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Geometric and Analytic Views in Existence Theorems 
for Optimal Control. 

I1. Distributed and Boundary Controls 1 
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Abstract.  Existence theorems are proved for Lagrange problems 
of optimization in a given domain G with possibly unbounded 
distributed controls in G and on the boundary of G, and with 
functional relations on G and on the boundary represented by 
closed operators, not necessarily linear. The case where the functional 
relations are partial differential equations is emphasized. Recent 
work concerning the reduction or elimination of seminormality 
requirements is taken into account. Many examples are given. 
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1. I n t roduc t i on  

We are interested in existence theorems for nonlinear problems of 
control with possibly unbounded strategies. We present here existence 
theorems for problems with distributed and boundary controls of the 
Lagrange type. 

We shall make use here of recent results which have been obtained 
in different directions. 

First, it has been shown that drastic reductions, or complete 
elimination, of seminormality properties can be achieved by requesting 
simple properties--geometric in character--of the relevant sets, 
properties which are already commonly required in controllability 
theory (Cesari, Refs. 1-3). 

1 This  research was partially suppor ted  by  A F O S R  Research Project 71-2122. 
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Secondly, extensive contributions have been made in the use of 
seminormality conditions, as properties (K), (Q), and intermediate 
(Qo), in connection with various closure and convergence properties of 
the operators in Banach space and modes of convergence (Cesari, Ref. 4; 
Cesari and Cowles, Ref. 5; Cesari and Kaiser, Ref. 6). 

Finally, it has been shown that suitable analytic properties of the 
relevant functions [Lipschitz-type and growth-type conditions (F), (G), 
(H)] have relevant consequences on the character of the corresponding 
Nemitsky's operators, and again lead to closure and lower closure 
theorems with no seminormalit3~ conditions (Cesari and Suryanayarana, 
Refs. 7 and 8). 

Concerning the continuity and convergence properties of the 
operators under consideration, we shall need here definitions which 
represent a finer analysis of these properties than in our previous paper 
(Ref. 3): definitions of closure on a given set, closure of the graph prop- 
erty, and convergence properties in connection with various topologies. 

Also we need to emphasize in this paper the interplay of the 
properties of the operators, the properties of the relevant sets O(t,y), 
/~(t,y), and the properties of the representative functions fo ,  f 
(fl  .... ,J~), go, g = (gl ,  .... g/).  The stronger the topological properties 
of the operators, and of the modes of convergence under consideration, 
the weaker are the needed properties on the sets ~,/~ and on the functions 
fo , f ,  go , g. 

We state here existence theorems for strong solutions. Analogous 
theorems for weak solutions will be presented in a forthcoming paper 
in this same Journal. Many examples are given to illustrate our 
statements. 

2. L a g r a n g e - T y p e  P r o b l e m s  wi th  Dis t r ibu ted  and Boundary 
Contro ls  

Problems of optimal control with distributed and boundary controls 
often concern the minimum of a given integral expression over an open 
set G of E ~, or over a part/~ of the boundary ~G of G, or of a sum of two 
integrals, one over G and one over F. The latter case is of course more 
general if we do not exclude that one or the other be zero. Each integral 
may involve arbitrary measurable functions on G (distributed controls), 
and o n / '  (boundary controls), whose values are assumed to belong to 
given fixed or variable sets (control spaces). Finally, partial differential 
equations must be satisfied on G (state equations on G); boundary data 
or more partial differential equations must be satisfied on /" (state 
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equations on F). Of ten , / '  is divided into parts on each of which different 
boundary data or partial differential equations are assigned. Important 
examples of such problems can be seen, for instance, in Butkovsky's 
book (Ref. 9). However, it is convenient to formulate the general 
problem in a slightly more general form. 

Indeed, it would be enough to say that the functional to be minimized 
is the finite sum 

j=l ~ Gj 

of integrals, each over a measure space {Gj., ~ . ,  ,~j), j = 1,..., N, on 
each of which we have a measure /xj, a collection ~ of measurable 
subsets, and certain functional relations L~x = N~[x, u:.] to satisfy, each 
involving certain t~i-measurable control functions u s on Gj,  while the 
unknown x is an element of some abstract topological space X. 

The present paper, however, is meant to have practical significance 
and thus we prefer to be more specific. We simply assume that one of the 
spaces is a domain G of E ~ of points t, with Lebesgue measure dr, and 
a functional relation Lx -= N[x, ~] to satisfy, involving a measurable 
control function ~, with values in E "~, and that there is only another space, 
namely, a measure space (F, d , / z )  of points ~-, with measure/x, and a 
functional relation Jx = N'[x, v] to satisfy, involving a/x-measurable 
control function v with values in E ~*'. Actually, in all applications and 
examples G is a Morrey's type domain,/~ is a part of the boundary of G 
of some dimension 1 ~< a ~ v -- 1, and ~ is simply the a-measure (area, 
length, or in general a-area subsumed by G on F). The specific interest 
arises when X is a Sobolev space I ~ ( G )  on G, F i s  a part of the boundary 
of G for which Sobolev's imbedding theorems hold, and then the relative 
dimensions v of G, a o f / ' ,  and the indices l and p may have relevant 
implications on the properties of the operators L on G and J on F. This 
formulation seems to be rather easy to apply, as we shall see in the 
examples. Any extension to more than two integrals and spaces would 
be rather trivial. Instead, we shall give emphasis to the fact that L and jr 
may well represent systems of partial differential equations, or functional 
relations, or data, and that the operators in the single equations may have 
far different topological properties. We shall see in this paper that, by a 
suitable and subtle analysis of their properties, the needed conditions of 
convexity and seminormality to guarantee the existence of an absolute 
minimum can be drastically reduced. 

Let G be any measurable subset of E ~ with finite Lebesgue measure. 
Let (f', d) be a metric space, and Iet (P, ~',/~) be a finite, complete 
measure space such that the a-algebra d contains the Borel sets of 
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(1", d). Let (X, ~6) be any given topological space with S a given subset  
of X. Let  T -= (re(G)) m denote the collection of all measurable functions 
u(t) -~ (ul,..., u'~), t e G, and let 2~ = (re(F)) m" denote the collection of 
all/z-measurable functions v(~-) ~ (vl,..., vm'), -r e 1". Let  L,  M ,  J, K be 
operators defined on S,  not necessarily linear, whose values are L- 
integrable vector functions on G, and/z-integrable vector functions on F, 
namely L: S ~ (L~(G)) r, M:  S --~ (LI(G)) s, J: S ~ (LI(F)) r', K:  S --~ 
(LI(F)) S', where r, s, r', s' >/ 0 are (nonnegative) integers. Actually, in 
Theorem 8.1 below, we shall allow some (or even all) of the components  
of L,  M ,  J, K to have their values in the space re(G), or re(F), of all 
measurable functions on G, or/z-measurable functions on F. 

As usual a subset  A(t)  of E s" is assigned for every t e G, and a subset  
U(t, y)  of E ~ is assigned for every (t, y)  e A = [(t, y)  I t e G, y E A(t)]. 
We  denote by  M the set of all (t, y ,  u) with (t, y)  e A ,  u e U(t, y) ,  and by 
fo(t,  y ,  u ) , f ( t ,  y ,  u) = ( f l  , .... fr) given functions defined on M C E ~+~+m. 
Analogously, a subset  B(~-) of E ~' is assigned for every ~- ~ F, and a subset  
V(~, 3)) of Em' is assigned for every (~-, 3)) e B = [(~-, ~) I ~r E 1", ~ ~ B(~')]. 
We denote by  ] f / t h e  set of all (~-, 2¢, v) with (-r, .~) E B,  v ~ V(~., ~), 
and by  g0(r, 3), v), g(~, ~,, v) - (gl  ,..., g~') given functions defined on 
21;/C F X E r'+~'. 

As usual, functions y(t)  = (y~,..., y~), t e G, y e (LI(G)) ~, y(t)  e A(t) ,  
are said to be state functions on G; functions 3~(~-) -~ (yl,..., y~,), -r E 1,, 

e (LI(/ ')) ~', 3)(~-)e B(~'), are said to be state functions on / ' .  Also, 
functions u(t) = ( u l , . . . ,  Urn), t e G, u e T, u(t) ~ U(t, y(t)),  are said to be 
control functions on G, and functions v(~-) = (vl,..., vm'), 1- ¢ F, v e 5 b, 
v(r) e V(r, :~(r)) are said to be control functions on/1.  

We now consider the problem of finding elements x ~ S, u ~ T, 
v ~ 2~ which minimize the functional 

I[x, u, v] = fGfo(t, Mx(t), u(t)) dt -t- f r  go(~', Kx(~-), v(r)) dtz, (1) 

subject to the state equations 

Lx(t) = f ( t ,  Mx(t), u(t)), 

J-( - )  = g(~-, t o 4 , ) ,  ~(,)), 

t ~ a ,  (a.e.), (2) 

~r ~ F, (t~-a.e.), (3) 

and the constraints 

Mx(t) ~ A(t), u(t) ~ U(t, Mx(t)), t ~ G, (a.e.), (4) 

Kx('r) ~ B(~'), v(r) ~ V(% Kx(~')), ~- E Y', (t~-a.e.). (5) 
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Here, f ( t , y ,  u) =- (A  ,'",fr), ( t ,y ,  u) ~ M, g(-r,), v) = (gl ,'",gr'), 
(%),  v)~ 2~/, and correspondingly we may write L = (L1 ,...,L,), 
J ~- (.]1 .... , Jr'), with r ~ 0, r' > /0 .  

In applications, the functionsfo , f ,  go, g are continuous and the sets 
A, 2l~ r, B, 2t~ r are closed. Actually, much less is needed. We say that the 
sets A, M and the functions f0,  f satisfy a Carath6odory-type condition 
(C) on G if for every e > 0 there is a compact subset K of G such that 
I G - - K t  ~ e ,  t h e s e t s A e c =  [(t,y)~=A ] t e K ] a n d ? v l K =  [( t ,y ,u)  
M I t e K] are closed, and the functions fo(t, y,  u), f ( t ,  y, u) restricted 
to K are continuous. An analogous condition (C) on F may be defined 
for B, 21~/, go, g- This condition (C) on A, M, B, 3)/, f0,  f, go, g will be 
assumed throughout this paper. 

We seek optimal solutions for problems (1-5), and these will be 
denoted as usual strong optimal solutions. For weak optimal solutions, 
state equations (2)-(3) will be written in the corresponding weak form. 

3. Topological  View: P r o p e r t y  (Q) and  Var ian ts  

As in previous papers (Refs. 4-6, 10), we shall need properties of 
the sets 

0(t,  y) = [(z °, z)  i z° ~ )Co( t, Y, u), z = f ( t ,  y ,  u), u ~ U(t, y)] C E ~+1, 

~(~-, 9) = [(~o, ~) I ~o >~ g # ,  :~, ~), ~ = g(,, ) ,  v), v e v6-, ))]  c z~'+~. 

The projections of these sets 
Q(t, y) = f ( t ,  y,  U(t, y)) C EL 
the definitions below in terms 
for the sets/~. 

The sets 0(t, y) are said 
respect to y provided 

on the z-spaces E r, or E r', are the sets 
R(r, 5') = g(r, Y, V(r, 9)) C E ~'. We state 
of the sets 0. Analogous statements hold 

to satisfy property (K) at (to, Y0) with 

O_(to, yo) = (3 cl U O(to , y), 
e>0 v~Ne(%) 

where N~(yo) = [y e A(t0), [y -- Y0 I ~ E]. The same sets O(t, y) are 
said to satisfy property (Q) at (to, Yo) with respect to y provided 

0(to,yo) = N cl co U 0(t0, y). 
e>O y~NE(Y O) 

Sets satisfying proper~" (K) are closed; sets satisfying property (Q) are 
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closed and convex. Property (Q) implies property (K). [Properties (K) 
and (Q) were introduced by Kuratovsky (Ref. 11) and Cesari (Ref. 12). 
See Refs. 12-13 for a discussion of these properties and simple criteria 
for property (Q).] 

There are intermediate properties (Q~), 0 ~ p ~ r q- 1, between 
properties (K) and (Q) above. To present them, let us decompose the 
~-space E r+l, z; -~- ( z  °, 2:) ~- ( z  °, z l , . . . ,  z r) into the product E ~ × E r+l-o of 
the z~l~-space E ~, or E ~1~, z ~1~ ~ ( z  °, z l , . . . ,  z , - l ) ,  and the z(el-space 
E r+l-°, or E (~, z ~ = (z~,..., zr). We say that the sets 0(t, y) satisfy 
property (Qo) at (to, Yo) with respect to y provided, for every zC0 ~ = 
(2;o~,..., Zo r) ~ E r+l-~', we have 

~(to, yo) n lEo x {~o~}] 

= 0 ( ] c l c °  I U L 3 ( t o , y ) n [ E ' × { z 2 } i ] z 2 - z o " l < ~ s  I. 
E>0 a>0 y~N(Yo) 

For p ~ r + 1, we understand that the sets in brackets in the first 
and second members of this relation coincide with E r+l, and property 
(Qr+l) coincides with property (Q). For/9 == 0, property (Q0) coincides 
with property (K). Owing to the special structure of the sets ~(t, y) we 
consider here, if the sets ~(t, y) have property (K) or (Qo), they also 
have property (Q1). Finally, for any integer p, 0 ~ p ~ r, property 
(Qp+I) implies property (Q~). (See Refs. 14-15 for proofs and details.) 

This intermediate property (Q~), 0 ~ p ~ r + 1, can be actually 
expressed as a property (Q) of suitably defined auxiliary sets (see Ref. 15). 
Indeed, if we take 

O*(t, y ,  z (2') = O(t, y)  n (E o × {z~}), 

then the sets O(t,  y )  have property (Q,) with respect to y at (to, Yo) iff 
the sets Q*(t ,y,  z {2>) have property (Q) with respect to (y, z ~)) at 
(Y0, z~o ~) for every z(o ~ E E ~'+t-~. 

To simplify the presentation, we have decomposed here E r+l into 
E ° and E ~+*-° by using the coordinates z °, z~,..., z 0-1 in E ° and the 
coordinates z%. . ,  z r in E r+l-°. Obviously, we could have used any two 
complementary systems of p and r + 1 --  p of the R + 1 coordinates 
z °, z l , . . . ,  z ~+1. We shall denote them as the first and second system of p 
and r + 1 -- p coordinates zl,..., z ~, respectively. 

Below, we shall need properties (K), or (Q), or (Qo) to hold globally; 
by this we mean that there is some subset T o of G of measure zero 
(possibly empty) such that the sets ~(t, y) have property (K), or (Q), 
or (~p) with respect to y at every (to, Yo) ~ A ,  t o ~ G - -  T o . 
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4. G e o m e t r i c  View:  P r o p e r t y  (P)  a n d  V a r i a n t s  

For  the sake of simplicity, we present property (P) for the sets 
~)(t, y) as a global property (Ref. 1). For every N ) 0, we shall denote 
by V(0, N)  the closed bali of center the origin in E r (or E r') and radius N. 
For every ( t , y ) ~  A and z aQ(t ,  y),  we denote by T(z; t, y) the scalar 
function T(z; t, y) = Inf[z ° [ ( z°, z) ~ ~(t, y)]. We say that the sets ~(t,  y) 
satisfy property (P) with respect to y provided: (P1) there is a measurable 
bounded  function p(t), t ~ G, p: G - ~  E ~, say L p(t)l ~ ~, and a constant 
c > / 0  such that p(t) ~ Q(t, y) for all (t, y) ~ A, t ~ G --  T O ; [ T(z; t, y)[ ~ c 
for all (t, y)  ~ A, t E G --  To, z e Q(t, y) c~ V(0, 2~); (P2) for every 
N > 0, the sets O(t, y) (3 (E ~ × V(0, N))  have property (Q) with respect 
to y at every (to, Y0) ~ A, t o ~ G - T O [see Cesari, Ref. 1, for details and 
proofs on this property (P)]. 

First, a remark is relevant here. One is that (P2) implies that the sets 
O(t, y) c~ [E 1 × V(O, N)],  N / >  a, are closed and convex and hence the 
sets f~(t, y) themselves are closed and convex. Conversely, if we assume 
that the sets O(t ,y)  are closed and convex, then the sets 0 ( t , y )  c~ 
[E 1 × V(O, N)], N > /a ,  are also closed and convex, and because of their 
special structure, property (K) of the sets 0(t,  y)  c3 [E I × V(0, N)]  
implies property (Q) of the same sets. (This was proved in Ref. 15.) 
Thus,  if we assume that the sets 0(t ,  y)  are closed and convex, it suffices 
to require property (K) in (P2) above. 

Note  that property p(t) ~ O(t, y) is certainly satisfied if all sets 
Q(t, y) contain a fixed point 2 e E ~, say 2 = 0, the latter case being 
rather common in applications. Note  that the condition iT(z; t, Y)I <~ c 
is certainly satisfied if f0(t, y,  u) ) - -c  for all (t, y, u ) e  M,  and 
fo(t, y, u) ~ c for all (t, y, u) ~ M with t f ( t ,  y, u)[ ~< 2or. This  condition 
is also very mild and usually satisfied in application. 

Finally, if we know that 

(*) for every t o fixed, t o ~ G - -  To, we have ]f(to, y,u)[-.~-+oo as 
] u 1 --* c~, u e U(t, y), uniformly on every compact  subset  of A(to), 

then the sets 0(t,  y)  n [E 1 × V(0, N)] certainly have property (K) with 
respect t o y  at every (to, Y0) e A, t o ~ G --  T o . This  is a mere consequen- 
ce of condition (C) as it has been proved in Ref. 1. Thus,  all we have to 
verify for (P2) is that the sets ~(t, y)  are closed and convex, because they 
wilt have property (K) [as a consequence of property (C)], and property 
(Q) (as a consequence of their special structure), as stated above. 

We  see that property (P) as explained above, is a very mild one, 
similar to the one required in Filippov's existence theorem for equi- 
bounded  controls (Ref. 16). 

8o9]t5/4-9 
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We come now to variants of property (P). We say that the sets 
O(t, y)  satisfy property (Po) with respect to y if (P1) holds as above and 
(P2) is replaced by the analogous condition (Po2) with property (K) in- 
stead of property (Q). Thus,  if (P0) holds, all sets O(t, y)  63 [E 1 × V(0, N)], 
N ) ~, are closed, and the sets f~(t, y) themselves are closed, but not 
necessarily convex ((t, y)  ~ A, t e G --  To). Conversely, as above, under  
conditions (C) and (*), all we have to verify for (P02) is that the sets 
0(t,  y) are closed (or the sets ~(t, y)  63 [E t × V(0, N)], N ~ a, are 
closed), ((t, y)  e A, t ~ G --  To). 

Finally, we say that the sets 0(t,  y) in E r+l satisfy the intermediate 
property (Po), 0 ~ p ~ r q- 1, provided (P1) holds as above and (P2) is 
replaced by the analogous condition (Po2), with property (Q,) instead of 
property (Q). Note that property (Pr+l) is equivalent to property (P), 
that property (P0) corresponds to property (K), and that, for every p, 
0 ~ p ~ r, property (P,+I) implies property (Po). 

Note that, if (Po) holds, then all sets 0(t,  y)  63 [E 1 × g(0, N)], 
N ~ a, are closed, and for every Z(o 2~ = (Z"l .... , Zo r) the sets ~(t,  y)  63 
[E* × V(0, N)] 63 [E ~ × {z(2'}] are convex, and consequently the sets 
0.(t ,y) themselves are closed, and for every Z(o 2) the sets O(t, y) 63 
[E ~ x {z(02)}] are convex ((t, y) e .d, t e G --  To). Conversely, as above, 
under  conditions (C) and (*), all we have to verify for (Po2) is that the 
sets 0(t ,  y)  are closed and that, for every Z~o 2', the sets 0(t,  y) 63 [Eo × {z~a)}] 
are convex (or the sets 0(t,  y)  63 [E 1 × V(0, N)], N > / a ,  are closed and 
the sets 0(t, y) 63 [E 1 × V(0, N)] × [E ° × {z(0=)}] are convex), ((t, y) e A, 
t e a - -  To). 

The  following new variants of properties (P) and (Po) (Ref. 17) are 
useful. The  variants concern property- (PI) and wilt be expressed in 
terms of sequences of functions yk(t), t e G, k = i, 2,... ( in applications, 
this will be any minimizing sequence of state functions.) 

We say that the sets ~(t,  y) satisfy property (P'I)  provided, for any 
sequence yk(t), t e G, k = 1, 2 ..... of measurable functions (or at least 
for any minimizing sequence of state functions), yk(t) e A(t), yk(t) ---, y(t) 
in measure in G as k -+ oo, there are functions/~(t),  /,k(t), p(t), pk(t), 
t ~ G, k = 1, 2 .... , ~, ,k  eLf(C;.), p, p~ e (L~(G)) ~, such that 

(t~(t), pn(t)) ~ O(t, yT~(t)), t G G, (a.e.), 

/~k ---*/* weakly in LI(G), 

Pk -~ P strongly in (La(G)) ~ as k -7 oo. 

h = 1, 2,..., 

Actually, it is enough that this occurs for sequences Yk with Yk --~ Y, say 
in LI(G), or in L~(G), as for minimizing sequences. 
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We shall say that the sets ~(t, y) satisfy condition (P') [or (P,')], 
provided the same sets satisfy condition (P'I) and (P2) [or (P'l) and 
(P02)1, with N replaced by max(N, ~(t)), where/S ~ L i ( G )  and l pk(t)l 
if(t) for all k. 

We conclude this section with the remark that the natural 
geometrical properties required under (P1) allow a drastic reduction of 
the seminormality requirements (Q) or (Qo). Under conditions (C) and 
(*), no seminormality requirement is needed: only closedness and 
suitable convexity properties. 

5. Analy t ic  View: P rope r t i e s  (F), (G), (H) 

In Refs. 7-8, Cesari and Suryanarayana took into consideration a 
great many general analytic conditions on the functions fo ,  f ,  go, g, 
which are easy to verify and which dispense with properties (Q) or (I 2) 
or their variants. [Actually, we proved in Ref. 8 that these analytic 
conditions do imply weak forms of property (Q).] 

We describe these properties in terms of the function f ,  but the 
same statements hold for f0 , go, g- In any case, we assume that f0 ,f ,  go, 
g satisfy Carath6odory condition (C), and that U(t), V(7) depend on t, 
~- only (not on y, or 3~). Here are some of the properties of interest. 
Below, Yk, uk denote state and control functions on G. 

(F~) For 1 ~< p < o% and y~ ,  y ~ (LAG))s, N Yk - -  Y !!~ - ~  0 as 
k -+ oo, uz~ e T, we have 

If(t, y~(t), uT~(t)) - -  f ( t ,  y(t), uk(t)) I 
< F(t, u~(t)) h([ y~(t) - -  y(t)i), k = 1, 2 ..... t ~ G, 

where h(~) ~ 0, 0 ~< ~ < o% is a given monotone nondecreasing function 
with h(0+)  -- 0, h(~) ~< c~ for all ~ ~ ~0 >i- 0, and F(t,  uT~(t)) ~ L~,,(G), 
liP' q- l ip  = 1, IlF(t, uk(t)ll,' ~< C, where ~0, c, C are constants and 
F(t,  u) a given nonnegative function on G × Em. 

(F~) For y ,  Yk ~ (L~(G)) 8, [I Y~ - -  Y I1~ --~ 0 as k -+ 0% u k ~ T, we 
have 

! f ( t ,  y~(t), uk(t)) - -  f ( t ,  y(t), u~(t))] 

F~(t) h(I y~(t) --  y(t)]), k = 1, 2,..., t ~ G, 

where h(~) ~ 0, 0 ~ ~ < co, is a given monotone nondecrcasing function 
with h(0-}-) = 0, and Fk(t  ) ~ O, t ~ G, F1~ E LI(G),  are given functions 
with II Fk Ill ~ C, a given constant. 

(Gpq) For 1 ~<p, q < o% y e , y  ~ (Lq(G)) ~, u k ~ (Lq(G)) m, 
llYllp, i[y~llp ~ L o ,  llukilq <~L, Lo ,  L given constants, yk( t ) - ->y( t )  
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pointwise a.e. in G as k--~ o% and there are constants c, c', c~, /3, 
0 < ~ ~< p, 0 < fi ~< q, and a function ¢(t) ) 0, t ~ G, ~b ~ Lt(G), such 
that, for all (t, y~ , u), (t, y~ , u) e 21/1, we have 

I f ( t ,  y~ , u) --  f ( t ,  y2 , u)[ .<.. ¢(t) q- c([ y~ I ~-~ q- l Y,~ l ~-~) ÷ c' [ u I ~-~. 

(G~q) For  1 ~ q  < co, y ,  y ~ e ( L ~ ( G ) )  s, u k ~ ( L q ( G ) )  ~, ]IY[t~, 
11 y~ It~ ~< Lo, ti u~ tle ~< L, L0, L given constants, yk(t) --~ y(t)  point- 
wise a.e. in G as k--~ Go, and there are constants c', fi, 0 < fi <~ q, a 
function ~b(t) ) 0, t e G, ~b ~ LI(G), and a monotone nondecreasing 
function ~(~)/> 0, 0 ~< ~ < or, such that for all (t, Yl ,  u), (t, Y2 ,  u) ~ M,  
we have 

i f (  t, Y l ,  u) - - f ( t ,  Y2, u)I ~ ¢(t) (a([ Yl I) + a(i Y~ I)) + c" i u I q-9. 

(Hq) For 1 ~< q < oe, y, Yk measurable, yk(t)  ~ y(t)  in measure 
in G as k --~ oo, u k ~ (Lq(G)) ~, II uk llq <~ L, a constant, there are constants 
c', fl, 0 < fi <~ q, and a function ~(t) >~ O, t ~ G, ~ ~ LI(G),  such that 
for all (t, Y I ,  u), (t, Y.z, u) ~ M, we have 

I f ( t ,  y~ , u) - -  f ( t ,  Y2, u)! <~ ¢(t) q- c' [ u I q-~. 

(H~) For y,  YI,, measurable, yk(t) -~  y(t)  in measure in G as 
k --~ oo, u k ~ (Lo~(G)) ~, li uk ll~ ~ L, there are a function ~b(t) ~ 0, 
t ~ G, ~b e LI(G), and a monotone nondecreasing function ~(~) ) 0, 
0 ~ ~ < oe, such that for all (t, y ,  u) ~ M,  we have 

If(t, y, u)l ~ ¢(t) a(1 u i). 

Whenever  u k is bounded in norm, as for instance under  hypotheses (G) 
and (H) above, the requirements onfo may be relaxed (see Ref. 7). 

6. G r o w t h  C o n d i t i o n s  on  f0 a n d  go 

The  following growth conditions on fo(t, y ,  u), or go(% 95, v), are 
relevant in our existence theorems below. The  growth conditions are 
stated here in terms of fo( t  , y ,  u) and G only; analogous statements hold 
for g0(r, 95, v) and F. 

We say that f0 satisfies condition (a) on G provided there is some 
function 4J(t) ~ O, t ~ G, ~b ~ LI(G),  so that fo(t, y ,  u) ~ - -~( t )  for all 
( t , y , u )  c M .  

We say thatf0(t  , y, u) and another function h(t, y ,  u) satisfy condition 
(4Q on G if, for any given e > 0 there is some function ¢~(t) ~> 0, t e G, 
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#~ ~ LI(G), so that I h(t, y, u)l ~ ¢~(t) @ Efo(t, y, u) for all (t, y, u) ~ M. 
If  f0 , h satisfy (~b~), then, by taking e = 1, we see that f0 also satisfies 

(a) with ~b(t) = ~l(t). 
We say that fo(t,y, u) and a function h(t,y, u) satisfy growth 

condition (~) on G if there is some function ~(t) ~ O, ! E G, ~ ~ LI(G ), 
and a constant y ) 0 so that fo(t, y, u) >/ --¢(t) -- y ]h ( t , y ,  u)[ for all 
( t ,y ,u)  e M .  

We say that fo(t, y, u) and a function h(t, y, u) satisfy condition (Y) 
on G if there is some function ¢(t) ~ O, t ~ G, ¢ ~ LI(G ), and constants 
y >/O, 7' >/0, p ~- t, so thatfo(t,  y, u) ~ --~b(t) --  7 I h(t, y, u)[ -- 7' I Y [P 
for all (t, y ,  u) ~ M. 

7. P r o p e r t i e s  o f  Operators 

Let d be an operator, not necessarily linear, from a subset  S of a 
topological space (X, 73) into a topological space Y = (Y, 22f). To  denote 
that Y is not the empty  space we say" that d is not vacuous. 

We say that the operator d :  S -+ (Y, 2g'), S C (X, ~6) is closed on S 
provided x k ~ S, k = 1, 2,..., x ~ S, xe -+ x in (X, ~6), agx k - + y  in (I1, ~e), 
implies y = d x .  We say that ag: S --* (Y, ~ ) ,  S C (X, ~3) has the 
closed graph property provided x~ ~ S, k = 1, 2,..., x E X ,  x k ---* x in 
(X, ~), d x  k -+ y in (Y, :g) implies x ~ S and y = agx. 

We say that the operator ~¢: S - + ( Y ,  ~ ) ,  S C ( X ,  73), has the 
convergence property [with respect to S, (X, ~6), (Y, ~ge)] provided, if 
x k ~ S, k = 1, 2,..., x ~ X, x~ -+  x in (X, ~6), then the sequence d x  k , 
k = 1, 2,..., has a convergent subsequence in (Y, ~ ) ;  that is, there is 
some y ~. Y and a [k,] such that dxk~ --~ y as s -+ oo in (Y, ~ ) .  

Below, whenever Y is a normed space, we denote by strong (weak) 
closure in S, closedness of the graph, and convergence properties, the 
properties above relative to S, the space (X, *),  and the strong (weak) 
topology in Y. Whenever  Y is a space of measurable functions we shall 
understand the properties with respect to convergence in measure 
in Y. 

I f  S = X, that is, if d is defined on all of X, then cbsnue in S and 
closed graph property coincide. If  (X, ~6) is a topological vector space, if S 
is a linear subspace of X,  if d is linear, and (Y, 2F) is a normed space, 
then closure graph properties with respect to the strong and the weak 
topologies in Y are identical, by force of Banach-Saks-Mazur  theorem 
(see Ref. 18, p. 120). 

In most  applications (X, ~6) is a Sobolev space I&~(G) ,  m ~ I, 
p >~ 1, with the weak topology ~,  while Y is a product  of spaces L~(G), 
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L~(F), p /> 1, each with either the weak or the strong topology, and of 
spaces re(G), ra(F) of measurable functions, a.e. finite, with the con- 
vergence in measure topology. In most cases S ~ X, that is, the operators 
are defined on ali of X, but S may well be a proper subset of X. We shall 
see examples of all these cases. 

For general properties of operators, we refer here to Dunford and 
Schwartz (Ref. 19), and also we mention the short presentation in 
Section 2 of Burns' paper (Ref. 20). 

8. Exis tence  T h e o r e m s  for  Lag range  P r o b l e m s  wi th  S ta t e  
Equations in the S t rong  F o r m  

Existence theorems concerning only G have been stated in Part 1, 
Section 3.2 (Ref. 3), and the same theorems hold for f '  alone as welt. 
Because of Sobolev's embedding theorems, which relate properties and 
behavior at the boundary of G to the properties and behavior in G of 
(Sobolev) functions in G, it is of practical interest to formulate the 
existence theorems below involving both G and/~, as the examples will 
show. These theorems differ from those in Ref. 5 because of the ex- 
tremely more general conditions on the relevant operators, the functions 
f and g, and the relevant sets. 

We shall now make full use of the notations of Section 2. 
As usual, we say that a triple (x, u, v), x a S C (AT, ~6), U e T, v e 

is admissible for problem (1-5), if relations (2-5) are satisfied, and 
fo(', Mx(.), u(.)) ~LI(G), go(', Kx(.), u(.)) cLI(F ). For the concept of a 
closed class D of admissible triples (x, u, v) we refer to Ref. 5. We 
mention here that, given any class E2 of such triples, then {x}e denotes 
the set of all x ~ S such that (x, u, v) ~ E2 for some u e T, v ~/~. 

We shall consider below a nonempty class £2 of admissible triples 
(x, u, v), and we shall denote by £2 0 the nonempty subset of only those 
(x, u, v) e £2owith I[x, u, v] ~ 3I  o for some constant M o . We may denote 
by Ao, A, A the sets 

A o = {Xo}e o == {x e X I (x, u, v) e Do} , 

A = {(x, u)}~0 = {(x, . )  ~ x x r l (x, ~, v) ~ ~0), 

A = {(x, v)}~ o = {(x, v) ~ x x "/'1 ( x , . ,  v) ~ ~o}. 

We denote here by S a given subset of the topological space (X, ~), 
and we consider operators L: S - +  (Lz(G))" , J: S--+ (LI(F))r' with the 
weak topology in the range spaces, and M: S -+ (m(G)) s, K: S -+ (m(F)) s" 
with the convergence in measure topology in the range spaces. 
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The  vector func t ions f ( t ,  y,  u), g(r, ~,, v) actually define Nemitsky's  
operators 

F[x, u](t) = f ( t ,  Mx(t), u(t)), t ~ G, 
G[x, v](r) = g(r, Kx(r), v(r)), r E F. 

T h e o r e m  8.1. An  Existence Theorem for  Optimal Strong Solutions. 
Let  us assume that A, M, fo ,  f satisfy" condition (C) on G, and that B, 
fl~, go,  g satisfy condition (C) on in. Let  us assume that f o ,  f satisfy 
property (fi) on G, and go,  g satisfy (fi) on F. Let  us assume that the sets 
~(t,  y) in E r+l satisfy property (Q) with respect to y only at all (t, 3') ~ A, 
t E G - -  To, I To [ : 0, and that the sets ~(t,  ~) in E r'+l satisfy property 
(Q) with respect to 3) only at all (r, 3) ) e B, r e T' - -  ~o,/x(~Po) = 0. Let  
us assume that all operators L, jr, M, K have the closure property on S, 
and that at least one is not vacuous and has the closed graph property 
on S. Also, let us assume (wl) that L and J have the weak convergence 
property,  and that (w,) M and K have the convergence in measure 
property. Let  £2 and f2 0 as above, and let us assume that A 0 = {x}a, is 
relatively sequentially compact as a subset of (X, ~). Then  the functional 
I[x, u, v] has an absolute minimum in f2. 

Property (Q) above can be replaced by either property" (P) or (P'). 

I f  we know that the images F(A) of A and G(]I) of A are relatively 
sequentially compact, then requirement (wl) can be omitted. 

This  statement is a particular case of the following one (Theorem 
8.2) below. 

T o  avoid repetitions, we assume that the t" components  of L and 
corresponding components  o f f  in (2) are associated into four groups of, 
say r l ,  r2, ra ,  r 4 /> 0 components,  q 47 r 2 @ ra 47 r~ = r, so that 
L ---- (L m, L(% L (a), L (4), f ( t ,  y, u) = ( fro ,  f ( %  f(a), f(4)), L(,~): S -+  
(LI(G))% r .... 1, 2, 3, 4. Of  course, any of the r,~ may be zero, and the 
corresponding group of equations is missing. Analogously, we assume 
that the r' components  of f and corresponding components  of g in (3) 
are associated into four groups of, say rl '  , r~[, ra', r 4' ~ 0 components,  
r 1" @ r e' 47 ra' 47 r 4' = r', so that J = ( j m ,  jl~), j(a), j m ) ,  g(r, ~, v) = 
(gin, g(2), g(a), g(4)), j.i : S --> (LI(F))~, i = 1, 2, 3, 4. As above, we shall 
denote, for short, by T O any subset of G of measure zero (or any subset 
of F of/x-measure zero), which may be empty. 

The  vector functionsf(i)( t ,  y,  u), g(°(r, 3~, v), i = 1, 2, 3, 4, actually 
define Nemitsky operators F (i), G (i), 

F(i)[x, u](t) = fci)(t, Mx(t), u(t)), t ~ G, 

G(i)[x, v](r) = gI~)(.r, Kx(r), v(r)), r ~ F, 

F(i): A ~ (re(G))% G(i): e{ -+ (m(F))*;, i = 1, 2, 3, 4. 
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T h e o r e m  8.2. An Existence Theorem for Optimal Strong Solutions. 
Let us assume that A, M, fo,  f satisfy condition (C) on G, and that B, 
3~r, go, g satisfy condition (C) on T'. Let us write for the operators L, J 
not necessarily linear and defined on some subset S of (X, ~;) the general 
decomposition L = (L m, L (2), L (a), L(4)), J ~- (j(1), j(2), j(3), j(4)) above, 
r I @ r~ + r~ + r 4 ~ r ~ 0, r 1' @ r 2' @ r 3' + r 4' = r '  .Z~ 0, with the 
convention that any of the numbers r l ,  r, r( ,  r '  may be zero. Let us 
assume that the functionsJo , (fro,f(2)) satisfy property (fi) on G, and that 
the functions go, (gin, g(.2)) satisfy (fi) o n / ' .  Let us assume that the sets 
o(-y) in E ~+1 satisfy property Q~+~2+~ with respect to y only at all 
(t . ty)~H, t a G -  To, [ To l = 0; and that the sets /~(,,3))in E r'+l 
satisfy property Q~;+r;+x with respect to 3) only at all (~-, 3)) a B, • ~ F- -  2to, 
/z(To) = 0. Let us assume thatf(3)(t, y), g(a)(~-, #) are independent of the 
controls u, v respectively. Let S be a given subset of the topological 
space (X, ~6). We consider operators L('~): S ~ (Lt(G))% j(i): s --~ 
(LI(G))~ , i = 1, 2, with the weak topology on the range spaces, operators 
L(1): S -~ (re(G)) ~, f(i): S --~ (m(F))"~, i = 3, 4, M: S -~ (re(G)) ~, K: 
S --~ (re(P)) ~', with the convergence in measure topology on the range 
spaces. We assume that all these operators L m, L (2), L (3), L (4), j m ,  j(2), 
j(a), f~4), M, K have the closure in S property, that at 1east one of them 
is nonvacuous and has the closed graph property, and that L (2), J(~), 
L(4), j(4), M, K have the convergence property. Let £2 be a nonempty 
closed class of admissible triples (x, u, v), let D o be the nonempty subset 
of only those (x, u, v) e D with l[x, u, v] ~ M o for some constant M0, 
and assume that A 0 is relatively sequentially comopact as a subset of 
(X, ~), and that the images Fro(A) of A and GIn(A) of A are relatively 
sequentially compact subsets of (LI(G))~ and (L~(F)~, respectively. Then 
the functional I[x, u, v] has an absolute minimum in £2. 

Al t e rna te  Assumpt ions .  Property (Qrl+r~+l) above can be 
replaced by either property (P~1-~..~+1), or (Vr£+r2+x). The same holds for 
property (Qr;+~;+t). 

If  the sets U(t) depend on t only, and one of the conditions (F), 
or (G), or (H) holds forfo ,f ,  then conditions (Qo), or (Pp) above need not 
be verified for the sets L~(t, y). 

If f0 and only some of the components f~, say for i ~ {j}, a subset of 
[1 ..... r], satisfy conditions (F), or (G), or (H) (with requirements relative 
to the whole vectors y, y~ satisfied), then conditions (Qo), (Pp) above can 
be reduced by requiring only the corresponding properties (Qo,), (P;), 
p' <~ p, obtainedbyincluding the componentsz i, i ~ {j}, inthesecond class. 

The same remarks above hold for the sets V(~-) and functions go, 
g, or go and some of the components of g. 



jOTA: VOL. 15, NO. 4, APRIL 1975 481 

P r o o f .  Le t  i be the infimum of I[x,  u, v] in the class £2, and hence 
also in the class g)0, - -oo  .< i ~< M o < + co. We write 

I[x, u, v] = I~ + Iz , I ,  = f fo dt, Ie -~ frgo dl*. 

Let  (xk ,  us ,  %), k = 1, 2, .... be a sequence of elements in £2 o with 
I~ .... I[xk,  uk,vk] -+ i as k -+  co. Let  I1~., Iz~ bethevalues  ofI~,  l~ computed  
on the elements (x~, u~, %). Since x~ e A 0 C S, k = 1, 2,..., and A o is 
relatively sequentially compact  [as a subset of (X, ~6)], there is a subse- 
quence, say still [k], and an element x ~. X, such that  xa -+  x in (X ,  ~).  
Let  z.z~, ~i~ denote the functions 

zi~(t) = f(~)(t, y~(t), u~(t)) = L(i)x~,(t), t ~ G, (a.e.), 

~(,) = g(*~(., :~(~), v~(~)) = £ % ( . ) ,  ~ ~ v ,  (~- . . e . ) ,  

i = 1 , 2 , 3 , 4 ,  k = l, 2 ..... 

where y~(t) = ~Mxl~(t), t e G, and 3~k(r) - -  Kx1,('r), r ~ t". 
By hypothesis,  the functions zli~(t), t e G, k = t, 2,..., are in 

(LI(G))  % this sequence has a weakly convergent subsequence, say still 
[k], and thus there is some z 1 e (LI(G)) ~ such that zv~ -+  zl  weakly in 
(LI(G))% Analogously, there is a fur ther  subsequence, say still [k], and 
some Zl e (L , (F))q  such that Zlk -+  z ,  weakly in (Ll(1")~i. Thus ,  Lmxa. = 
Zlk -+ z~ ,  J(lIx~. = ~2~L: ~ d~ 1 as k -+  oo. 

Since L (z), J(~) have the weak convergence property,  there is a 
fur ther  subsequence, say still [hi, such that z2a. --+ z2, weakly in (LI(G))% 
and z2~-+ z~ weakly in (LI(F)~6. By property (fi) there are constants y, 
y '  > / 0  such that 

%(t )  = fo(t,  yk(t) ,  uT¢(t)) >/ - - ¢ ( t )  - -  Y(I zlT~(t)] q- 1 z2~(t)i), t ~ G, 

~a~(T) = go(T, ~)/a(T), Vk(T)) ) - -¢ (T)  - -  yt(t ZlI~(T)I -q- l ~2]e('F)t), "g e K~-w. 

T h e  second members  have bounded norms. Thus ,  both Ilk and I~1~, 
k --  1, 2 ..... are bounded  below, hence I k = Ilk + I~k is bounded  below-, 
and i = lim k I k is finite, - -  co < i ~< I k ~ M 0 < co, with I k -+  i as k -+co. 

Since M and K have the convergence property,  there is some 
subsequence,  say still [k], such that y~ = Mxk -+  y in measure in 
(re(G)) s, and ~'k = K x k  --+ Y in measure in 0n(F))*', for some y ~ (re(G))* 
and 3) e (m(1")) ~'. 

Since fa(t,  y) ,  ga(r, ) )  depend on (t, y), (r, 3)) only, by proper ty  (C) 
for almost alI t ~ G, fa is a continuous funct ion of y ,  and for /z-a lmost  
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all r E 1", ga is a continuous function of 3). Then  L (a) Xa(t ) = zak(t ) = 
fa(t,  yk(t))  converges in measure in G to za(t ) = fa(t, y(t)) ,  and analogously 
J(a)xk(r ) - ~a~(r) ...... ga(r, 35k(~')) converges in measure in F to ~a(r) = 

Since L (4) and j(4) have the convergence property, there is a sub- 
sequence, say still [k], such that L(4)x4(t) = z ,k( t  ) converges in measure 
to some z4(t), t ~ G, z~ ~ (re(G)) ~, and J(a)x4(t ) = ~ak(r) converges in 
measure to some ~4(r), r ~ N, z4 ~ (re(F))*< 

At least one of the ten operators L(~),..., j(a), M, K has the closed 
graph property. This  guarantees that x e S. Since the ten operators have 
the closure property in S, we conclude that L(i)x~ --~ L(~i)x = z i ,  
J(~)x k ---. J(~)x = ~:~, Mx~ - .  M x  = y,  Kx~  -+ K x  = 3 5 as k -+ o% 
i =  1 , 2 , 3 , 4 .  

By lower closure theorem (Ref. 15), we conclude that there are 
measurable functions u(t), t e G, and v(r), r e 1", such that 

y(t)  = Mx(t)  ~ A(t), 
Lx(t)  = f ( t ,  Mx(t) ,  u(t)) 

~(~) = K ~ ( . )  e B( . ) ,  

Jx(r) = g(r, Kx(r), v(r)) 

.(t) u(t, Mx(t)), 
a.e. in G, 

v(., 
/*-a.e. in _r', 

fo(t, Mx(t),  u(t)) ~ LI(G), go(r, Kx(r),  v(r)) ~ LI(F), 

I[x, u, v] = f r o ( t ,  Mx(t),  u(t)) dt + ( g o ( r ,  Kx(r),  v(r)) dl~ • i. 
J a  J r  

Thus,  the triple (x, u, v) is admissible, and since so2 is a closed class, 
there is some admissible triple (Xo, u o , %)  in f2 with I[xo ,  Uo, %] ~ i. 
Thus  I[Xo, u o , %] .... i, and the existence theorem is thereby proved 
under the main assumptions. 

Under  the set of alternate assumptions the proof is the same where 
use is made of the lower closure theorems proved in Refs. 1, 4, 5, 15, 17. 

R e m a r k  8.1, There is a natural situation where S = X and all 
operators L ~':), J(~), i = 1, 2, 3, 4, have convergence property and closure 
property. This  occurs, for instance, when (X, G) is a Sobolev space 
l~Z(G),  l )  1, 1 ~ p  < ~ ,  F i s  a p a r t  of the boundary OG of G, 
Sobolev's imbedding theorems hold, II xI[~ ~ yo for some constant y0 
and all x E A0, and the operators L ¢i), i = 1, 2, are linear combinations 
with bounded measurable coefficients of all derivatives D~x, 0 <~ I ~ [ <~ l, 
for p > 1 [and even for p = 1 provided we know that the derivatives 
of maximal order D~x, [ a l = t, are equiabsolutely integrable in G 
(Ref. 21)]. In  this situation, if the operators L (i), i = 3, 4, M and j(i), 
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i = 3, 4, K are also linear combinations with bounded measurable 
coefficients of all derivatives D~x, 0 <~ I ~I <~ l -- 1, on G and on I ~ 
respectively, then the same operators can be thought of as being into 
L~ spaces, 1 ~< p ~< co, on G and N, and the same operators then have 
convergence property and closure property with respect to strong 
convergence in L~. This situation was essentially considered in Ref. 5. 

R e m a r k  8.2. The set A 0 = {x}e0 C (X, ~) is certainly relatively 
weakly compact, if for instance (X, ~) is a Sobolev space W~I(G), 
1 < p < oo, l >~ 1, with weak topology % and it happens that x a {x}n, 
l[x, u, v] <~ M o implies iI x II~ ~< M1 for some constants 1 < q ~< oo, 
M i >/0 ,  and where [f 1t~ denotes Sobolev norm in G. 

The set A 0 = {X}~o C (X, *) is also relatively weakly compact if, for 
instance, (X, ~) is a Sobolev space Wi~(G), l >/1,  with weak topology ~;, 
if x e {x}n, I[x, u, v] <~ 2V/o implies If x tli ~ 3/I1 as before, and in addition 
a suitable growth condition (~,) holds guaranteeing that the derivatives 
of maximal order 2 = [D~x(t), t e G, I c~ [ = t] for the same elements 
x a A s are equiabsolutely integrable on G (see Refs. 5 and 10). 

Both situation will be shown in the examples below. 
The image Fro(A) is certainly relatively compact in (LI(G)) ~, i f fo ,  

f m  satisfy growth condition (~,) (see Ref. 5) or ifFn~(A) ties in a bounded 
part of some L~(G)~;, 1 < q ~ co. The latter occurs, if for instance 
(X, ~) is a Sobolev space W,~Z(G), 1 < p ~ o% l >~ 1, with weak topology 
~;, and II Fro[u, x]tl~ ~< }' Ii x I]~ + ~' for some constants 7, 7', 1 < q <~ c~, 
and all (x, u) e A. 

The image G(1)(A) is certainly relatively weakly compact in (Li(/'))d 
if go, gm satisfy a growth condition @~), or if GIn(A) lies in a bounded 
part of some (L~(/7))~, 1 < q ~ oo. The latter occurs, for instance, if 
(X, ~) is a Sobolev space I4~(G), 1 < p ~< o% with weak topology '~, 
if Y is a part of the boundary aG of G for which Sobolev's imbedding 
theorems hold, and a relation Ii a m [  x, v]!l~ ~ ,~ [t x I1~-4-,/ holds for 
some constants y, ~,' ~> 0, 1 < q ~ 0% and all (x, v) ~ A. 

R e m a r k  8.3. For the case in which fo,  f (or go, g) are linear in 
the state variables y (or/~), we have proved existence theorems without 
convexity conditions (see Refs. 22-23). 

R e m a r k  8.4. Properties (P) and (Po) of the alternate set of 
hypotheses of the existence Theorem 8.1 couId be replaced by the 
corresponding slightly extended properties taken into consideration by 
M. B. Suryanarayana (see Ref. 17 for lower closure theorems). 
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9. S o m e  N o n l i n e a r  O p e r a t o r s  w i t h  the  C losed  G r a p h  P r o p e r t y  

We begin with a simple statement in the form of a lemma. 

L e m m a  9.1. Let  Ak(t), bk(t), A(t), b(t), z(t), t e G, k = 1, 2,..., be 
given functions defined on the set of finite measure G in E ~, ] G ] < co, 
A~ , A measurable and finite a.e. in G, b k , b, z e L~(G), with Akbk ELl(G), 
k = 1, 2,... I f  A k - - ~ A  in measure in G, bk--~b weakly in LI(G), and 
Akb k --~ z weakly inL~(G) as k ~ oe, then Ab ~L~(G), and A(t)b(t) = z(t) 
a.e. in G. 

P r o o f .  Since AK--+ A in measure in G, given e > 0 there is a 
subsequence, still denoted by [k], and a compact subset K of G with 
I G -- K 1 <~ e, so that all functions A k ,  A are continuous on K and 
A k --~ A uniformly on K as k --~ co. Thus,  if 8k = max{lAj.(t) --  A(t)] 
I t ~ K , j  >~ k}, k = 1, 2,..., then 8 k --+ 0 as k --+ co. Since b~ -+  b weakly 
in LI(G), i! be N~ ~ 2110 for some constant 340 and all k, where II !11 is the 
L 1 norm. Since b~ -+ b and Akb k ~ z weakly in LI(G), then bk ~ b and 
Akb k --~ z weakly i n L l ( K  ) also. For every ¢ ~L~(G) with l[¢ I[~o ~< M1 the 
product A¢ ~ L~(K),  and so 

a~ = I fzc (bk(t) --  b(t)) A(t) ¢(t) dt I -+ O 

as k -+ oe. Since 

A~(t) bT:(t) ¢(t) dt -- fK A(t) b(t) ~)(t) dt 1 

~. fK [ Ak(t ) -- A(t)[ ] b~(t)] , ¢(t), dt -]- fK (bk(t)-  b(t)) A(t)¢(t) dt [ 

8kMoM1 + cry, k = 1, 2 ..... 

we conclude that Az~b k --~ Ab weakly in LI (K  ). Since At~bk--~ z weakly 
in LI(K),  we have z(t) ~ A(t)b(t) a.e. in K,  and finally z(t) = A(t)b(t) 
a.e. in G. This proves our lemma. 

L e m m a  9.2. Let  ATfl(t), bk~(t), A~(t), bs(t), z(t), t E G, k = 1, 2,..., 
s -~ 1,..., 5[, be given functions defined on the set of finite measure G 
in E ~, I G I < o% Aft ,  A ~ measurable and finite a.e. in G, b fl, b e, z ~ LI( G), 
with ~2~-1 Ak~bk s ELl(G), k : 1, 2,... I f  Afl---~ A ~ in measure in G, 

N bff --~ b s weakly in LI(G ) as k --~ co, s = 1,..., N, and Z~=I Affbff  --,- z 
N weakly in LI(G ) as k --~ co, then ~ = 1  A~b~ ~LI(G) and 2.~ A~(t) b~(t) = 

z(t) a.e. in G. 
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The proof is the same as above. The same lemmas extend to 
measure spaces. 

In a Sobolev space (X, ~) = W~t(G), 1 <~ p ~ o% 1 ~> 1, with weak 
topology ~, let us consider the nonlinear operator Lx = (D~x)(Dex), the 
product of two derivatives D~x, Dex of orders 0 ~< l a[ ~ 1 -- 1, 
i c~ I <~ 1,8I ~< 1. Let S denote the subset of all elements x e ~/~(G) 
such that Lx eLl(G). It may well happen that S is only a proper part 
of W~l(G). However, by Lemma 9.1, the operatorL: S - + L I ( G  ) has the 
closed graph property on S [with respect to weak convergence on S and 
weak convergence on LI(G)]. Indeed, if xk, x ~ Wp~(G), xtc -+ x weakly 
in W,ioa(G), then D~xk--+ D~x strongly in LI(G), DSxk-+ DUx in LI(G), 
(strongly if I a [ ~< fi < l, weakly if 1 ~ [ < I/3 I = / ) ,  and we know from 
the lemma that, if (D~x~)(DBx~) --+ z weakly in L1, then z = (D~x)(D~x) 
a.e. in G. 

If X = W**(G), G C E ~, let us consider the operator on G, 

Lx = x ~ (ax/at i) = x div x, 
i=1 

as an operator L: S--+L,(G), defined on the subset S of W11 of all 
x ~ Wll(G) such that Lx cLI(G ). By force of Lemma 9.2, L: S -+LI(G ) 
has the closed graph property on $1 [with respect to weak convergence 
on Wll(G) and weak convergence on LI(G)]. 

Again, for X = W~2(G), G C E ~, the operator L: S --+ L,(G), 
S C WI~(G), defined by 

Lx = ~ (~x/~t~) ~ ----- ! grad x [2 
t=l  

on the subset S of W12(G) of all x c W12(G) such that Lx ~LI(G ), has the 
closed graph property on S [with respect to weak convergence in both 
~z~2(G) and LI(G)]. 

Similarly, for X = W~(G), G C E ~, the operator L: S --~ LI(G ), 
S C W12(G), defined by 

Lx = ~ (3x/~ti)(3ax/Ot ~2) = (grad x, V~x), 
i=1 

on the subset S of W12(G) of all x ~ I4~e(G) such that Lx eLl(G), has 
the closed graph property on S. 

Analogously, we may define the operator J: S--+LI(F ) by taking 
]x  = x(ex/~n) and S the subset of atl x e W12(G) for which the product 
x(~x/~n) ~ LI(F ). Here Ox/~n denotes normal derivative and we assume G 
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smooth and such that Sobolev's embedding theorems hold. However, S 
may well be a proper subset of W12(G). The same holds for the analogous 
operator Jx: s --+ Li(F),  S C H/12(G), defined by Jx = (~x/~n) 2, where 
S .... [2¢ 6 W12(G f) i L x  6 L I ( G ) ] .  

Let G = [(¢, ~7)] ~ 2 _ / ~ 2 <  1] and let a(¢,~7) be a measurable 
function en G, a.e. finite. Let  (X, 73) - W~(G) with the weak topology, 
and let L: S ~ L~(G), S C ~ ( G ) ,  be the operator defined by Lx = 
a(~, ~)(x e - / x , ) ,  on the subset S of W~(G) of all x c W22(G) for which 
a(¢, ~)(x e q- x,)xe,  ~LI(G). Then  L has the closed graph property on S 
[relatively to the weak convergences on ~I~2(G) and LI(G)]. 

Before considering the next example, we mention here the following 
well-known lemma. 

L e m m a  9.3. I f  1 < p < 0% b k eL~(G), k = I, 2,..., [I bk [la ~< M0 
for some constant M 0 , and b k -+ b in measure in G, then b k -~  b weakly 
in L~(G) (Hewitt  and Stromberg, Ref. 25). 

Now let G be as above, (X, 73) = W~2(G) with the weak topology, 
and let L: S-+Lt (G) ,  S C  W~(G),  be the operator Lx = xe, on the 
subset S of W~2(G) of all x E ItV~,2(G) for which II xe, I}l = C for a given 
constant C. We claim that the operator L: S-+L~(G)  has the closed 
graph property on S with respect to weak convergence in W~(G) and 
convergence in measure in L~(G). Indeed, if x k e S, x e 14~e(G), x k -+  x 
weakly in H/~2(G), then certainly xke,--+xe, weakly in L2(G ) and 
II x~, I1~ ~< M0 for some constant M 0 . I f  we know that xke , --~y in 
measure in G to some measurable function y on G, then by Lemma 9.3, 
y = xe, a.e. in G, and xke , -+ xe, in measure as well as weakly. Then  
] xke, 1 --* I xe, [ in measure with t[ xke~ I1~ ~< Mo. Again, by Lemma 9.3, 
we conclude that ] xke , ] ---* I xe, ] weakly, and hence II Xk~, 111 -+ tl x~, Ill- 
Since il xke, Ill ---- C, we have It xe, i11 = C, and L has the dosed graph 
property. 

We refer to Ref. 18 for general properties of operators. We mention 
here that some more examples of nonlinear operators with the closed 
graph property are exhibited in Ref. 24. 

I0. E x a m p l e s  

A number  of examples have been already given in Ref. 5. Here we 
list some examples to which the present more general existence Theorem 
8.1 applies. Given any function x on a domain G, we shall denote by 
),x the values of x on the boundary OG of G, whenever they are defined. 
Some of these examples have been elaborated in Ref. 26. 
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E x a m p l e  10A. Let G be a connected bounded open subset of the 
~/-plane E ~ of Morrey's class K (Ref. 21) so that the usual arc-length 
measure ds is defined on aG = F. We are concerned with the problem 
of the minimum of the functional 

z[~] = f ~  (e + ~ + I - !~ + ! *, i ~ + l ,% 1 *) de d~ + £ (~  + ~,~) .~(,) d.~, 

where p > 2 is a fixed number, with constraint 

a(~, ~) x + b(~, ~) x~ + c(~, ~) x. > d(~, ~), 

where e > 0 is a given constant, and a, b, c, d are given measurable 
bounded functions on G. In other words, we seek the minimum of 

1D, u, v, w] 

o F  

with state equations 

*e = u, ~, = v, a(~, n) x = d(¢, ~) - b(~, ~) u - -  c(~, n) ~ + ~, 

and controls u, v,  w in G, (u, v, w) e U = [(u, v) e E z, w >/0].  
Thus, L l x  = x e, L2x = x, , ,  Lax .... ax, M x  = x, K x  = yx ,  

f l  = u, f~ = v, )c a = d - - b u - - c v + w ,  or f (~ ,71,  x , u , v , w  ) = 
[u, v,  d - -  bu - -  cv + w]. .Also we have 

fo(~, n, x, u, v, w) = ~ + ~ + Ix ? + l u [, + I~ V, go = (~.a + ~)(rx)~. 

Thus f0 > ~ q- ~, go >~ 0 and f0,  go satisfy condition (a). Also, f o ,  
( f l ,  f~) satisfy a (~b,) growth condition on G (Section 6). 

Let (X, ~) be the Sobolev space X = Wpl(G) with weak topology. 
Then the operators L , ,  L 2 , L a are defined in S = X and have the weak 
convergence and weak closure property, with range in Lp(G). The 
operators M and K are also defined in S = X and have the strong 
convergence and strong closure property with range in L~(G)  and L~0(/'), 
respectively. 

Note that if .Q = {(x, u, v,  w)} is the class of all admissible systems, 
and £2o the subclass of only those with I[x,  u, v,  w] <~ M o for some M o 
sufficiently large, then f20 is not empty, and A o ----- {x}a, is made up of 
elements x ~ I/V,I(G) with x, x~ , x,, ~ L~( G),  ![ x l[~ + [i x e[tp -47 I! x ,  l[r ~ M1 
and finally II x i~ ~ 3//2 for suitable constants M1,  M2 depending only 
on M0, p, and G. Because of property (~b~), the derivatives xe, x, of the 



488 JOTA: VOL. 15, NO. 4, APRIL 1975 

elements x e A o = {x}G are equiabsotutely integrable. Thus,  the class 
A o is weakly sequentially relatively compact as a subset of X .... Wzol(G). 

Since v = 2, l .... 1, p > 2, we have v < lp. Hence, by Sobolev's 
imbedding theorem, the elements x e A  o = {x}G are equibounded 
continuous functions on cl G, say t x(~, ~})] ~ co, where c o depends only 
on G, M ~ ,  e. 

Thus,  for I z l  ~ R, z = (z 1 ,z  2,z~), that is, l(u, v, d - -  bu - -  
cv + w)i <~ R,  we certainly have i u ! ~< R,  i v ] <~ R ,  and 

+ ~7 ~ fo(G ~/, x, u, v) <~ ~ + ~ + co~ + 2R ~. 

In other words, I T(z ;  ~, 7, x)i <~ c for some constant c and all [ z [ ~< R. 
The  sets Q(~, ~, x) are here defined by 

9(~ '  71, X) = [,~ = (~,1, ,~2, Z3) I ~1 = l,I, ~,2 = V, ,,~3 = d - -  bgg - -  £ v  + go, ('ll, v ,  f2)) ~ U ]  

and thus p(~:, .~) ~ Q(~, ~/, x) for all x if we take p(~, ~) = (0, O, d(~, ~/)), 
a bounded measurable function p: G --~ E a. 

The  sets ~(~, ~, x) are here defined by  

O(~,~,x) = [(z°,z~,z~,za) lz° > ~ + ~ +  l x l ~ + l u l ' +  lvl ~, 
z 1 = u , z  2 = v , z  a = d - - b u - - c a + w ] ,  

where (u, v, w) ~ U = [(u, v) ~ E 2, w ~ 0]. First, the sets O(s e, ~/, x) are 
convex since f0 is convex in u, v and f l ,  f~ ,  f~ are linear in u, v, w, and 
obviously closed. Let  us prove that I f ] - +  + c o  as l(u, v, w ) l - +  -+-c~. 
Indeed, 

t f l  = [ut  + l v l  + i d - - b u - - c v - - w l  

and if D = sup [d [ ,  B = max [sup ib ] ,  sup ]c]] ,  then, given any 
M > 0 ,  i f w e t a k e l u l  + l v i  + [ w l  > ~ N =  (B + 2 )  M + D ,  then 
either i u ] q- ] v ] ~ M and then I f I  ~ M; or I u I + I v I ~< M, and 
t h e n l w i  > / ( B  + 1) M + D, a n d t f  I >~lev I - B ( l u  I + l v t ) - - D  > / 
(B + 1) M + D - -  B M  - -  D = M .  We have proved that i f  [ -+  + c~ as 
t u t  + !v I  + l w l  --+ + o e .  We now apply Theorem 8.1 with r : 3, 
1 ( -  2, r 2 = 1 , f  m = (f l  , f 2 ) , f  (2~ = f 3 ,  r8 = r~ = 0, r '  = 0. The  sets 

t, x) have here property (P) by the remarks in S eetion 4. The  sets/~( f, ~/,35) 
are the trivial sets [(z °, z)[ z ° >/ ( ~  + ~7~)(35) ~, z = 0], which certainly 
are closed, and have property (K) [even property (Q)] with respect to 
#, 35 ~ EL The  functional under  consideration has an absolute minimum. 

R e m a r k  IOA. The  functional of Example 10.1 has an absolute 
minimum even for any fixed p > 1. In  this situation we consider any 
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minimizing sequence [xe], and ye = Mxe = x~. For some subsequence,  
say still [k], we have xe--+ x weakly in 14~l(G), x v - +  x strongly in 
L, (G) ,  and if we take p~(~, 7) = P(~, ~) = (0, 0, a(~, ~)), /x~(~, ~/) = 

+ ~/ ÷ I x~(~, ~)[~,/~(~, ~/) = ~ + ~/ + I x(~, ~/)t ~, we see that p~ --> p 
strongly in (Lt(G))  ~, t~  --~ t~ strongly in Lx(G), and that 

(~,~(~, n), p~(~, ~)) e 0(~, ~,, y~(*, v)) 

for all (~, ~?) ~ G, k = 1, 2 .... Thus,  the sets ~ have property (P'), and 
Theorem 8.1 still applies. 

E x a m p l e  10.2. Let  G be as above, F = eG, and let us consider 
the functional 

I[x ,u ,v]  = f f c ( ~  ÷ W ÷ lx i~  ÷ ix~i" + lx~[V ÷ iuI)  d~d~ 

+ f~ [ (~  + ~ )  l~x I v + I~,x~ i v + 17x, I ~ + t v I] d~ 

for some fixed p > l, with state equations 

x~e + x. .  = ~2 + ,~2 + t x : + I xe : + I x. : + a(~, ~)u on G, 

a(~, 7) ~.x + b(~, ~) ~,x~ + c(~, 7) ~x. = I 7x I v + t ~x~ I ~ + 1 7x,~ L v + e(~, ~)v 
on s p, 

and constraints 

] xe t <~ Cl , ] x, ] <~ C~ , (6) 

: :  (} x ee I v ÷ I xe, I v ÷ Im,, I v) d~ d~ ~ C. (7) 
G 

T h e  problem is immediately writ ten in the form (1-5) with 

Lx = xee + x.. , Mx = (x, xe , x.), 

Jx = ayx + b~.x e + cyx,,  Kx  = (yx, 7xe, yx,), 

f o = ~ + , ~ + l x l ~ ÷ l x e l V + l x . l ~ + t u E ,  u E U = E ~ ,  

go = ( ~  + '7~)(7x) ~ + (~'x,) 2 + (~,x,)~ + I v I, v ~ V = EL  

f =  ~2 + @ + ]xl~ + lx  e[" ÷ tx , I  v + d(~,~I)u, 

g = (rx)~ + (yx.)2 + (rx.)~ + e(~, ~)v, 

where a, b, c, e are measurable bounded functions on F, d is a measurable 
bounded  function on G, and p, C, C1, C= positive constants. Thus  

8o9/15/4-Io 
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r = r ' =  1, s = s ' = 3 ,  m = m '  = 1. We take for X the Sobolev 
space X -- I~2(G).  H e r e f o / >  0, go >/0 ,  and thus f0 , go satisfy condition 
(c 0. Also fo ,  go are convex in u and v, respectively, and f ,  g are linear 
in u, v. Thus  the sets ~ C E ~', 1~ C E 2 are certainly convex, and obviously 
closed. 

If  X2 = {(x, u, v)} is the class of all admissible systems, and £20 the 
subclass of only those with I[x, u, v] ~ M o for M o sufficiently large, then 
X2 o is not empty-, and A o = {x}.% is made up of elements x E W.;e(G) with 
II x I1~ ~< M~ for a suitable constant M 2 which depends solely on 3//o, 
G, p, C. Since v = 2, l = 2, p > 1, we have ~, < lp. Hence, the elements 
x ~ A o are equibounded continuous functions on cl G, say Ix(~, ~)I <~ Co, 
where C o depends solely on G, M~,  p. Here we assume d(~, ~?) > /~  > O, 
e(~, ~?) ) y '  > 0 for some constants ),, y '  > 0. For y = (x, xe,  x,), the 
sets Q(f, n, y) are the sets Q(~, ~7, y) = [z = ~2 _}_ ~, -b A -b d(~, ~)u, 
u~E~] ,  where A =  ] x l  p +  ]x~l ~ +  Ix~]~. Hence, Q(~,~/,y) = E ~, 
and for p(~, ~) = 0 we certainly have p(~, ~) ~ Q(~, ~, y) for all y.  Also, 
for [ z [  ~ R ,  or ] z ]  = ] ~ + @ + f l + d ( ~ , ~ ) u  <~R,  we certainly 
have ] u 1 ~ R'/), with R'  ~ R + ~ + ~7 z + fl, and then 

+ ~ <~ fo(~, ~, Y, u) ~ ~ + 7 t -4:- Co ~ + C1~ q- C., ~ + R'/~,. 

I n  other words, I T(z; ~, ~/, y)[ ~< c for some constant c and all [ z ] ~< R. 
Fina l ly ,  I f  [ - +  oo as L u I - +  oe. Thus,  the sets ~ C E 2 satisfy property (P). 
The  same argument holds for the sets /~ C E z which, therefore, also 
have property (P). 

As before, A ---- {x}~ is a subset of X = Wp~(G) which lies in a 
bounded part of X. Since p > 1, the set A is relatively weakly sequentially 
compact in W2ol(G). The  operators L, J, M,  K are defined in S = X and 
have the required properties. The  problem above has an absolute 
minimum. 

R e m a r k  10.2. The  functional of Example 10.2 has an absolute 
min imum even without constraints (6). In  this situation, we consider a 
minimizing sequence [xk], and Yk = Mxk = (xk,  xke, xk,). For some 
subsequence, say still [k], we have xl~ --~ x weakly in W.~(G), xke -~  x~, 
xk, --+ x~ strongly in Lp(G), and if we take 

u~(~, ,~) = _d- l (~ ,  ~)(~ + ~ + I xk I v + I x~  I ~ + I x~,, j~), 

~(~, ~) = ~ + ~ + d-~(~, ,~)(f~ + ~) 

+ [1 ÷ d-X(~, ,/)](1 xe ]~ + l x~e 1. + l x~. I'), 
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t h e n / l  k converges strongly in L i (G), and 

(~(~,  ~), p~(~, 7)) ~ 0(~, ~, y~(~, 7)), 

for all (~, ~?) E G, k ----- 1, 2,... Thus ,  the sets ~ have proper ty  (P'), and 
T h e o r e m  8.1 still applies. 

E x a m p l e  10.3. Le t  G be as above, and let us consider the 
problem of the min imum of  the functional 

I = fro (1 x IT + I x° 1~ + i x. [~ + [ x ,  IT + I x,. IT + I xo. t.) de a ,  (8) 

for some fixed p > 1, with the differential equation 

and the constraint 

xe. = f(~, 7, x, x~, x,,) (9) 

f f o  l x.(~,  v)i d~: d7 = co .  (10) 

Let  (X, ~3) = W~2(G) with the weak topology, and let 

s = {x ~ WT~(G)I II x~ 1il : Co}. 

T h e  problem above is the problem of the minimum of the functional 

I [ x , u , v , w ]  = f f c ( l x l ~  + lxeTT + Ix .  lT + u i T + l v l ~ + l w l T )  dedT, 

with differential equations and constraints 

xe~ = u, xe. = v, x~. = w, (u, v, w) ~ U = EL 

xe. = f (e ,  ~, x, xe, x.), II x~. t11 = Co- 

Thus ,  we take here U = E a, 

L(~)x = (xee , xe. , x..), L(a)x = xe. , M x  = (x, xe , x,,), 

r i = 0 ,  r 2 = 3 ,  r a = 1, r 4 = 0 ,  r = 4 ,  s = 3 ,  m = 3 ,  

and, if Nrx = (Yi, Yz, Ya), we actually have 

fo(e, ~, Y ~ , Y z ,  Ya, u, v, w) = IY~ t T + f Y21 ~ + I Ya I ~ + ]u [~ + [ v l ~ + [w I% 

f~ ' (~ ,  7, y~,  y~,  y~, ", v, w) = (. ,  v, ~), 

f(a)(¢, 7, Yi ,Y2 ,Ys, u, v, w) = f ( ~ ,  7, Yl, Y2, Y~). 
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Here f0 ) 0 and thus f0 satisfies condition (~), a n d f  I~) is independent 
of the control variables. Here A o = {x}eo is weakly relatively sequentially 
compact in N~(G) ,  since we are minimizing the norm of W~(G).  The  
operator L (~) has the weak convergence property in S and also has the 
closed graph property on S, as proved in Section 9. The  operator L (~) 
is certainly closed in measure on S, and M has the convergence property 
(with respect to convergence in measure). Also, La and M have the 
closure property. Finally, the sets 

0(~, ~, y l ,  y~, y~) = [(z °, ~ ,  ~ ,  z~, z~)I ~o 

Z 1 = /~/~ ,2 '2 = 7J~ £,3 ==. W ,  

z ~ = f(~, ~,y~,y~,y2),  (u, v, w) ~ U = E a] 

have property (Q) = (Q~) by force of criterion (6.1) in Ref. t3. Thus,  the 
functional under  consideration has an absolute minimum. 

E x a m p l e  10.4. The  same as before, for the min imum of the 
functional 

I = fJ ; ( l  x I~ + l x~ I~ + Ix, I ' +  l " l ' +  ] v I ' +  [ w I') d~dn, 

for some p > 2 with the differential equations and constraint 

xe~ = f(~:, ~/, x, x~, x.), II xe~ ]]1 = Co, 

x~ + x~ = a(~, n, x, x~, x.)co. 

Here the control variables (u, v, w, w) take their values in U = E ~, and 
f ( ~ ,  ,/, x, xe, x.), a(~, ~, x, x~, x.) satisfy Carath6odory condition, with 
a ~ 7 > 0, y a constant. Here L Cz), L (~), M are as in Example 10.3, we 
have one more operatorL 141 = x~ + x , ,  r 1 = 0, r~ = 3, r 3 = 1, r 4 = 1, 
r = 5, s =  3, m = 4 ,  

f0(~, ~/, Yl, Y~, Ya, u, v, W, co) 

= IYl[~+ ]Y~I '+ lYa [~ + l U I ' +  I v I ' +  [wl ' ,  

.f~4~(~, 7, Yl, Y~, Y3, u, v, w, co) 

= a(~, ~, Y1, Y2, Y3)co, 

a n d f l 2 ) , f  (3) are as in Example 10.3. The  same discussion as before holds. 
We can think of L (4) as having range in L2o(G), and L (4) has closure 
property and strong convergence property. Here the sets ~(~, ~, y) C E 5, 
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y = ( y l ,  ye ,  ya), are closed and convex, and have property (Qz) [but 
not necessarily property (Q) = (Q~)]. 

E x a m p l e  10.5. Let  G ---- [(~:, ~7) I ~ 47 ~/z < 1], let F = ~G, and 
let s denote the arc length measure o n / ' .  We consider the problem of the 
min imum of the functional 

I[~, u~, .~ ,  ~] 

JG a / -  

with differential equations 

a(~, ~/)(x e + x,)x~, = u 1 in G, 

xex  , = u.a in G, 

yx~ = cos v, yx, = sin v on/~, 

where (u l ,  u2) a U = E ~', v a V = E 1, in the class ~2 of all systems 
( x ,  u 1 , u 2 , v ) ,  x ~ S ,  with S = Ix ~ W2~(G), ~(~:, ~7)(xe 47 :%)xe,, ~LI(G)], 
u 1 , u 2 measurable in G, v s-measurable o n / ' ,  and 

Above ~(~, ~7) is a given measurable function on G (not necessarily 
bounded or Ll-integrable ). Here the constant C is assumed to be suffi- 
ciently large so that f2 is not empty. We take here X = H/~(G) with the 
weak topology, and we set 

L m x  = a(~,  ~l)(xe + x . ) x e . ,  L(~)x = xex~ , M x  = (x,  x e , x.), 

J(4)x = ( y x e ,  yx.), K x  = y x ,  

and t h u s r  1 =  1, r 4 =  1, r ~ = r  a = 0 , r = 2 , s = 3 , m = 2 , r i ' = r ( =  
r a' = 0 ,  r 4' = 2, r '  = 2, s' = 1, m ' =  1, and 

fo(~, ~/, Yl, Y~, Y~, u l ,  u2) = yl 2 + y~  + y 2  + u12 + u2~(1 __ u~)~, 

f~ l ) (~ ,  ~7, Yl, Y~, 73, ul ,  u,~) = ul ,  go(~, ~7, 3 ~, v) = (3~ -- 1) ~, 

f4(')(~, ~7, Yl, Y2, Ya, u l ,  u2) = uz, g(')({:, :7, ~, v) = (cos v, sin v). 

The  functions fo a n d f  m satisfy condition (¢,) with ~h, = e-L Also, 
fo /> 0, go > / 0 ,  and thus)Co, go satisfy condition (@ For any sequence 
[x~] of elements from A o = {x}o o there is a subsequence, say still [k], 
such that x~ --+ x weakly in W=Z(G) .  Here, L m has the weak closed graph 
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property on S as proved in Section 9. The operators L ~4), M, J~), K can 
be thought of as having range in L~(G) and L~(_N) spaces, and have the 
strong convergence and the strong closure property on S. Finally, the 
sets 

~(~, ~?, Yl, Y.2, Y3) = [( z°, zl, z2) [ z° ~ y2 _]_ y22 + y32 _}_ Ul 2 _]_ u~(1 _ uz)~, 

z x  = u ~ ,  z ~ = u ~, ( u  ~, u ~) e E ~] 

have property (Q) = (Q~) [but not property (Q) = (Q3)] with respect to 
(y~, yz,  y~); the sets 

/~(~, ~/, 2) ----- [( z°, z 1, z 2) I z° ~> (~ -- 1) ~, z 1 --= cos v, z ~ = sin v, v e Eq 

have property (Q1) [but neither property (Q~) nor property (Q) = (Qa)] 
with respect to 3~. Hence existence Theorem 8.1 applies, and the function- 
al under consideration has an absolute minimum in D. 

E x a m p l e  10.6. In this example, we discuss a problem similar 
to those considered by Butkovsky (Ref. 9). A thin metallic billet of 
length L ~ 0 is moved (through a heating medium) in time T ~> 0 with 
given velocity V(t) ~ 0, 0 ~ t ~ T. The state of the material is charac- 
terized by the temperature distribution function x(t, ~), 0 ~ t ~ T, 
0 ~ ~ ~ L. The process of internal heat transfer between the stationary 
heating medium, characterized by the temperature distribution function 
u(t, ~), 0 ~ t ~ T, 0 ~ ~ ~ L, and the material passing through, is 
given by the differential equation 

b(t, ~)(8x/St) -~ b(t, ~) V(t)(8x/8~) + x = u(t, ~), 

with boundary condition at the entrance of the heating zone x(t, O) = 
Xo(t ). The function b(t, ~) describes the thermophysicat properties of the 
metallic billet. 

We assume that there are constants C1, C~, Ca > 0 such that 
0 <~ V(t) <~C~andCz <~b(t,~) <~ C 3 o n ( O , T )  a n d o n G =  (0, T) × 
(0, L), respectively. We seek the minimum of the functional 

I[x, ul,  u~] = fa ([ x -- x* I~ + I ul I ~ + I u~ [~) dt d~, 

where p > 2 is a constant, x*(t, ~) a given function, x* ~ L,(G),  with 
differential equations 

b(t, ~)(Ox/gt) + b(t, ~) V(t)(Ox/O~) + x -= Ul , 9x/O~ = u2, 
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in the class Y2 of all systems (x, u l ,  u~), u 1 , u~ measurable in G, x any 
element of the set S = Ix ~ W~I(G) I x(t, 0) = x0(t)] satisfying the above 
relation and such that the integrand function in I is Ll-integrable in G. 
We  take here (X, ~6) = I/Vpt(G) with weak topology, we take M x  = x, 
and 

L~)x = [b(axlat) + bV(ax/a¢) + x, ex/a¢], 

so t h a t r  t - - - 0 , r ~ - - - 2 , r ~ = 0 , r  4 = 0 , r = 2 , s =  1, m = 2 ,  and 

fo = Ix  - ~*(t,  ~)1~ + l u~ I ~ + l u~ I', S c~ = (u~, ~). 

Here f0 ~> 0 and thus f0 satisfies condition (~). For  any sequence xk,  
k --  1, 2,..., of elements xk ~ Ao a {x}~0, we certainly have 

II x~ II~ < Ko. !I u~ !1~> 4 Ko. t! u,~ i]~ = II ax~.la¢ I1~. 4 Ko 

for some constant K o . Hence, 

iI ~x~/~t [I~, = [I b-I(ul~ --  x~) --  V(~xU~)II ~ ~< (2C~ ~ + Cl)Ko. 

Thus,  there is a sequence, still iabelled [k], and an element 
x e W,p~(G) so that xT~ -+ x weakly in W2ol(G), and a further subsequence,  
say still [k], such that the boundary  values xk(t, 0), 0 ~ t <~ T, converge 
strongly in L~0[0, T] to x(t, 0). (Actually, p > 2, or 0 < 1 - -  2/p, and, 
by Sobolev's imbedding theorems, xl~(t, O)---~x(t, 0) uniformly in 
[0, T].) In  any case, from xk(t, O ) =  X(to) we derive x(t, O ) - - x o ( t  ). 

Moreover,  the operator L (2) has the weak convergence property and 
the weak closure property on S, and M has the strong convergence 
property and strong closure property;  hence convergence in measure 
property.  Finally, the sets 

O.(t, t:, x) = [(z °, zL z~) I z ° >~ Ix - x*(t, ~)1 ~ + I u~ I ~ + I u.. p', 
z t  = u t , z ~ --___ u2] 

[for (u l ,  u2)e  E 2] have property (Q) with respect to x. Theo rem 8.1 
applies, and the functional under  consideration has an absolute minimum. 
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