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TECHNICAL NOTE
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Abstract. We prove the existence of Markov perfect equilibria (MPE)
for nonstationary undiscounted infinite-horizon dynamic games with
alternating moves. A suitable finite-horizon equilibrium relaxation, the
ending state constrained MPE, captures the relevant features of an
infinite-horizon MPE for a long enough horizon, under a uniformly
bounded reachability assumption.
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1. Introduction

The traditional approach to prove the existence of equilibria of infinite-
horizon games relies heavily on the continuity of payoff functionals. The
procedure begins by proving the existence of finite-horizon equilibria and
follows by taking limits as the horizon diverges. Compactness of the infinite-
horizon strategy space or the history space is usually required to ensure the
existence of a limit point which will inherit by continuity the desired proper-
ties; see, for example, Fudenberg and Levine (Refs. 1–2), Harris (Ref. 3),
and Borgers (Ref. 4).
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In dynamic games with undiscounted or average reward payoffs, this
approach fails, since the infinite-horizon payoff functionals are not continu-
ous. Moreover, since future rewards are as valuable as present rewards, end-
of-horizon effects are magnified; thus, there may exist infinite-horizon and
finite-horizon equilibria of a substantially different nature. In other words,
there are infinite-horizon equilibrium strategies that are not the limit of
finite-horizon equilibrium strategies. These issues have been examined
recently by Engwerda (Ref. 5) in the context of linear-quadratic games.

In this paper, we provide a new proof of the existence of Markov per-
fect equilibria (MPE) in the context of infinite-horizon nonstationary undis-
counted dynamic games with alternating moves. The proof relies on a new
method to overcome end-of-horizon effects as in Schochetman and Smith
(Ref. 6). The idea is to restrict the deviation possibilities for players by
forcing an ending target state for every finite horizon. This relaxation leads
to the definition of a constrained MPE. A uniformly bounded reachability
assumption, which essentially requires that every player in isolation can
partially control the state dynamics, ensures that play in early periods (as
opposed to play in late periods) is more relevant in identifying profitable
deviations in the long run. Carlson and Haurie (Ref. 7) used a relatively
similar technique for open-loop equilibrium with decoupled dynamics. We
apply our results to an asynchronous dynamic duopoly [see Maskin and
Tirole (Ref. 8)].

2. Preliminaries

2.1. Dynamic Games with Alternating Moves. For ease of exposition,
we restrict our discussion to the case of two-player interaction. At every
stage k, which is discretely indexed, each player i∈{1, 2} takes an action ai

from the feasible action set Ai
k . The instantaneous reward

ri
k : SBA1

kBA2
k→R is a function of the players actions and the current

value of the state variable s∈S.
A transition function fk : SBA1

kBA2
k→S determines the evolution of

the state variable. A Markov strategy for player i in a T-horizon game, say
πT

i , is a T-tuple of maps π i
k : S→Ai

k , so that πT
i is of the form

πT
i G(π i

0 , π i
1 , . . . , π i

TA1).

We denote by Πi (T ) the set of all such strategies for player i∈{1, 2}. We
refer to the 2-tuple πT∈Π1(T )BΠ2(T ) as a Markov strategy combination
and denote by Π(T ) the set of all such strategy combinations.
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The set of T-long feasible sequences of action profiles that players may
exert is commonly referred to as the history space,

H(T )G ∏
TA1

kG0

A1
kBA2

k.

We shall also denote by hπT

T (s0)∈H(T ) the feasible history induced by strat-
egy combination πT from the initial state s0 . The total sum of rewards per
stage for feasible history hπT

T (s0)∈H(T ) is given by

Pi
T (hπT

T (s0))G ∑
TA1

kG0

ri
k (sk , πT

1 (sk ), πT
2 (sk )).

Similarly, we shall denote by

hπT

T (sk )∈ ∏
TA1

k

A1
kBA2

k

the feasible history of play induced by strategy combination πT from inter-
mediate state sk∈S at time period k. As above, the payoff obtained for this
case will be denoted by

Pi
T (hπT

T (sk ))G ∑
TA1

jGk

ri
j (sj , πT

1 (sj ), πT
2 (sj )).

The extension of a dynamic game, when there is an infinite number of stages
to play, follows straightforwardly by setting the history space to be the
infinite Cartesian product

HG ∏
S

kG0

A1
kBA2

k.

We shall denote by Π the set of all infinite-horizon feasible strategy combi-
nations. The total aggregated reward received by player i under the infinite-
horizon strategy combination π is defined as follows:

Pi (hπ (s0))Glim inf
T→S

Pi
T (hπT

T (s0))yT,

where πT stands for the T-horizon truncation of the infinite-horizon strategy
combination π .

Finally, in a game with alternating moves, players revise their actions
in alternation: player 1 at odd periods kG1, 3, 5, . . . , and player 2 at even
periods kG0, 2, 4, 6 . . . . Formally,

A1
kGA2

kC1G{∅}, for even k.
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2.2. Markov Perfect Equilibrium. For an excellent introduction to the
concept of MPE, the reader is referred to Fudenberg and Tirole (Chapter
13, Ref. 9).

Definition 2.1. Markov Perfect Equilibrium. We say that πT is a
Markov perfect equilibrium (MPE) iff every player i who would like to
deviate from πT by playing γ T

i ∈Πi (T ) from any intermediate state sk∈
S, 0⁄k⁄TA1, cannot find any incentive in doing so, i.e:

Pi
T (h(γT

i ,πT−i )
T (sk ))⁄Pi

T (hπT

T (sk )),

where (γ T
i , πT

−i)∈Π(T ) stands for the strategy combination in which player
j, j≠ i, follow πT

j and player i follows γ T
i .

This definition carries over straightforwardly to the infinite-horizon set-
ting with the above introduced framework.

We denote Π*(T ) and Π* the set of all Markov perfect equilibrium
strategies for the T-horizon and infinite-horizon games, respectively.

Definition 2.2. Constrained Strategies. We denote by Π(T, s) the set
of constrained strategy combinations to state s∈S; πT∈Π(T, s) if and only
if the history prescribed from every intermediate state reaches state s at time
period T.

Definition 2.3. Constrained MPE. A strategy combination πT∈
Π(T, s) is called a constrained MPE to state s iff, for every deviation
γ T

i ∈Π(T ) such that (γ T
i , πT

−i)∈Π(T, s) from every intermediate state sk∈S at
time period k, we have

Pi
T (h(γT

i ,πT−i )
T (sk ))⁄Pi

T (hπT

T (sk )).

We denote by Π*(T, s) the set of all constrained MPE to state s.

3. Existence of Markov Perfect Equilibria

We make the following standing assumptions.

Assumption 2.1.

(i) Discreteness. Each set Ai
k is discrete and finite; hence, the history

space H is compact in the product topology and Π is compact in
the topology L (see the Appendix for a brief discussion).
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(ii) Reward Boundedness. For every player i and for every time per-
iod k,

ASF−M⁄ri
k ( · , · )⁄MFS.

Assumption 2.2. Uniformly Bounded Reachability. There exists an
infinite feasible sequence of states, say sG(s0 , s1 , s2 , . . .) such that, from any
intermediate state of the sequence, say s, at time period k, for every player
i, there exists a sequence of actions {ai

j}kF j⁄T , so that state sT in the
sequence is reached regardless of the other players actions. Moreover, the
number of time periods required is bounded by a finite number L, i.e.,
TAk⁄LFS.

3.1. Application. Sequential Duopoly. In this section, we illustrate
briefly the definitions introduced above for the case of a duopoly compe-
tition in prices, as in Maskin and Tirole (Ref. 10). Players move sequentially
so that, in odd numbered periods k, firm 1 chooses its price which remains
unchanged until period kC2; that is,

p1
kC1Gp1

k , if k is odd.

Similarly, firm 2 chooses prices only in even numbered periods,

p2
kC1Gp2

k , if k is even.

Hence, at time period k, the firm i instantaneous reward ri
k ( · ) is a function

of the state, i.e., the price that firm j sets on period kA1, say p j
k , and the

action, i.e. the price that firm i will establish pi
k . The set of feasible pricing

decisions (say P) is discrete and finite, goods are perfect substitutes that is,
the firms share the market equally whenever they charge the same price.
Firms have the same unit cost c. Let Dk ( · ) denote the market demand func-
tion at time period k. The total reward at time period k is given by

rk ( p)G( pAc)Dk ( p), p∈P.

Then,

ri
k ( p1, p2)G5

rk ( pi ),

rk ( pi )y2,

0,

if piFp j,

if piGp j,

if piHp j.

Strategies are Markovian in that they depend on the current state, i.e., the
rival action in the last period. Hence, the set of all histories is the same as
the set of all feasible sequences of states.
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Consider the infinite history hG{(p1
k , p

2
k)}k ; then, the firm i undis-

counted payoff is

Pi(h)Glim inf
T→S

(1yT ) ∑
TA1

kG0

ri
k (p

1
k , p

2
k ).

Now, let us assume that p1
T is a feasible price decision for firm 1 at the odd

time period T. Then, Π(T, p1
T) stands for the set of all Markovian strategy

combinations for horizon T in which player 1 is constrained to play p1
T at

time period T. Similarly, Π*(T, p1
T) is the set of T-long horizon constrained

MPE strategy combinations to state p1
T . Notice that, under the assumptions,

by a backward induction argument one can see easily that Π*(T, p1
T)≠∅ and

that the uniformly bounded reachability assumption holds (in fact, LG2).

3.2. Existence Results. The intuition for the next result lies in the fact
that, under the uniformly bounded reachability assumption, a sequence of
finite-horizon constrained MPE will encompass all possible deviations (and
not just the constrained deviations) as the horizon diverges to infinity. Com-
pactness of the strategy space ensures that every sequence of constrained
MPE has a converging subsequence, and the limit strategy will be an MPE
for the infinite-horizon game, by the above argument.

Lemma 3.1. Let sG(s0 , s1 , s2 , . . .) be the infinite feasible sequence of
states defined in Assumption 2.2; let {πT: πT∈Π*(T, sT )}T be a sequence of
finite-horizons constrained MPE to states sT in the sequence s. If

lim
T→S

πTGπ , with respect to L ,

then π∈Π*.

Proof. Let us first show that

Pi (h(γ i,π−1)(s0))⁄Pi(hπ (s0)),

for any player i who would deviate by playing γ i∈Π from the initial state
s0 . We recall that h(γ i,π−i )

T (s0) and hπ
T (s0) stand for the T-truncations of the

histories induced by strategies (γ i , π−i) and π , respectively. By convergence
in L , there exists TN such that, for any πT with THmax{TN; NCL}, the
play prescribed from the initial state by (γ T

i , πT
−i) and πT coincide exactly

with h(γ i,π−i )
T (s0) and hπ

T (s0), respectively, in the first NFT periods.
Let us now consider the deviation for player i,

γr T
i G(γ i

0 , γ i
1 , . . . , γ i

N , ai
NC1 , . . . , a

i
NCL , π i

NCLC1 , . . . , π i
T),
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whereby we append, from period N, the actions (ai
NC1 , . . . , a

i
NCL) as pre-

scribed by the uniformly bounded reachability assumption to reach the
sequence sG(s0 , s1 , s2 , . . .) and, from period NCL, the actions prescribed
by πT

i . This deviation is such that (γ̄ T
i , πT

−i ) reaches state sT in sG
(s0 , s1 , s2 , . . .). Formally,

(γr T
i , πT

−i)∈Π(T, sT ).

Hence, by hypothesis on πT, we have

Pi
T (h(γrT

i ,πT−i )
T (s0))⁄Pi

T (hπT

T (s0)).

By cost boundedness and the choice of TN and γr t
i , we have that total payoff

accrued, up to period N, satisfies

Pi
N (h(γrT

i ,πT−i )
T (s0))yN

⁄Pi
N (hπT

T (s0))yNC(1yN ) ∑
NCLC1

kGNC1

[ri
k (sk , πT(sk ))Ari

k (sk; (a
i
k , πT(sk ))]

⁄Pi
N (hπT

T (s0))yNC2MLyN;

hence,

Pi
N (h(γ i,π−i )

T (s0))yN⁄Pi
N (hπ

T (s0))yNC2MLyN.

Then, iterating on this construction, we have that

Pi(h(γ i,π−i )(s0))Glim inf
N→S

Pi
N (h(γ i ,π−i )

T (s0))yN

⁄lim inf
N→S

Pi
N (hπ

T (s0))yN

GPi(hπ (s0)).

Thus, from the initial state, the proposed deviation is not profitable.
For a deviation from any other state sk∈S with 0Fk, we use the same
argument. h

By a standard compactness argument the existence of MPE follows.

Theorem 3.1. Under Assumptions 2.1 and 2.2, there exists an MPE
for the infinite-horizon undiscounted game.

Proof. By Assumption 2.1 and the alternating move structure, via
backward induction one can always construct a sequence {πT: πT∈
Π*(T, sT )}T of constrained MPE for the infinite feasible sequence of states
sG(s0 , s1 , s2 , . . .); see Aliprantis (Ref. 10). Then, by compactness of the
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strategy space, there exists a converging subsequence, say
{πTk: πTk∈Π*(Tk , sTk)}k and

lim
k→S

πTkGπ , with respect to L .

Finally, by Lemma 3.1, π∈Π*. h

4. Conclusions

In this paper, we have presented a new approach to determine the exist-
ence of MPE in infinite-horizon nonstationary undiscounted dynamic
games. The approach relies heavily on the structural properties of the game
(the so called uniformly bounded reachability assumption). A new solution
concept (the constrained MPE) for the finite-horizon game, captures the
relevant features of an infinite-horizon MPE for a long enough horizon,
under the aforementioned structural assumption.

An application to an asyncronous dynamic duopoly is presented. Of
further research interest is the application of the techniques introduced here
to linear-quadratic dynamic games [see Lau (Ref. 11)] where an analytical
representation of the constrained MPE is possible.

5. Appendix: Topologies on the Set Π

Since our interest is to study the convergence of finite-horizon equilib-
rium strategies to infinite-horizon equilibrium strategies, it is very important
to define carefully the relevant topologies on Π, and consequently the differ-
ent notions of convergence which they induce. For a complete study, the
interested reader is referred to Harris (Ref. 3).

We will adopt the convention that any finite-horizon strategy combi-
nation is trivially extended through any feasible choice of a continuation
sequence of strategies, so that this extension is an element of Π.

First, we concentrate on a topology for H. Given hG(a0 , a1 , a2 , . . . )
and h′G(a′0 , a′1 , a′2 , . . . ), we define the metric D: HBH→R

+ by

D(h, h′ )Gsup
k

[min{dk (at , a′t ), 1}yk],

where dk is any metric on A1
kBA2

kB· · ·BAN
K .

The metric D( · , · ) induces the product topology on H; see Munkres
(Ref. 12, p. 123). As in Fudenberg and Levine (Ref. 2), we extend the notion
of convergence to the strategy space Π [and implicitly to its subsets π (T )]
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via the metric ρ( · , · ), defined as follows: For any π , π′∈Π,

ρ(π , π′ )G sup
k,sk∈S

5D(hπ (sk ), h
π′(sk )); sup

i,γ i∈Πi
[D(h(γ i,π−i )(sk ), h

(γ i,π′−i )(sk )]6.
In words, strategies π and π′ are close if, for every intermediate state sk∈S,
the play prescribed by them is close and the play prescribed after any devi-
ation by any player is also close in the sense implied by the metric D( · , · ).
We will denote by L the metric topology induced by ρ( · , · ). Notice that,
when action sets are discrete, πT→π′ as T→S with respect to L if and
only if, for all intermediate states, the early play prescribed by πT and π′
fully agree for large enough T.
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