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1. I n t r o d u c t i o n  

We state and prove here a new set of existence theorems for probtems 
of optimal control in Banach spaces. These theorems come from work 
done recently in three different directions. There is the work done 
by the use of property (Q), Kuratowsky's property (K), and inter- 
mediate properties (Q*) (Cesari, Refs. 1-4); and Cesari and Cowles, 
Ref. 5) in connection with various closure and convergence properties 
of operators in Banach spaces (Cesari and Kaiser, Ref. 6; and Kaiser and 
Suryanarayana, Refs. 7-8). There is the work done in the line of geo- 
metrical properties of the relevant sets [property (P) and variants], 
which are similar to the familiar ones in Filippov's existence theorem 
(Cesari, Refs. 9-I0). There is finally the work done in the line of 
Krasnoselski's approach to Nemitsky's operators, based on analytical 
properties of the relevant functions [Lipschitz-type and growth-type 
conditions (F), (G), (H)] and no use of seminormality conditions (Cesari 
and Suryanarayana, Refs. 11-12). Work of Berkovitz (Ref. 13) [on the 
connections between closure and covergence properties and on the use 
of properties of the type (F)] is parallel to that mentioned in the first 
and third of the viewpoints above. 

1 T h i s  r e s e a r c h  w a s  p a r t i a l l y  s u p p o r t e d  b y  A F O S R  R e s e a r c h  P r o j e c t  7 1 - 2 1 2 2 .  

2 P r o f e s s o r ,  D e p a r t m e n t  o f  M a t h e m a t i c s ,  U n i v e r s i t y  o f  M i c h i g a n ,  A n n  A r b o r ,  M i c h i g a n .  
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In the present paper, we consider problems in a Banach space 
setting, having mainly in mind multidimensional problems with distribu- 
ted parameters (though usual one-dimensional problems are vcell 
included). In Part 2, we shall consider problems with distributed and 
boundary controls in Sobolev spaces. 

In independent papers, Cesari (Ref. 14) and Suryanararyana 
(Ref. 15) will prove existence theorems for linear problems without 
convexity requirements, and Suryanarayana will also prove that convexity 
and monotonicity-type properties imply property (Q). 

2. M a y e r - T y p e  P r o b l e m s  

2.1. Def in i t ions .  We deal here with a topological space (X, ~-), 
with a Banach space B with norm II tl, and with metric spaces (G, O), 
(Y, d), (U, d'). In  most applications, X will be also a Banach space and r 
its weak topology. We assume that G is also a finite, complete measure 
space (G, ~,/~) such that the a-algebra ~ contains the Borel sets of (G, p) 
and/~ is regular. Concerning Y and U, we assume that they are a-com- 
pact, that is, the countable union of compact subsets. Let A be any 
subset in G × Y such that, for any t e G, the set A(t) = [y ~ Y, (t, y) E A] 
is nonempty. For every (t, y) e A, let U(t, y) be a given nonempty subset 
of U. L e t f ( t , y ,  u) be a given function defined on the set 

S = [(t ,y ,u)EG × Y × U[(t ,y)~A,  u~ U(t,y)] 

with values in B, or f :  S --* B. 
We assume that A, S, and the function f satisfy a Carath6odory 

condition (C) on G, that is, given e > 0, there is a compact subset K C G 
such that/~(G -- K) < E, the sets 

A K :  [(t,y) e A [ t e K ] ,  SK = [(t, y, u) e S l t e K ]  

are closed [in the product topologies of (G, p) × (Y, d) and (G, p) × 
(Y, d) × (U, d'), respectively], and t h a t f  restricted to S~: is continuous 
(in the weak topology of B). Thus, there is a set T C  G, T e  ~,/x(T) = 0, 
such that, for all t ~ G --  T, the sets 

A(t) = l y e  Y[( t ,y)~A],  S(t) = [ ( y , u ) e Y  × Ul( t ,y ,u)eS]  

are closed, a n d f ( t , . ,  .) is continuous on S(t). We shall denote below by 
To some set T 0CG,  T 0~c~, /z(T0)=0,  T C T  O . 

For any Hausdorff space H, we shall denote by/z(G, H) the set of 
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all / ,-measurable functions on G with values in H. For any Banach space, 
B, we denote by LI(G, B) the set of all strongIy integrable/x-measurable 
functions z on G with values in B. 

For  any p, 1 ~ p ~ <  0% we denote by L; (G,B)  the set of all 
z~L~(G,  B) with tlz(')!{~Lp(G, E ~) and then 1{ z tlp has the usual 
definition. Usual conventions hold for p = oo. Thus,  

L~(G, B) CL~(G, B) CL,(G, B) C ix(G, B). 

Let  L, M be two operators (not necessarily linear) with domains 
D(L), D(M) C X and values in L~(G, B), /X(G, Y), respectively, and let 
Xo C D(L) ~ D(M) be a given nonempty part of their intersection. We 
shall consider the restrictions of L and M on Xo,  or 

L: Xo-+ La(G, B), M: X o --+ ix(G, Y). 

We shall say that a pair x, u is admissible provided x ~ X 0 ,  
u ~/X(G, U), and 

)/Ix(t) ~ A(t), u(t) ~ U(t, .a/ix(t)), 

Lx(t) = f(t, Mx(t), u(t)), ix a.e. in G. 

T h e n  we say that y = / ~ x ~ / x ( G ,  Y) is a state function, and that 
u E/X(G, U) is a strategy, or control function. 

We shall consider a given collection s9 of admissible pairs x, u. 
Then,  we shall denote by {x}o.~ the collection 

{x}~ = {x ~ X0, (x, u) ~ £2 for some u}, 

and we have {x}~ C X0 C X. 
Finally we assume that a lower semicontinuous functional I is 

defined in {x}~, that is, I :  {x}e-+ E 1, or in a larger class of elements 
x ~ X o . We say that  the class ~2 is closed (with respect to the Mayer  
problem under  consideration) provided, whenever (x1~ , uk) ~ D (that is, 
xl~ ~ {x}o), k = I, 2,..., x k -+  x in (X, r) as k -+  0% x ~ X0,  and there 
is some u e/X(G, U) such that x, u is admissible, then there is aIso some 

e/X(G, U) with (x, ~) ~ D, thus x e {x}a, and 

I[x] ~ lim inf I[x~]. 

Actually, in most Mayer problems, I is continuous on {x}e in the topology 
r of X relatively to X o . 
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2.2. G e o m e t r i c - T y p e  Condi t ion  (P): A Dras t i c  Reduc t ion  of  
Property (Q). For (t, y) ~ A, we shall consider below the sets 

O(t, y)  = f ( t ,  y,  U(t, y)) : [z E B [ z = f ( t ,  y,  u), u ~ U(t, y)]. 

We say that the sets Q(t, y )  satisfy property (Q) with respect to y at the 
point (t o , Y0) 6 21 provided 

Q(to,y0) = 0 cl co 0 Q(to,y), 
¢>0 YeNE(Yo) 

where 
N~(yo) = [y ~ A(to), d(y,  Yo) • ~]. 

We say that, for a given t o ~ G, the sets O(t, y) have property (Q) with 
respect to y in A(to) provided the property- above holds for all Yo ~ A(to).  
Sets having property (Q) are necessarily convex and closed. 

Property (Q) is an upper semicontinuity property for convex sets 
(Ref. 3, Part 1) and was proved in Ref. 3, Part 2, to be an extension 
of usual seminormality conditions for free problems of calculus of 
variations (see also Ref. 7). Property (Q) is a variant of the analogous 
Kuratowsky's upper semicontinuity hypothesis for closed sets, or 
property (K), which in the present terminology [property (K) with 
respect to y at (to, Yo)] reads 

Q(to,yo) = U d U Q(to,y). 

Sets having property (K) are necessarily closed. 
In Ref. 7, an intermediate property (Q*) was introduced. To this 

end, let B = B 1 × B 2 , where B 1 and B 2 are both Banach spaces. We 
say that the sets Q(t, y) satisfy property (Q*) relative to B 1 [or (B1, B~)] 
at the point (t o , Y0) 6 A provided, for any b 0 = (b01, b0 z) 6 B - -  B 1 X B 2 ,  

Q(to, yo) n bo )l 

O ( ' ] c l c ° [  U Q ( t o , y )  n { ( b  1,b2)}IIbz-bo 2L} ~ 8]. 
e>0 6>0 yeNe(Y0 ) 

This condition (Q*) reduces to (Q) for B 2 ~ (0} and to (K) for B 1 = {0}. 
On the other hand, property (Q*) can be expressed in terms of property 
(Q) and suitably auxiliary sets, as it was shown in Ref. 7. 

In the following, for any given N > 0, we denote by V(0, N) the 
subset of the Banach space B defined by [z E B ill z 11 ~< N].  

For sets Q(t, y) which are closed and convex, the following geometric 
type conditions (P) represent a drastic reduction of property (Q). 

We say that the sets Q ( t , y ) , y  c A ( t ) ,  satisfy condition (P1) if 
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there is a bounded /,-measurable function p(t), t e G, p ~lz(G, B), 
p : G - ~ B ,  lt p ( t ) N ~ c r  for all t ~ G ,  such that p(t) e Q ( t , y )  for aii 
t ~ G - -  T o , y e A ( t  ) . 

We say that the sets Q(t, y), y c A(I), also satisfy condition (P2) if, 
for every t e G --  T o and N > or, (or as in P1), the convex closed equi- 
bounded sets O(t, y) m V(O, N)  satisfy property (Q) with respect to y 
in A(t). 

Property (Pl) is certainly satisfied if, for instance, all sets O(t ,y)  
contain the origin of B [or all sets U(t, y) contain the origin of U and 

f ( t ,  y, 0) = 0]. This  condition is usually satisfied in applications. 
Concerning (P2), we only note that, for B = E ~, Y = E*, U = E'% 

the sets Q(t, y) c3 V(0, N)  are convex, equibounded, and compact, and 
the less demanding property (K) can welt replace property (Q) in (P2). 
Moreover, property (P2) is then certainly satisfied if I f ( t ,  y,  u)l --* co as 
! u ] ---~ q- co uniformly on any bounded subset of A(t) [as a consequence 
of the mere continuity of f on S(t) for t ~ G -- To]. For convex equi- 
bounded compact sets in Euclidean spaces, property (Q) is equivalent to 
upper semicontinuity by set inclusion, and thus (P2) is similar to the 
analogous requirement in Filippov's existence theorem. 

2.3. P r o p e r t i e s  o f  O p e r a t o r s .  Let  (X, r) be any topological 
space , Z a Banach space, X o a subset of X, and A: X 0 --> Z a given 
operator, not necessarily linear. 

The  operator A is said to have the strong (weak) closure property on 
X 0 with respect to (X, r) provided x k c X0,  k = 1, 2,..., xl~ -+ x in (35, r) 
as k --~- ~ ,  x ~ Xo , Axl~ -->y strongly (weakly) in Z implies that A x  = y.  

The  operator A is said to have the strong (weak) closed graph 
property on A o with respect to (X, r) provided x k ~ X0,  k -- 1, 2,... 
xa~--~-x in (X, r) as k - +  co, x ~ X,  A x  k ---> y strongly (weakly) in Z 
implies that x ~ X o and A x  ..... y. 

We mention here that, whenever X o = X, closure property and 
closed graph property coincide. In our previous paper (Ref. 5), it was 
always assumed that X 0 --  X;  and, in att examples in Ref. 5 concerning 
some Sobotev space X, the closure property was satisfied. 

The  operator A is said to have the strong (weak) convergence property 
on X 0 with respect to (X,  r) provided xk e Ao,  h = 1, 2,..., xl~--~ x in 
(X, r) as k--~ co, implies that there is a subsequence [kJ such that 
Axko, s = 1, 2 ..... is strongly (weakly) convergent in Z. 

I f  (G, c~,/z) is a finite measure space and Z = /x (G ,  M) is the space 
of all / ,-measurable functions over G with values in a metric space 
(M, d) and A: X 0 --~ Z, then we can define the convergence in measure 
property on X o with respect to (X, r). 

8o9/I4/5-5 
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I f  (G, a , / x ) i s  as above and Z = L p ( G ,  B ) i s  the space of all 
p-integrable functions over G with values in a Banach space B, and A: 
X o ~ Z, then we can define a strong (weak) L,Tconvergence property 
on X o with respect to (X, r). 

I f  Xoo C X o C X and, in the properties above we assume that 
x k e X00 , k = 1, 2,... (but x is still required to be in 2(o) , then we say 
that  the properties above hold relatively to Xo0 • 

If  xx~ ~ Xoo, xk --~ x in (X, r) implies that x ~ 2(o, then we say that 
the closure of _Xo0 in (X,  r) is contained in 32o, or briefly cl X00 C X 0 
[with respect to the space (X,  r)]. This  property is trivial if X 0 = X. 

If  f2 is a class of admissible pairs x, u with x ~ {x}a C X o C X,  
u e IX(G, U), we say that f has the strong (weak) convergence property 
in L p ( G , B )  for some p, 1 ~<p ~< ao, provided (Xk,Uk)el2,  k = 
1, 2,..., x k -+ x in (X,  r) as k -~  co implies that, for 

zk(t ) ---: f( t ,  xk(t), uk(t)), t ~ G, k = 1, 2,..., 

we have zk ~Lv(G, B), and there is a subsequence [kJ such that  zk° -*- z 
strongly (weakly) in Lp(G, B) as s ---* oo. 

In some of the alternate conditions in Section 2.3 with Y and U 
Banach spaces, we shall need also the following very mild continuity 
condition (F) on f :  there are a constant y > 0, a Ix-measurable function 
F(t) >~ O, t a G, F E ix(G, El), and a monotone nondecreasing function 
h(~) ~ 0 ,  0 ~< ~ < 0% h ( O q - ) =  O, such that, for all (t, y t , u ) ,  
(t, Y2, u) -~ S, with II Yl lit , I[ Y2 t i t ,  H U [Itr ~.  Y, we have 

i! f(t ,  Yl , u) -- f(t ,  Y2 , u)tlB <~ F(t)h([{ Yl -- Y~ lit). 

This condition (F) is a consequence of condition (C) if Y = E ~, U .... E ~ 
are both Euclidean spaces. 

Concerning the measure space G and the Banach space B, we shall 
need in some of our alternate conditions one or another of the following 
properties: 

(R1) Any sequence zk(t), t ~ G, z k EL~(G, B), k = 1, 2,..., with 
[[ zk [t~ ~ N for all k = 1, 2,..., possesses a subsequence which is weakly 
convergent in L~( G, B)  [the same property for zt~ ~ Lp( G, B), 1 < p < o% 
will be denoted by (R1)~]. 

(R2) Any sequence zk(t), t ~ G, zk EL,(G, B), k ..... 1, 2,..., which 
is weakly convergent in L,(G, B) is equiabsolutely integrable in G. 

(R3) Any sequence z~:(t), t ~ G, z k a L,(G, B), k = 1, 2,..., which 
is equiabsolutely integrable in G (and thus also equibounded in L1), 
possesses a subsequence which is weaklt convergent in LI(G, B). 

For B a Euclidean space, (R1) is well known, and (R3) is a restate- 
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ment of the Dunford-Pettis theorem for finite measure spaces. For 
1 < p < oo, (R1)~ is true for any separable reflexive Banach space B. 

2.4. Exis tence  S t a t e m e n t  fo r  M a y e r  P r o b l e m s .  Let A, S, f 
satisfy condition (C). Let us assume that ~ is not empty and closed, 
that {x}g is sequentially relatively compact in (X, r), and that I[x] is 
bounded below on {x}a. Let us assume that both operators L and M 
have the closure property in X 0 , and that at least one of them has the 
closed graph property in X o . Then the functional I[x] has an absolute 
minimum in {x}a, provided any of the following alternate assumptions 
below holds. 

Alternate Hypotheses. We list here only a few of the possible 
alternate hypotheses. Requirements (AQ) to (AQ**) use variants 
of property (Q); requirements (AP) to (AP)**) are of the geometric 
type; requirements (Fp), (%¢), (He) are analytic conditions. 

(AQ) B Banach, Y, U metric. We assume that (i) {x}~ C & C X; 
(ii) L: X 0 --~ LI(G, B) has weak convergence property relatively to {x}~; 
(iii) M: X 0 -+/ , (G,  Y) has convergence in measure property relatively 
to {x}ga. We assume finally that, for every t ~ G -- To, the sets O(t, y) 
are closed, convex, and have property (Q) with respect to y in A(t). 

Alternatively, if we assume that f has weak convergence property 
in LI(G , B), then (ii) can be deleted. 

(AK) B Banach, Y, U metric. We assume that (i) {x}o. C X 0 C X; 
(ii) L: X o --~ LI(G, B) has strong convergence property relatively to {x}~; 
(and iii) M: X 0 --*/*(G, Y) has convergence in measure property 
relatively to {x}~. We assume finally that, for every t c  G - - T  o , 
the sets Q(t, y) are closed and have property (K) with respect to y in A(t). 

Alternatively, if we assume that f has strong convergence property 
in Lt(G, B), then (ii) can be deleted. 

(AQ*) B = B  1 × B 2 Banach, Y, U metric; L - - L  I ×L~.,  
f =  (fl ,f~),f,: S--~ Bi ,L,: Xo-- ,LI(G, B,), i = 1, 2, M: Xo-+fz(G, Y), 
and equation Lx = f is replaced by Lix(t ) = fi(t, 34x(t), u(t)), t C G, 
i = 1, 2. We assume that (i) {x}~ C X 0 C X; (ii) L 1 has weak convergence 
property; (iii) L 2 has strong convergence property; and (iv) .~ll has 
convergence in measure property (all L 1 , L2, M relatively to {x}~a). We 
assume finally that, for every t ~ G -  To, the sets O(t ,y)  satisfy the 
property (Q*) with respect to 3' in A(t) and relatively to (B1, B2) 
(see definition of property (Q*) in Section 2.2). Here we assume that 
atl operators L1, L2, M have the closure property in X0,  and that at 
least one of them has the closed graph property in 5Y 0 . 
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The condition (Q*) reduces to (Q) for B e --=- {0}, and to (K) for 
& = {0). 

Alternatively, if we assume that f l  has weak convergence property 
in LI(G, B1) , then (ii) can be deleted. 

Another combination of the various hypotheses, is, for instance, as 
follows. 

(AQ**) B = = B  1 × B 2 × B a × B 4 Banach, Y, U metric; L =  
L1 X L2 × La × L~ , f == (f l  ,f2 ,f3 , f4),fd S--~ B.~ ,L  d Xo--~ LI(G , Bi) , 
i .... 1, 2, 3, 4, 8q: X o -+/~(G, Y) and equation Lx = f is replaced by 
L~x(t) =f~(t,  Mx(t)), u(t)), i -  1, 2, 3, 4. Spaces B2, Ba,  B~ may be 
trivial, but B~ is not. We assume that L 2 has weak convergence property, 
L a has closure in measure property, L 4 and M have convergence in 
measure property (all relatively to {x}~). We assume that f l  has the weak 
convergence property in Lt(G , Ba) , and that fa(t, y) is independent of u. 
Finally, we assume that, for every t ~ G -  T O , the sets Q(t, y) satisfy 
property (Q*) with respect to y in A(t) relatively to (B~ X B 2 , B a X B~). 
Here we assume that all operators L 1 , Lz,  L a , L~, M have the closure 
property in X 0 , and that at least one of them (is not trivial and) has the 
closed graph property in Ao. 

(AP) B Banaeh with properties (R1), (R2); Y, U metric. We 
assume that (i) {x}~ C X  o C X; and ( i i )L:  X o --+LI(G, B) has weak 
convergence property relatively to {x}o.; M: X 0 --+/,(G, Y) has con- 
vergence in measure property relatively to {x}o. We assume that the 
sets Q(t, y) are closed and convex, and satisfy geometric type conditions 
(el) ,  (1"2). 

Mternatively, if we assume that f has weak convergence property 
in LI(G, B), then (ii) can be deleted. 

(AP*) B = B1 × B2 as (AQ*), B, with properties (R1), (R2), 
Y, U metric; L = L~ × L~ , f = (f~ , f~), k , Lt , M as in (AQ*). Proper- 
ties (i) to (iv) as in (AQ*). We assume properties (P1), as in Section 2.2, 
with the sets O(t, y) n V(O, N) having property (Q*) with respect to y 
in A(t) relatively to (B1, B2). 

Again, if f l  has weak convergence property in L,(G, B1) , then 
(ii) can be deleted. 

(AP**) B - = B  1 × Bz × B a × B 4 as in (AQ**), B~ with prop- 
erties (R1), (R2), and the same other properties for L~, f i ,  3 I  as in 
(AQ**). We assume properties (Pl), as in Section 2.2, with the sets 
Q(t,y) c~ v(o, N) having property (Q*) with respect to y in A(t) 
relatively to (B, × B~, B a × B~). 

(Fv), 1 ~ p  ~< oo. Here, both B and Y are Banach spaces, U 
metric. (i) {x}ra C X 0 C X; (ii)L: X o ---*L1(G, B) has weak convergence 
property relatively to {x}e; and (iii) M: X o --*L~(G, Y) has strong 
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L s c o n v e r g e n c e  property relatively to {x}~. The  sets U(t) depend on t 
only, the sets O(t ,y )  are closed and convex. I f  1 ~<p < o% there 
are constants c, 7, ~o,P'  constants with c />0 ,  ~0 > /0 ,  0 < y  ~ . p ,  
p '  = p( p - -  y)-~ if 0 < y < p, p '  = o~ if 7 = P, and functions F(t) ~ O, 
t ~ G, F~L~,~(G, E~), h(~), 0 ~ ~ < 0o, h monotone nondecreasing, 
h(0 +) = 0, h(~) ~< c I ~ t" for ~ >~ ~0,suchthat, forall(t, y~, u), ( t ,y~,  u) ~ S, 
t ~ G - -  T 0 , w e h a v e  

I[ f ( t, y~ , u) ~- f ( t, y~ , u)ll, ~ F( t ) h([[ y~ -- y~ lit). (1) 

For p = 0% this same relation holds for some F ( t ) > / O ,  t ~ G ,  
F e L I ( G ,  E1), h(¢), 0 ~ < o o ,  h monotone nondecreasing, with 
h(0 +) = 0. Requirement  (1) is slightly more restrictive than (F). 

(G~q), 1 ~< p, q < 09. Here, B, Y, U are Banach spaces, strategies 
are elements u ~Lq(G, U) with [] u !iq ~< N for some N > 0, and (i), (ii), 
(iii) hold as in (F~). The  sets U(t) depend on t only, the sets Q(t, y) are 
dosed  and convex. Also, f satisfies continuity property (F). Moreover,  
for 1 ~<p, q < oo, there are constants c, c' /> 0, 0 < ~ ~ p ,  0 < fi <~ q, 
and a function F(t) >~ O, t ~ G, F eL~(G, E ~) such that, for all (t, y~,  u), 
(t, y 2 , u ) ~ S ,  t e G - -  T O , we have 

l l f ( t ,y~,u)  - - f ( t ,  y2,u)lJB ~F(t) @ c(l lyl l} -~ @flY2 I} -~) @c'Huil~ -z. (2) 

F o r t , =  oo, 1 ~ q <  oo, there are constants c* > /0 ,  0 < / 3 ~ q ,  and 
functions F as above, and e(¢) ~> 0, 0 ~< ~ < o0, ~ monotone nonde- 
creasing such that 

,r I £P i l f(t ,y~, u) - - f ( t , y ~ ,  u)'fB ~ F(t) a([lY~ I!y ÷ :!Ye ,[Y) ~- II u/;~; ~. (3) 

If  q = 0% then a term e(if u Llv) replaces c' li u !l~ -¢ in the relations above. 
Note  that a is not required to satisfy ~(0 +) = 0 and, therefore, these 

analytic conditions on f are essentially growth properties. 
(Hq), 1 ~ q ~< oo. Here, B, U are Banach spaces, Y metric, 

strategies are elements u ~Lq(G, U) with ii u II~ ~< N, for some N ) 0, 
and (i) {x}~ C X 0 C X;  (ii) L: X 0 --~ LI(G , B) has weak convergence 
property;  and (iii) ]l//: X o ~ t~(G, Y) has convergence in measure 
property.  Also, f satisfies continuity property (F). Moreover,  if 
1 ~ q < 0% there are constants c' ) 0, 0 < / 3  ~ q, and a function 
F(t) >~ O, t ~ G, F cL~(G, E 1) such that, for all (t, Yl  , u), (t, Y2 , u) ~ S,  
we have 

II f (t, y l  , u) -- f (t, y2 , u)llB <~ F(t) -~ c' II u 1{} -~. (4) 
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For q ......... o% there are functions F as above and ~(~) > / 0 ,  0 ~< ~ < co, 
monotone nondecreasing such that 

[I f ( t, y l  , u) --  f ( t, y~ , u)l], ~< F(t) ~(ll u [Iu). 

Note  that e is not required to satisfy ~(0 +) .... 0 and, therefore, 
these analytic conditions are essentially growth conditions. 

2.5. C a s e  o f f  L i n e a r  in u. We assume here that U(t) depends 
on t only, that B, Y,  U are Banach spaces, and tha t f ( t ,  y,  u) is linear in u, 
that is, of the form 

f ( t ,  y,  u) = C(t, y)u -I- D(t, y).  

Thus,  D: A - + B ,  C : A - + S F  = 5f (U,  B), the Banach space of all bounded  
linear operators from U to B. The  statement in Section 2.4 still holds 
under  each of the alternate hypotheses (AQ) to (H~). 

The  following assumptions on C, D imply the corresponding assump- 
tions on f.  

Carath~odory's condition (C) on f certainly holds if we assume: 

(C') Given ~ > 0, there is some compact subset  K of G such that 
/~(G --  K)  < e, the sets 

AK == [(t ,  Y)I t E K, y e A(t)] C G × Y, 

S~c = [(t, y, u)l t e K,  y e A(t),  u e U(t)] C G × Y ×  g 

are closed, and D(t,  y), C(t, y)  are continuous on A~<. 

Condit ion (F)  of Section 2.3 on f certainly holds if we assume: 

(F ' )  There  is a constant y > 0, a/z-measurable function F( t )  >/O, 
t e G, F e ~(G, El), and a monotone nondecreasing function h(~) >_/0, 
0 ~ ~ < co, h(0 +) = 0, such that, for all (t, Yl), (t, Y2) ~ A with II y l  I[, 
1[ yz l[ ~< 7, we have 

II C(t, yl) --  C(t,Y~)!Le', !1D(t, Yl) --  D(t,y~)IIB <~/~(t) h(lfyl --Y2[IY). (5) 

I f  Y = E*, U ...... E m, then (C') implies (F'). 
The  statement in Section 2.4 holds in the present situation, with 

(C') replacing (C) and the corresponding alternate assumptions [(F')  
replacing (F)  whenever  needed]. 

Conditions (G~q) to (H~) can be replaced by analogous conditions, 
say ( G ~ )  to (H~')  on C and D. For  instance, (G; , )  is the same as (Gsq), 
with the following assumption replacing (2): 
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(G~q2) There  are constants c ) 0 ,  0 < ~ ~ p ,  and a function 
F(t) >/O, t e G, F ~L~(G, Et), such that, for all (t, Yl), (t, Y2) ~ A, we 
have 

[[ C(t, y)!lse ~.~ c, !1D(t, Yl) -- D(t, Y2)!!B %-~ F(t) ~- c(l ~ y~ ti~ -~ @ H Ye [[~-~). 

Condition (G~q) on C, D implies condition (Gpq) onf .  

Finally, new alternate conditions can now be stated f o t f  linear in u, 
as for instance, the following one: 

( Pt 
IGpq), 1 < p, q ~ oo. t tere,  B, Y, U are Banach spaces, strategies 

in O are elements u ELq(G, U) with II u!lq ~ N for some N >/0 ,  L:  
X 0 - ~ L I ( G  , B) has the weak closure property, and M: X o -+Lp(G, Y) 
has the strong Lp-convergence property, relatively to {x}~. The  sets U(t) 
depend on t only, and the sets O(t, y) are closed and convex. Here, 
f = C(t, y)u ~- D(t, y), with C, D satisfying conditions (C') and (F'). 
Moreover, if 1 < p  < oo, there are constants c />0 ,  0 < a ~ p ,  
p '  = p( p -- c~) -~ if 0 < ~ < p, p'  ---- oe if ~ = p, and functions F(t) >/O, 
Fo(t ) >~ 0, t e G, F eL~,(G, El), Fo eLp,(G, El), such that, for all (t, y), 
(t, Yl), (t, Y2) e A, we have 

II C(t, Y)[/~ ~ c, l! D(t, y~) -- D(t, Y2)IiB ~ F(t) @ c(] I),~ :t} -~ @ Ii Y2 IIF+), 

il D(t, y)lI~ ~ Fo(t) -~ c !+ y iI~. 

Here, we assume that property (R1)q holds for G, U, and (R1)v, for 
G, Y. If  p = o% then we assume that there are functions F(t) >/O, 
t ~ G, F cL~(G, El), cr(~), 0 ~ ~ < oo, e monotone nondecreasing, we 
assume that relations above hold with second members c, F(t) cr(H Yl  iiY ~- 
It Y2 llr), and F(t)c~(I { y llr), respectively, and we assume property (R1)~ 
for G, Y. 

Note that here the conditions imply t h a t f  has the weak convergence 
property in LI(G , B). 

2+6+ P r o o f  o f  S t a t e m e n t s  in  Sec t ions  2.4 a n d  2.5+ Since 
I[x] is bounded below on {x)p., the inf imum i of I[x] on {x}a is finite, and 
we take a sequence x k ~ (x}~2, k = 1, 2 , . ,  with I [xk] -+  i as k - +  c~. 
Then,  for each k, there is some d e m e n t  u k such that  (xk, uk) ~ ~Q. By 
compactness hypothesis of {x}~, there is a subsequence, say [k], such 
that xe -+  x in (X, T) and thus x ~ X. Under  any of the alternate assump- 
tions, we can derive that  x ~ X0,  and that there is a subsequence, say 
still [k], such that Lxl, --~Lx weakty inLl(G,  B), and moreover Mxl~ -+ Mx  
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in the corresponding mode as indicated in the assumption. The  existence 
of an element u such that x, u is admissible is a consequence of closure 
theorems. Under  assumptions (AQ), (AQ*), (AQ**), we use the closure 
theorem proved in Ref. 8 in terms of Banach spaces. Under  assumptions 
(AP), (AP*), (AP**), we use closure theorems proved in Ref. 9 in terms of 
Euclidean spaces, but  the proofs for Banach spaces are the same under  
the specific hypotheses (F') ,  (R123). Under  assumptions (F), (G), (H), 
we use closure theorems proved in Ref. 11 in terms of Euclidean spaces, 
but  the proofs in Banach spaces again are the same. By the closure 
property of 12, there is (x, ~) E 12 with I[x] <~ i. Thus,  x E {x}~, I[x] >~ i, 
and, hence, I[x] ~ i. The  statements in Section 2.5 follow easily. 

3. L a g r a n g e - T y p e  P r o b l e m s  

3.1. D e f i n i t i o n s .  AsinSect ion 2.1,we dealwith atopologicalspace 
(X, ~-), with a Banach space B with norm I111, and with metric spaces 
(G, p), (Y, d), (U, d'). Again, G is also a measure space (G, ~, F) as 
detailed in Section 2.1. Also, Y, U, A,  A(t),  U(t, y), S are as in Section 
2.1, and besides f :  S -~  B we have here a real-valued function fo(t, y, u) 
on S, or f0: S--* E 1. We assume that A, S, and both f0 and f satisfy a 
Carath6odory property (C). For every (t, y ) ~  A, we consider here the 
set 

(~(t, y) = [(z °, z) ~ E ~ X B I z° ~ fo( t, Y, u), z -~ f(t ,  y, u), u ~ U(t, y)]. 

As in Section 2.1, L and M denote operators, not necessarily linear, 
L: X o -+ LI(G, B), M: X o --+ ~(G, Y), with X o C D(L) n D(M)  C X.  We 
say that a pair x, u is admissible provided x ~ X o , u ~/x(G, U), 

~]4x(t) e A(t), u(t) ~ U(t, Mx(t)), Lx(t) -~ f( t ,  Mx(t), u(t)), 

~-a.e. in a, and f0(', Mx(.), u(')) eLl(G, El), 

and thus the integral 

t[x, u ]  = fdfo(t, Mx(t), u(t)) at~ 

has a finite value for every admissible pair (x, u). 
We shall consider a given class ~2 of admissible pairs (x, u); and thus 

] is a functional defined on 12, or I:  12 --* E 1. 
As in Section 2.1, we denote by {x}e the collection {x}~ = {x e X 0 , 

(x, u) ~ 12 for some u}, so that {x}n C X o C X. We shall say that the class 
12 is closed (with respect to the Lagrange problem under  consideration) 
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provided, whenever  (xk,  uk) ~ 52, k = i, 2,..., x k --+ x in (X,  r) as k --, do, 
x e X0,  and there is some u e/x(G, U) such that (x, u) is admissible, 
then there is also some ~ e / , (G,  U) such that 

(x, g) c D, I[x, ~] ~ lim infI[xk, uTJ. 

In  some of our statements below, we shall need one or another of 
the following growth conditions: 

(¢) Given e > 0 there is ~b~(t) ~ O, t ~ G, ~b~ ~ LI(G , E 1) such that 
Hf(t, y,  u)[]B ~ ¢~(t) - /ef0(t ,  y, u) for aI1 (t, y, u) ~ S. 

(a) There  is ¢(t) ~ 0, t e G, ¢ ~ Iq(G, E ~) such that f0(t, y, u) >~ 
- -¢( t )  for all (t, y,  u) ~ S. 

(fi) There  are ~b(t) >~ O, t ~ G, ~ ~LI(G, E ~) and a constant b >~ 0 
such that f0(t , y,  u) /> --¢( t )  --  b Ilf(t, y ,  u)llB for all (t, y,  u) ~ S. 

Obviously, (¢) implies (~) (and hence also (fi)), since from @) for 
e = t we derive t o ~> --¢1(t). Condition (¢) is certainly satisfied under  
usual growth conditions, as for instance: 

(g) Given e > 0 ,  there are N ) 0 ,  P > ~ 0  such that, for all 
(t, y,  u) ~ 3I, we have 

i f f ( t , y ,u )] lB~P if ] l u [ l v ~ N ,  

[]f(t,y,u)rjB ~ efo(t,y,u) if ]lullv > N. 

Conditions (P 12) 

(151) There  is 
(po(t), p(t)), t C;,/s: 
for e v e r y t ~ G - -  T o 

shail now be replaced by the following hypotheses: 

a bounded /*-measurabIe function /~( t ) - -  
G--+E ~ × B, say ip°(t)l, l!p(t)iFB <~ ~, such that 
we have iS(t) c ~)(t, y(t)) for all y ~ A(t). 

(22) There  are cons t an t s c>~0 ,  d ~ 0 s u c h t h a t z  ° ~ > - c f o r  all 
(z °, z) ~ O(t, y) with f] z [rB ~ d. 

(t53) For every t ~ G - -  T O and N~>cr  [with ~ as in (151)], the 
convex closed sets ~ ( t , y )  (~ [E 1 × V(0, AT)] satisfy property (Q) with 
respect to y in A(t). 

Property (PI) is certainly satisfied iL for instance, the sets U(t, y)  
contain the origin of U andfo(t  , y,  0) = 0 , f ( t ,  y,  0) = 0. Then,  property 
(152) is also satisfied if fo is bounded below in S. Concerning (P3), we 
only note that, for B = E r, Y = E s, U = E r~, the sets 

Q(t, y) ~ [g z X g(o, N)], y G A(t), 
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are convex, closed, and contained in the fixed cylinder [(z °, z) [ z ° ~ E t, l 
I z l ~  N], and then the property (Q) is certainly satisfied provided 
If(t ,  y, u)l - *  + ov as i u I ~ oo u n i f o r m l y  o n  a n y  b o u n d e d  subse t s  
of A(t) [as a consequence of the mere continuity of f0 ,  f on S(t)]. 

3.2. Exis tence  S t a t e m e n t  for  L a g r a n g e  P r o b l e m s .  Let 
A, S, f, fo satisfy conditions (C) and (~). Let us assume that f2 is not 
empty and closed, and that {x}~, is sequentially relatively compact in 
(X, r). Let us assume that both operators L and M have the closure 
property in X0, and that at least one of them has the closed graph 
property in X o . Then, the function I[x, u] has an absolute minimum in 

provided any of the following alternate assumptions holds. 
Whenever it is known that i[x, u] is bounded below in s9, or that f 

has the weak convergence property, then condition (fi) can be required 
instead of (~). 

Alternate Hypotheses 

(AI)) The same hypotheses on L and M as in (AQ) of Section 2.4 
and, for all t a G -- To, the sets ~(t, y) have property (Q) with respect 
to y in A(t) (in particular, these sets are convex and closed). 

Alternately, we may assume that f has weak convergence property 
in LI(G, B), and then (ii) can be deleted. The condition o f f  is certainly 
satisfied if fo , f  satisfy growth condition (¢) and property (R3) holds 
for G, B. 

(AK) The same assumptions on L, M as in (AK) of Section 2.4. 
For every t a G -- To, the sets ~(t, y) have property (K) with y in A(t). 
The same alternate condition holds as in (AK). 

(A0*) The same assumptions onL = L 1 × L 2 , M, B := B 1 X B e , 
f as in (AQ*) of Section 2.4. For every t e G -- T o the sets O(t, y) are 
now supposed to have property (Q*) with respect to y in A(t) and 
(E ~ × B1, Be) as in (AQ*) of Section 2.3. The same alternate condition 
holds as in (AQ*). 

(A0**)  The same as (A0*) with L, M, B, f as in (AQ**) of 
Section 2.4, and the sets O(t, y) satisfying property (Q*) with respect 
to y in A(t) and (E 1 × B 1 × B e ,B3 × B~). The condition on f l  is 
certainly verified if we assume that )Co, f~ satisfy growth condition (¢) 
and G, B I satisfy (R3). 

(AI)) The same assumptions on L, M, G, and B as in (AP) of 
Section 2.4. We assume now that the sets O(t, y) are convex and closed, 
and have geometric properties (~1), (P2), (P3). The same alternate 
condition holds as in (A(~). 
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(A15") The  same as in (AP*) of Section 2.4. The  sets ~(t, y) are 
assumed to satisfy properties (Pl), (152), and (P3) with the sets 
O(t, y) c5 [E 1 × V(O, N)] satisfying property (Q*) with respect to y in 
A(t) relatively to (E* × B a , B2). The  same alternate condition_ holds as 
in (A()). 

(A15"*) The  same as in (AP**) of Section 2.4. The  sets O(t, y) are 
assumed to satisfy properties (151), (152), and (153) with the sets 
O(t, y) (~ [E ~ × V(0, N)] satisfying property (Q*) with respect to y in 
A(t) relatively to (E t × B~ × B2, B 3 × B4). 

Conditions (b'D), (G~q), (Hq)" The  same as (Fp), (Gr~), (Hq) of 
Section 2.4, ~,~lhere now the sets U(t) depend only on t, the sets O(t, y) 
are closed and convex, and both f0 ,  f satisfy the analytic conditions 
stated in (Fp), (G~e), (He) , respectively. 

3.3. Case  o f f  L i n e a r  a n d  f0 C o n v e x  in  u. We assume here that 
U(t) depends on t only, that B, Y, U are Banach spaces, that fo(t, y, u) 
is convex in u for every (t, y) E A, and tha t f ( t ,  y, u) = C(t, y)u @ D(t, y) 
is linear in u, with C, D as in Section 2.5. 

Statement 3.2 still holds in the present situation, with f satisfying 
(C') and fo satisfying (C), and the correspondent alternate assumptions 
If0 satisfying ()7) a n d f  satisfying (F') whenever needed, and both f0 and 

f satisfying (G~q) whenever needed]. 
In the present situation, more alternate assumptions can be for- 

mulated, as follows: 
~ fg (Gp~) 1 < p, q ~< oe. The  same as (Gpq) of Section 2.5, where fo 

is convex in u, f is linear in u; f0 satisfies (C), (F), and the analytic con- 
ditions in (Gpe); f satisfies (C'), (F'), and the analytic conditions. 

Note that here the conditions imply t h a t f  has the weak convergence 
property in Lj.(G, B). Thus,  we did not need condition (~b) to guarantee 
this property. 

3.4. P r o o f  of  S t a t e m e n t s  3.2 a n d  3.3. The  proof is the same 
as for Sections 2.4 and 2.5, where used is made of the lower closure 
theorems proved in the same papers (Refs. 8, 9, 11) mentioned in 
Sections 2.6. 
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