 2 = L~(~), and let 

u(t) = 0 for t e (~, 1], 8 > 0, 

u(t) = 1 for t e (0, a]; 

then, u ~ U and u is an extremal point of U, but is far from being a 
bang-bang control in the engineering sense. In a less abstract setting 
than in Ref. 1, we can largely overcome this objection. 

Let  D be a bounded domain in R n. Let H 1 = H 2 = L2(D). We 
assume that the admissible control set U includes all functions in L~(f2) 
such that I u(t)l < 1 a.e. in 2 .  A more natural extension, than the above 
definition from Ref. I, of the usual engineering concept of a bang-bang 
control is the following. 

De f in i t i on  1.1. A function u e U is a singular (not ban~bang)  
control on f2 iff there exists a set E of positive measure, E C 2 ,  such 
that ess sup I u(t) l < 1 on E. A function u ~ U is a bang-bang (extremal) 
control on D iff it is nonsingular on 2 .  

~ q t h  the restriction of our attention to L2(X2), we can prove a result 
much like Theorem 1.1 using Definition 1.1. Apart from the definition 
of bang-bang control being used, the essential difference between 
Theorem 1.1 and our main result, Theorem 1.2 below, is that we are able 
to prove that  the optimal control is bang-bang for/3 positive only on 
subdomains of ~ over which ess inf I A-l*r I is positive. I t  will be seen 
that  this restriction is inherent in our method of proof. We do not know 
if it or a similar hypothesis is a necessary condition for bang-bang control 
for fi positive. 

T h e o r e m  1.2. I f  

(i) A is a linear, densely defined operator onL2(f2)with A -1 bounded, 
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(ii) there exists a Green's function G on X2 × s'-2 and a positive 
constant M such that 

[A-lu](t) ~ f G(t, 7) u('r) dr, sup f ] G(t, ~-) dT] < M, 

f t c,(t, ~) ~'t I < M, s u p  

(iii) S = {u ~L2(O) : i u(t)] ~ 1 a.e. in f2}, 

(iv) ~Q1 is a subdomain of O on which ess info 1 I A-l*r i = ~ > 0, 

then, for/3 < 8/6M 2, the optimal control z7 is bang-bang on 01 . 

R e m a r k  1.1. I f  e s s i n f ] A - l * r ]  = 8  > 0  on all of ~O, then of 
course the optimal control for such/3 will be bang-bang  on so2. In the 
case of a self-adjoint differential operator with homogeneous boundary 
conditions, ess inf~ I A-l*r f may be zero; see the example below. 

R e m a r k  1.2. We have tacitly assumed that, for each /3, an 
op t imum control for Problem 1.1 exists. This  follows from the fact that U 
is a closed bounded  convex set and jr(u) is weakly lower semicontinuous 
(see Ref. 2, page 5). Convexity is required only for the proof  of existence 
of an optimal control. 

R e m a r k  1.3. F rom the proof  of Theorem 1.2, it will be apparent 
to the reader that any closed bounded  convex set containing all functions 
cut to ~ 1 on measurable subsets of f2 would serve as the admissible 
control region U. The  proof  can also be modified to admit as controls 
square-integrable functions for which - - a  ~< u ~ b a.e. in g2, where a 
and b are positive. Of  course, the bound on/3 in the conclusion must  be 
appropriately modified. 

2. P r o o f  o f  T h e o r e m  1.2 

We shall need the following lemma. 

L e m m a  2.1. I f  v is an optimal control Problem 1.1 with/3 = 0 
and r* = d-l*r and .O 1 satisfying condition (iv) of Theorem 1.2, then 
for each E C ~c~ 1 with/z(E)  > 0, (r*, v)e < 0. 

Indeed,  v = - -s ign r* in E. 

8o9ho/4-~ 
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P r o o f .  
E C f21 with/~(E) > 0 and such that (r*, v)e >~ O. Consider 

w(t) == I v(t) if t ~ E, 
(--sign r*(t) if t ~ E. 

Then,  w e U. Now, 

(~*, ~),~ ~ (~*, ~),~, 

since v minimizes (r*, u)s~ = J(u) when/3 = 0. But 

Suppose that the lemma is false and that there exists an 

(1) 

(r*, v). -- (r*, w)~ -~ (r*, v)E -- (r*, w)E :> O, 

since 

(r*, w)~ >~ 0 

This  contradicts (1). 

and --(r*, w)e = (r*, sign r*)2z > 0. 

P r o o f  of  T h e o r e m  1.2. Suppose that z/ is an optimal control 
for Problem 1.1, and suppose that ~ is not bang-bang on all of ~21 . Then,  
there exist a measurable set E C f21 with/x(E) > 0 and a A > 1 such 
that  [ Au(t)l < 1 for t ~ E. Define 

t~;(t), t e r2 - ~, 
u(t) = t;ta(t), t e e .  

Then, u ~ U. We shall reach a contradiction by showing that A J  
J(u) - J02) < 0, which implies that z7 is not optimal. We first observe 
that an easy computation shows that 

Now, let 

A J  (A 1 ) ( r * , a ) ~ +  -1 = -- /3111A u LI. -- I1A-*a LI},]. 

tzT(t), te~2 -- E, 
vl(t) ~ -  ~v(t), t e E, 

(2) 

where v is optimal for/3 -- 0. Since J(~7) ~< j (vl)  , 

(rL a)~ +/3  I1A - la  I1~ ~ (r*, v~)~ +/3  II A lvt II~a. 

Using the properties of the scalar product and the definitions of v l ,  
we obtain 

(r*, ~)~ ~ (r*, v)~ +/3Ell A % 1  I[~ -- li A-l~ II~]. 
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Subst i tu t ing in (2), we get 

AJ <~ (Z -- l){(r*, v)E q-/3[It A-lv~ IF~ - l] A-h~ lib]} 

+ 13[li A - l u  !t~ - II A - ~  ll~]. 
Hence,  

~:  ~ (~ - ~)l(r,, ~)~ + 13 f (A-~)~-  (A-~/~ ~t 1 

+ 13 f ~  (A-Iu) ~ - (A-la) ~. dt 

= ( A -  l ) l ( r* ,  v)E + t3 fra(A-lvl- A-~u)(t)(A-lvl @ A-agt)(c.)dt 1 

+ t3 f ~  (A-lu -- A-~,~)(t). (A-~a + A-~u)(t) dr. (3) 

By hypothesis  (ii) and the fact that  u and v are in U, 

+ a)(t)t 

Also, 

In te rchanging  the order of integration, which is permissible since the 
integrand is measurable and nonnegative,  we get 

<~ M f e I v~(r) -- ~(r)l dr <~ 2M,(E). 

Combin ing  (4)-(5), we see that  the first integral in (3) is less than 
4M~/t(E). A similar estimate show's the second integraI in (3) is less than 
2 M Z ( A -  1)/z(E). Therefore,  

AJ  ~ (3, -- 1){(r*, v)z 4- 613M2/~(E)}. (6) 

Since f rom L e m m a  2. I, 

we see that  

: : - f  [ r ' l ,  (r,, v)~ 

A J <~ (3  ̀-- 1) ](r*, v)~ [ [ - 1  + 63M~lx(E)/l(r *, v)~ I] 

~< (A -- 1) I(r*, v)g [ [--1 + 6pM~l¢(E)/essEinf[ r* [ •/~(E)], 
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where we have used the inequality 

-,Ps 1 r* ~ (essEinf I r* I)"/L(E). 

Since 

8 = essainf [ r* [ ~< ess~inf [ r* [, 

and since, by hypothesis (iv), 8 > 0, we obtain the inequality 

A J  ~ (h - -  1) t(r*, v)z I [--1 + 6/77vPI81. (7) 

If  fi < 8 / 6 M  2, the sum in the square brackets is negative, while the 
other factors are strictly positive. Thus,  A J  < 0, contradicting the 
optimality of ~7. 

3+ E x a m p l e  

We now consider a simple example from partial differential equa- 
tions. Let  /2 be the unit disk in R ~. We consider the problem of 
minimizing the functional 

J(u) = f rw + ~w ~ dsg, 

where r is a constant function, fi > 0, and w is the solution to 

Aw - u ,  w l~  = O. 

We take 

U = {u ~L2(g2) ] [ u(p, 0)[ ~< 1 a.e,}. 

This  problem may be put  into the setting of Theorem 1.2 by taking A 
to be the Friedrichs'  self-adjoint extension of the Laplacian (Ref. 3). 
Note  that D(A) C_/~1(/2), and functions in D ( A )  vanish on Of) in the usual 
generalized sense. Then,  for each u ~ U, there exists a unique (possibly 
generalized) solution to the above Dirichlet problem. Moreover,  by the 
remark after Theorem 1.2, for each r ~L~(/2), fi > 0, there exists an 
optimal control u ~ U. We will now show that the hypotheses of 
Theorem t.2 are satisfied and give sufficient conditions to guarantee 
that the optimal control is bang-bang on subdomains of f2. 

That  condition (i) is satisfied is obvious. If  (p, 0) are the polar 
coordinates of a point in the disk, and r --  c~ ~ co nst, it is readily seen 
that 

r* = A-l*c~ = A-I~ -- ~(p2 _ 1)/4, Ar* = a, r* 1o~ = O. 
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Since 

is the solution to 

f a  G = f a  G'I 

Aw = 1, w Ioa = O, 

and this solution is smooth, it follows that 

f ~ l G(t, r)] dr = sup f o sup 

is bounded,  and condition (ii) is satisfied. 

[ G(t, r)l dt 

It is clear that esso inf[ r* [ = 0 and that hypothesis (iv) is not 
satisfied on D. For  any subdomain D 1 C D, however, where ~21 has a 
positive distance from aD, 

es%tinf I r* I = 8 > O; 

and, for positive fl sufficiently small, the optimal control is bang-bang 
on f21 . For example, if 

then 

and, for 

£21 = {(p, O) ] p <~ Po ~ 1}, 

essoinf I r* I = ~(t -- p02)/4; 

13 < ~(1 -- po~)/24M 2, 

the optimal control t~ is bang-bang  on £21- In other words, f 5(p, {))1 - -  1 
a.e. for p ~ po • 

For the above example, we see that, if 0 < fi < o~/24M 2, then, for 

P < Po = V/[ 1 -- 24M2fi/~], 

is bang-bang,  

4. Nonl inear  Perturbat ions  

In this section, we revert to the general setting and definitions of 
Ref. I and extend some of the results obtained there to nonlinear 
operators. 
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An examination of the proof of Theorem 3.1 of Ref. I (Theorem 1.1 
in this paper) shows that it is valid if the linear operator A is replaced by 
a homogeneous but nonlinear operator, provided the inverse is bounded 
on the unit  sphere. By a homogeneous operator, we mean one for which 
A(tx) = A~A(x), ~ real. Many of the other theorems of Ref. 1 also hold 
for homogeneous nonlinear operators, provided some obvious modifica- 
tions are made. The  verification of whether the inverse of a nonlinear 
operator (if it exists) is bounded on the unit  sphere, however, is in 
general no simple task. 

We now extend Theorem 1.1 to the case of a nonlinear operator 
that is a perturbation of the original linear operator. 

Let  A = A0 be a linear (not necessarily bounded) operator mapping 
/ / 1 - + / / 2 ;  A -1 is assumed to exist and to be compact 4 as an operator 
from H 2 to H 1 . Let  

A~x = Ax  + Ef(x), 

where f is a nonlinear function mapping H 1 into H 2 and satisfying the 
Lipschitz condition 

/If(x1) -- f(x2)]l~ ~< Nil xl - x2 H1. 

We seek to minimize the functional 

JeB(U) --: (r, X)I ~- fl(X, X)t , 
subject to 

& x  = (A + q ) x  =-= u. 

The control region U is assumed to satisfy the conditions of Theorem 1.1. 

T h e o r e m  4.1. I f  • < 10] /2K [ 0 =  m i n J ( u )  for f i =  e =  0] 
and K = [I A-* I] 2, then, for e > 0 sufficiently small, u optimal is an 
extremal point of U. 

We first prove a few lemmas. 

L e m m a  4.1. For 0 < e < l/l] A -I ]! N,  A21 exists and is compact 
and continuous. 

P r o o f .  

Then,  

Let  

A~x i = Ax~ + ef(xi) = u~, i = 1, 2. (8) 

A(Xl --  x2) =: ul -- u~ -- E[f(xl) --f(xz)] 

See remark at end of this section. 
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and 

Thus,  

x t  - -  x 2 -~ A-a(u~ - -  u~) - -  e A - l [ f ( x l )  - - f ( x ~ ) ] .  

{I x l  - -  x~ {11 ~ [I A - 1 ( u l  - -  u~)l]l q- • l] A-1 I{ N t[ Xl  - -  X2 ill' 

and hence, 

II ~ - x~ I11 [1 - ~/I A -1  II N ]  ~< I1 A-~(u~ - u~)ll~ • (9) 

For e < 111t A - 1  I1 N, 

II ul - -  u s  tf~ -+ 0 ~ iI xl - x ~  111 -* o .  

Thus,  A~ is 1-1, and A~ -1 exists and is continuous. 

R e m a r k  4,1. Tha t  the range (At) -~ U for such e follows readily 
from the properties of A and f and a simple successive approximation 
argument. To show c o m p a c t n e s s ,  let u 1 converge weakly to u 2 . I t  suffices 
to show that  x 1 --+ x 2 strongly. But A - z =  AK 1 is compact from H e 
to H i . Thus,  A - l ( u l -  u 2 ) - - *  0 strongly in H i . I t  follows from (9) 
that x 1 -+ x 2 strongly. 

L e m m a  4.2. For e < 1/1} A -1 ]1 N, the inverse of the perturbed 
operator is a compact perturbation of the inverse of the unper turbed 
operator and has the representation 

A2~(u) = A-~(~) + ~ ( , , ) ,  

where Y" is a compact nonlinear operator. 

P r o o f .  Let  

Then,  

A~x  - -  A x  q- e l ( x )  = u. 

x = A : l ( u )  = A - l ( u )  - ~ A - l ( / ( x ) )  

= A-1(u) _ d - ~  o f  o ATe(u). 

But, for e < t/[t A-It[ N ,  A [  1 is compact by Lemma 4.1; and .)ff = 
A-Zo f o A~ -1 is the composition of a compact operator followed by 
a continuous operator, followed by a compact operator, and hence is 
compact. 
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P r o o f  o f  T h e o r e m  4.1. Suppose that  u optimal is not extremal. 
Then,  there exists % > 0  such that, for 1 ~ A ~ <  I q - % ,  A u e U .  
Consider 

Jer~(Au) - J~(u) = (A -- 1)[(r, A-lu)l + [3(a + 1)(A-lu, A-lu)l] 

+ ~[(~, ~(~,,))~ - (~, J c , , h l  

+ 2fie[(ZA-~u, d(Au)), -- (A-~u, ~Y'u),] 

+ 5~[(~(au), ~(au)),  - (~fu, du)d ,  

which for brevity we write as 

L,(~,") - L~(") 

= (a - 1)[(~, A-~u), + 3(a-~u, A-~,,)~ + ~[3(A-~u, A-~u)d + ~C, 

where, since E, u, A, fi may all be considered to run over bounded sets 
and the operators A -~ and J{" are compact, C may hence be taken to be 
bounded uniformly. We estimate 

(r, 1--1/,/)1 @ [3(/--lu, A-1/g)l = J~c~(u) - EC1, 

where C 1 is bounded uniformly as C above. If  v is the optimal control 
for e = 0,/3 = 0, then L¢(u) ~< J~.~(v) (u was assumed optimal for J~B)- 
Hence, 

T ~ (,', A-~u)~ + 3(A-~u, A-~u)~ ~ L,(v) - ec~ 

= (r, A-~)~ + [3(A-~, a-~v)~ + 0(~) <~ 0 + ~K + 0(4  

Let  i > 0 be such that 

Then,  

Also, 

[3 < i 0 {/(2 + ~)K < I 0 I/2K. 

T ~ 0 ÷ } 0 1/(2 q- ~) q- 0(e) 

= 0 -- 0/(2 + ~) q- 0(e) - 0(1 -? ~)/(2 q- ~) q- 0(e). 

t Sa(A-lu, A-I.)~ l ~< a[3K < a { 0 1/(2 + ~). 

Now, take % sufficiently small, so that % < ~/2, where 

1 ~ < h ~ l  +%<iq-~/2. 
Then,  

A I 0 I/(2 + g) < --0/2. 
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(Recall that 0 < 0). We thus obtain the inequalities 

J~()~u) - J~e(u) < (a - 1)[(1 + ~)/(2 q- ~)0 - 0/2] + 0(e) 

< (~/2)[~0/2(2 + ~)1 q- 0(e). 

Since 0(e) -+ 0 as ~ -+ 0, by choosing c > 0 sufficiently small, we can 
guarantee that the right-hand side is negative, contradicting the 
optimality of u. 

R e m a r k  4.2. The proof of Theorem 4.1 also goes through if 
A~ -1 = d~  1 q- eB where B is bounded on bounded sets. However, simple 
conditions to guarantee that such a representation exists for the inverse 
of the perturbed operator are not known. 

R e m a r k  4.3. The assumption that A -1 is compact from H 2 to/-/1 
is rather strong. If we assume that H 1 C H 2 and that A -1 is compact as 
an operator from H 2 -+ H 2 and only bounded from H 2 -+/- /1,  then 
the theorem and lemmas of this section go through essentially unchanged, 
provided the functional being minimized is 

] (u)  = (r, x~)2 + f3(x, ~)~ 

and not 
j(u) = (r, x)1 + t3(x, x)l. 
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