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Optimum Coasting Flight in a Horizontal Plane 1 
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Abstract. Busemann's concept of optimum altitude for rectilinear 
coasting flight has been extended to flight in a horizontal plane. The 
reachable domain of a vehicle in coasting flight in a horizontal plane, 
starting from an initial velocity, is obtained. It is shown that the area 
covered first increases with the altitude and then decreases to zero 
when the ceiling is reached. In particular, there exists an altitude for 
maximum longitudinal range and another altitude for maximum 
lateral range. Optimum variations in the lift coefficient and the bank 
angle to reach the boundary of the footprint are discussed. 

Key Words. Flight mechanics, coasting flight, horizontal flight, 
optimum trajectories, maximum longitudinal range, maximum 
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1. Introduction 

In Ref. 1, Busemann, Vinh, and Culp have solved the following 
problem. Consider a hypervelocity vehicle, coasting along a horizontal 
line with an initial speed Vo. As the speed decreases, in order to maintain 
the horizontal flight by using the lift to exactly balance the constant 
weight, t he  angle of attack has to be increased continuously through 
action on the elevator control until a maximum angle of attack is reached. 
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Let );) be the final range obtained. It is shown that _Jr) is a function of 
the altitude; and, under a certain condition given explicitly, there exists 
an opt imum altitude giving the maximum A) .  This opt imum altitude is 
obtained by solving a transcendental equation. The  problem has been 
solved for the flat Earth model, and also for the general case of a spherical 
Earth when the flight altitude is small as compared to the radius of the 
Earth. 

In this paper, we extend the problem to the case of flight in a 
horizontal plane. At a given altitude, a vehicle possesses an initial hori- 
zontal velocity V 0 resulting in an initial kinetic energy. With this initial 
energy , the vehicle can coast-flight in the horizontal plane passing through 
its initial velocity vector by varying the angle of attack and the bank 
angle. The  flight is terminated when the velocity reaches a min imum 
value,: which is just enough to sustain horizontal flight while using the 
maximum angle of attack. For each given altitude, it is proposed to find 
the domain which can be reached by the vehicle. This domain will be 
referred to as the footprint in horizontal coasting flight. Next, we shatl 
consider the variation of the footprint with respect to the altitude; then, 
in some sense, we shall find the optirnum altitude for coasting flight. 

The  problem, as formulated, is solved by using optimal control 
theory to find the lift and the bank angle programs with which the vehicle 
can reach the boundary of the footprint. Because of the complexity of 
the problem (namely, finding unknown functions by variational tech- 
nique, rather than unknown discrete values as in the case considered in 
Re/:. 1 ), we shall restrict ourselves to the case of flight using a flat Earth 
model. On the other hand, it will be shown that, through the use of a set 
of dimensionless variables, it is possible to give the complete solution 
to the problem, applicable to all types of vehicles, by specifying only 
two aerodynamic parameters, namely the maximum lift coe~cient,  and 
the maximum lift-to-drag ratio. 

2. Equations of Motion 

The equations of motion for a coordinated turn in a horizontal plane, 
with the engine shut off at all time, are (Ref. 2) 

dX/dt  = V cos 3, 

dY/d t  = V sin ~/, 

dV/dt  = - -D/m,  
(1) 

V(d~8/dt) = L sin o/m; 
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Fig. 1. Geometry of the trajectory. 

here, besides the usual notation, we have used fl for the heading and c~ for 
the bank angle (Fig. t). The X-axis is taken along the initial velocity 90 . 

For a coordinated turn at constant altitude, we have the constraining 
relation 

L cos ~ - mg. (2) 

We shall use a parabolic drag polar or" the form 

C.  == CDo + kCL 2, (3) 

where the zero-lift drag coefficient CDO and the induced drag factor k 
are assumed independent of the Math  number and the Reynolds number. 
We shall use the usual assumption for the lift and drag forces, that is, 

1 " r 2  L = ½pSCLV 2, D = ~pSCD! . (4) 

It is convenient to introduce the following dimensionless quantities: 

u = ( v / G )  ~, x = ( . i o S C . o / , n ) x ,  y = ( v p S C . o / m ) v ,  

w = mg/~?pSCDoVo 2, v - 1/2 ~ / ( k C a o )  = m a x ( L / D ) .  
(5) 

We notice that w is the apparent dimensionless weight. Although it is 
a constant for coasting flight in a horizontal plane, it increases with the 
altitude through the variation of the atmospheric mass density p. If  the 
angle of attack, or equivalently the llft coefficient CL,  is not constrained, 
a natural choice for the aerodynamic control would be the bank angle a. 
Then, the lift and the drag coefficients will be obtained from Eqs. (2) 
and (3). In practice, the lift coeffÉcient is bounded and the corresponding 
bound on the bank angle is a function of the speed V through the 
constraining relation (2). Hence, the lift coefficient will be a better choice 
as control parameter in this case. 
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We define a lift control parameter ~ such that A °~ is the ratio of the 
induced drag to the zero-lift drag. This ratio is usually referred to as the 
drag ratio (Ref. 2). We have 

~t = ( k / C g o ) I / 2 C L .  (6) 

We notice that A can be seen as the lift coefficient scaled such that A = 1 
corresponds to maximum lift-to-drag ratio. In terms of the new control 
variable 2t, we have the drag coefficient 

C o  = Co0(1 + ,~2), 

and the bank angle, through relations (2) and (5), 

(7) 

cos (r = w/2tu,  sin a = (A2u 2 - -  wZ)l/9"f2iu. (8) 

Now, using u as the independent variable, the state equations (1) 
become, in dimensionless form, 

, ix /du = - - n  cos/3/z,(1 + A2), 

d y / d u  . . . . .  ~/sin f l /u (1  + A2), (9) 

In the equations of motion, w is a constant and can be used as a parameter. 
On the other hand, A is the independent control variable. It is subject to 
the constraint 

~< aM. (10) 

3. Var ia t iona l  Equa t ions  

Let w denote a parameter specifying the flight altitude through P- 
For each altitude level, the flight starts at 

uo = 1,  x ----- 0 ,  y = 0 ,  /3 = 0 .  ( 1 1 )  

The boundary of the footprint is reached by controlling optimally the 
lift 2 until the limiting condition for horizontal flight is reached. By' the 
constraining relations (8) and (10), we have the final condition 

u,: = W / a M ,  x = x ,  , Y = 3 ' I ,  f l  = f l y .  (12) 

As a consequence, the bank angle always tends to zero on the boundary 
of the footprint with ;~ = AM. In this problem, the final heading p! is 
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Fig. 2. Coordinate transformation, 

free, while the final position ( x l ,  Yl) is optimized in some manner. One 
way to trace the footprint is to specify xf while maximizing Yi" For 
reasons which will be clear below, we choose instead to maximize a 
performance index of the form 

J = ax I + by I (t3) 

for a prescribed pair of values a and b. 

Let OC be the vector with components a and b (Fig. 2). Let O M  I be 
the final position vector of the vehicle. To maximize the dot product 

J = O C .  O M  I for each prescribed vector OC, the point M! must be 
seteeted on the boundary of the footprint such that the tangent at M I to 
the footprint is orthogonal to the vector OC. Hence, by a rotation of axes 
such that the new axis Oy is in the direction of OC, the problem becomes 
that of maximizing fll while xl is free. 

In the new coordinate system O~i~, we have the equations 

a~/du = --7 cos ~/u(l + as), 

dy/du = --~ sin ~b/u(1 + )t2), (14) 

a4,/du = --n(a2u~ - w~)l/2/u~(1 + as), 

with the new heading angle ~b measured from the ~-axis. To write the 
variational equations for the maximizing problem, we introduce the vector 
(P l ,  P~, P3) to form the Hamiltonian 

H = --[~7/u(1 + A~)][pl cos ~b + p~ sin ~b + (pa/u)(A~u ~ -- wZ)a/~]. (t5) 
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The  adjoint components  Pi are defined by the equations 

ap~/du = o, 

dpz/du -~ O, 

d pa /du  = --[~//u(1 + ~)](Pl sin ~b -- P2 cos ~b). 

The  performance index has been seen to be 

J = ~ ,  

with the end conditions 

u0 = 1, ~ = ~0, ~ = 0, p = 0, 

u I = w / A M ,  q*l = free, ~f = free, 37i = max. 

From these conditions, we have 

(16) 

(17) 

(18) 

p , ( u , )  = O, p=(u,)  = 1, pa(u,) = O. (19) 

Since the independent  variable u is decreasing, the solution is obtained 
by integrating the systems of state equations (14) and adjoint equations 
(16), using the end conditions (18) and (19) with a lift control 1opt subject 
to the constraint (10) and selected such that, at each instant, the 
Hamiltonian defined by (15) is an absolute maximum. 

4. O p t i m a l  L i f t  C o n t r o l  

The  adjoint system (16) is completely integrable. First, we have 

P l  ~" a l ,  P2 = a s ,  (20) 

w h e r e  the a t are constant. Using Eqs. (14) and (20), we can write the 
equation for P3 as follows: 

ap3/du = , l (a ly  - a ~ ) / & .  

Iience, by integrating, we have 

P3 = a137 - -  a2~ + a a . (21) 

From the transversality condition (19), it is seen that 

a 1 = 0, a 2 = 1, aa = g~. (22) 
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Hence,  we have 

437 

pa = ~1--g .  (23) 

The  Hamiltonian becomes 

H = --[,7/u2(1 + 12)][u sin q, -? (~, -- ~)(a2u 2 -- w2)1/21. (24) 

The  Hamiltonian, considered as a function of ;~2, is maximized when 
= ~M or at an interior point given by 

(~s - ~) A2 + 2u sin ~bA -- (~i -- ~)( u~ -? wa) = 0, (25) 

where we have defined 

A = (aZu 2 - -  w~): /2 .  (26) 

The  positive root of the quadratic equation (25) is 

A = [--u sin ~b + [u 2 sin 2 ~b + (aTe -- ~)2(uZ q- w2)]11~']/(~ - -  ~ ) .  (27) 

Hence,  the variable lift control A (,or, equivalently, A) is expressed 
explicitly in terms of the state variables and a constant ~I • The  variational 
problem is solved, and a numerical integration of the state equations will 
yield the optimal trajectory sought. 

5. R e a c h a b l e  D o m a i n  

Since the optimal lift control has been obtained in terms of the state 
variables, the state equations (14) can be integrated numerically; and, 
at each altitude level w, the final position (xl ,  Yi) will describe the 
boundary  of the footprint  in the horizontal plane. The  initial heading ~0 
with respect to the y-axis can be used as a scanning parameter (Fig. 2). 
Each angle ~b 0 provides an optimal trajectory leading to a point M l on the 
boundary  of the footprint. We notice that ~b 0 = 0 gives the final point 
with maximum lateral range, while ~b o = 90 ° will give the final point  on 
the x-axis with maximum longitudinal range. 

In  a forward integration, the parameter xl in the optimal law (27) 
is unknown.  Hence,  a first guess is required, followed by an iteration 
process to match the end condition. To  avoid this difficulty, we integrate 
the equations backward, as used by Fave in Ref. 3. Then,  the final 
heading ~b I is used as a scanning parameter with the following initial 
condition for the integration: 

at u = w/AN, ~ = 0, .Y = 0, 4' = ~, .  (28) 
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The initial lift is always A -- AM, and subsequent lift control is obtained 
from Eq. (26) as 

= + (29) 

with Eq. (27) for A now becoming 

A = {--u sin ~b + [u s sin s ~b + ~Z(u2 + wz)]a/a}/~. (30) 

The integration stops at u = 1, providing a set of values $0, x l ,  )'I" The 
coordinates of the position Mf on the footprint, in the original Oxy 
coordinate axes, will be given by 

xl = --xl cos ~b 0 -- 37i sin ~b0, Yl = xt sin ~b 0 -- Yl cos ~b 0 . (31) 

The numerical integration requires specifying only two aerodynamic 
parameters, namely the maximum drag ratio ~M and the maximum 
lift-to-drag ratio ~7. The values used were AM = 1.4 and ~ = 2, which 
are typical for a high-speed vehicle with moderate lift capability. Figure 3 
plots the footprint for different flight levels; w varies from a small 
positive value to the limiting value w = )iN 'defining the ceiling. At this 
altitude, as discussed in Ref. 1, the lift capability is not sufficient to 
maintain level flight, and the footprint is reduced to a point. The 
footprint varies with the altitude through the apparent weight w. In  the 
plots, the true coordinates have been recovered through the trans- 
formation (5), written as 

Xl(Vo /g) = wx, YICVo21g) = wy. (32) 

0,2 

0.! 

0 .3 :~ !;(v~'g) ?// 
0 . 2  - .:5~ 

Fig. 3. Footprint as a function of the altitude. 
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The lower half of the figure plots the half footprints at low altitude 
(w ~< 0.35), and the upper half plots the half footprints at high altitude 
(w >/0.35), until the ceiling (w -- 1.4). The generality of the analysis 
is clear, since the results are independent of the initial speed and the other 
characteristics of the vehicle. By varying Vo, we vary proportionally 
the size of the footprint. The wing loading mg/S and the zero-lift drag 
coefficient Coo of any specified vehicle have been included in the altitude 
parameter w. 

Typical footprint and optimal trajectories leading to its boundary 
are presented in Fig. 4, using the value w = 0.35. This altitude level 
is near the altitude giving the maximum longitudinal range. The exact 
value of this critical altitude level can be computed for any given )~M from 
the transcendental equation (Ref. 1) 

2/(t ÷ w 2) -- Iog[~gz(1 -k 1/w~)/(1 --k ~M~)]. (33) 

In the integration process, whenever A as obtained from Eq. (27) is 
larger than AM, the control A = AM is used and the corresponding bank 
angle reaches its instantaneous maximum permissible value. To reach 
any point along the boundary of the footprint, from the point A to the 
point B, the trajectory is flown with variable lift coefficient A which 
increases from an initial value to the final value AM. Points on the 
boundary of the footprint between the points B and C are reached by 
using a variable lift program which decreases first and then increases 
until the final value AM. Points on the boundary between the points C and 
D are reached by flying initially with A = AM, along the path 0D. At 
a point called the switching point, the trajectory leaves the arc 0D tan- 
gentially, and the final arc is flown with variable lift coefficient. Finally, 
the limiting arc 0D is entirely flown with A -~ AM. The point -~ on the 
footprint is the point with maximum lateral range. The variations of the 

. 3  

w=.35 C -~ 

.J .z  ,~ .4 .~  . 6  A 

Fig. 4. Characteristic points on the footprint. 
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Fig. 5. Variation of the optimal lift coefficient. 

lift coefficient A are shown in Fig. 5, while Fig. 6 presents the variations 
of the bank angle cr. In Fig. 7, which plots the variations of the maximum 
longitudinal range and the maximum lateral range as w varies, it is seen 
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Fig. 6. Variation of the optimal bank angle. 
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Fig. 7. 
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that there exists a flight level w giving the longest maximum longitudinal 
range and another flight level giving the largest maximum lateral range. 
While, as shown in Ref. 1, the altitude level w for maximum longitudinal 
range is a function of only the characteristic value ~a,, and can be 
obtained from the explicit transcendental equation (33), the critical flight 
level w for maximum lateral range is a function of both the maximum 
drag ratio ;~M 2 and the maximum lift-to-drag ratio 7. The exact value of 
this critical altitude can be obtained through a numerical integration 
scheme, as will be presented in the next section. 

One distinctive feature of this analysis is that the altitude is repre- 
sented by the apparent dimensionless weight w. This device, as suggested 
by Busemann (Ref. 1), who apparently is inspired by similar dimension- 
less variables proposed by Miele (Ref. 2), not only permits a generaI 
discussion independent of the wing loading mg/S and the zero-lift drag 
coefficient Coo of any specified vehicle, but also has provisions for a 
genera1 type of atmosphere. The only assumption is that p is a decreasing 
function of the altitude. This assumption results in a ceiling for the 
reachable domain. For any flight level w, for any specified type of 
vehicle using an initial speed V0, the actual altitude is obtained through 
the transformation 

p = (mg/S) /~wc~ovo~.  (34) 
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In Fig. 7, it is seen that both the maximum longitudinal range and the 
maximum lateral range tend to zero when w tends to zero. Let P0 be the 
atmospheric mass density at sea level. Then,  for any prescribed vehicle, 
using any initial speed V o ,  the minimum value of w can be obtained from 
Eq. (34), and Fig. 7 can be used to detect whether or not critical altitudes 
exist for the longest maximum longitudinal range or the largest maximum 
lateral range. Also, it is seen that, if the min imum of w is small enough, 
the maximum area covered first increases with the altitude and then 
decreases to zero when the ceiling is reached. 

6. Some Related Problems 

6.1. M a x i m i z i n g  the Final Speed .  Consider the motion at 
a specified flight level w (Fig. 4). While the trajectory leading to any 
prescribed point M t on the boundary of the footprint is unique, points 
inside the footprint can be reached by an infinite number  of flight paths. 
Consequently, we can formulate the ~'ollowing problem: find the optimal 
trajectory leading to a prescribed position M 1 ( x l ,  Y i )  with a maximum 
final speed. 

The  problem is solved by using the original set of state equations (9). 
The  adjoint equations are the same as Eqs. (16), with ~b replaced by ]3. 
The  final position is prescribed, while the final heading is free. Hence, 

P l  --- a l  , P2 = a s ,  P3 = az (x t  - x)  - -  a~(y~ - - y ) .  (35) 

The  optimal lift control is either AM or as given by the equation for A, 

A = ( ~ u  2 - -  w2)1/~, 

which now becomes 

In(x1 - x)  - ( y l  - y ) ] A '  

+ 2u(cos fi + n sin f l )A  - -  [n(x~ - -  x)  - -  ( Y l  - -  Y)]( u~ + w~) = 0, (36) 

where 

n ~-- a z / a l ,  a 1 ~ O. (37) 

First, we consider the case where the trajectory is entirely flown 
with variable lift coefficient. If  the state equations are integrable 
analytically, then using the end conditions (11) and (12) with u I and/3f 
arbitrary and x I and Yl prescribed, we have three equations which can 
be solved for the unknowns n, I31, and the final maximized speed u I . 
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Since numerical integration is required in this problem, a guessed value 
for n has to be used in Eq. (36). Instead of using n as a parameter, we can 
use the initial lift coefficient A i as parameter. Then, from Eq. (36), 
we have the corresponding value for n: 

= (II~A[y ,  + 2 ~ / ( a ?  - ~ ) ! ( 1  + 2 ~  ~ - a?)] .  (38) 

The following scheme has been tested with excellent results. First, 
we have a guessed value for A~, generally between 1 and )~i • Then, n 
is obtained from Eq. (38); and, using the control law (36), we integrate the 
state equations from the initial condition, using x = x! as stopping con- 
dition. The resulting value for y is compared with the prescribed value 
y j ,  and necessary correction in n is made until the prescribed final 
condition is met. 

The procedure ~s valid for the case where the optimal trajectory 
is composed of an initial arc flown with ;~u, followed by an arc with 
variable lift. In this case, the iteration process described above leads the 
initial A i to AM • Then, we use a guessed value for n, sensibly larger than 
the value computed by Eq. (38) with )~t = AM. The state equations 
are integrated with A = AM, from u = 1 until u = us, such that the 
following condition is satisfied: 

[n(xt - x ~ )  - ( y l  - y ~ ) ] / l . ~  

+ 2uXcos t~ + n sin ~ )  A~, - -  [n(~  - -  ~ )  - -  (y~ - y~)](u~ ~ + ~ )  = 0, 
(39-1) 

with 
AM --= (~M2u~ z -- W°') 1/2. (39-2) 

At this point, called the switching point, we change to a variable tift 
program using the optimal control law (36) and continue the integration 
until x = x!. The resulting Value for y is compared with the prescribed 
Yl, and necessary correction in n is made until the prescribed final 
condition is satisfied. 

I f  the point M I is located exactly at either one of the characteristic 
points A, B, C, or D, the final speed is known, u I = w/AM. The respective 
optimal program for h is as follows. 

Point A. The bank angle is zero, and h ----- w/u (Ref. 1). 

Poh~t B, This point is characterized by the additional condition 
dh/du = 0, at u = 1 (Fig. 5). Hence, first by evaluating Eq. (36) at the 
initial point, we have 

(nxe -- y~) Ai ~ + 2A~ -- (nxe -- yl)(1 + w z) ----- 0, (40) 



444 JOTA: VOL. 17, NOS. 5/6, DECEMBER I975 

where 

A i = (~i ~ - -  w2)X/~ 

and ;~i is the initial lift coefficient. Next,  by taking the derivative of 
Eq. (36) and then evaluating it at the initial point, we have 

2(nxs  - -  3,~)A~ a + 4A~ 2 + [2(nx s --  ye ) (w  2 - -  1) -- mT]Ai + 2w ~ = 0. (41) 

The  last two equations can be solved for the unknowns n and A , .  We 
have, by combining the equations, 

n = 2w2(1 -- 2 y f A , ) / ( V  - -  4 w 2 x f ) A , .  (42) 

By substi tuting into Eq. (40), we have a cubic equation for A,: 

~ y f A p  - -  2(7 -- 3w2xl)  A~ ~ - -  ~yf(1 + w 2) At + 2w2x~(1 + w ~) = 0. (43) 

P o i n t  C .  This  point  is characterized by  the fact that, at u = 1, 
x = y = fi = 0, the variable lift coefficient computed  from Eq. (36) is 
h = AM. Hence,  we have for the value of  n: 

where 

n = (1 /x l ) [y~  + 2AM/(I + w ~ - -  A u 2 ) ] ,  

P o i n t  D .  

lift coefficient A = ) t i .  The  final heading angle is given by  

fis = [~/(I + AM2)][AM log{jAM + (Ii 2 --  w2)l le] /w} - -  (AM 2 --  w2)!/~ 1. 

(44-I) 

A M  = (AM 2 - -  W~)I/L (44-2) 

This  point is obtained by flying constantly at maximum 

(45) 

6.2. M a x i m i z i n g  t he  L a t e r a l  R a n g e .  P o i n t  % .  In  this problem, 
the final x I is free, while the final Yl is maximized. Hence, the condition 
(35) becomes 

Pl = 0, P2 = 1, p~ = x I --  x. (46) 

I f  variable lift control is used, it is obtained from 

(xe - -  x ) A  ~ + 2u s i n  f lA - -  (x  1 - -  x ) (u  ~ + w 2) = 0 .  (47) 

At  low altitude, the point -)6 is between the points A and C, and pure 
variable lift is used. Next,  as the altitude level increases, the point  -)(- 
is reached by flying first at h = AM and then switching to variable )t. 

To  evaluate the point with maximum lateral range on the footprint, 
let us first consider the case where pure variable lift is used. The  equation 
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(47) is used for the lift control with a guessed value for x] ,  and the states 
equations are integrated until u = W, AM • The resulting final value for x 
is compared with the guessed value for x l ,  and necessary correction is 
made until the difference becomes zero. We notice from Eq. (47) that the 
initial lift coefficient is always 

,~,i2 -- - 1 + 2w 2. (48) 

Hence, it is a function of the flight level only. 
If an initial arc using the maximum lift coefficient is involved, it is 

reflected by the fact that the initial lift computed by Eq. (48) is larger 
than AA~. Hence, we have the criterion 

w ~ [(AM °--  1)/211/% (49) 

To compute the trajectory leading to the point with maximum lateral 
range above this flight level, we also use a guessed value for x i , but the 
state equations (9) are first integrated with )~ = ;~M until the following 
switching condition is satisfied: 

(xl -- x~)(Ai"u.~ 2 - -  zo 2) + 2us sin fl,(Ai2Us 2 - -  g/)2)1/2 _ _  (A'f - -  X s ) ( U s  2 - ] -  w 2) == 0 ,  

(50) 
At this point, variable lift control as given by Eq. (47) is used, and the 
iteration with respect to xj is done as before. The results are plotted in 
Fig. 7 for maximum lateral range. 

6.3. F o o t p r i n t  for  P r e s c r i b e d  F ina l  Speed .  We have defined 
the footprint in a horizontal plane as the reachable domain using a 
prescribed initial velocity Vo • Hence, the arc O D  (Fig. 8) including the 
origin O is part of the boundary of the footprint. But, if we restrict the 
footprint to the reachable domain, the locus of all terminal points where 
the speed reaches a prescribed value, say uf = W/Am,  then the boundary 
arc O D  and its symmetric arc O F  move away from the origin to the new 
boundary D E F .  The lift program to reach this boundary always involves 
AM, but the bank angle computed from Eq. (8) alternatively changes its 
sign. It is simpler to see the improvement of the footprint with each 
switch by geometrical considerations. Let I be the switching point 
(Fig. 8), and assume that the trajectory is first flown with a left turn 
from O to /us ing  the maximum permissible bank angle and then continues 
with a right turn with maximum bank. The trajectory terminates at the 
point F' .  The two arcs I D  and I F '  are symmetric with respect to the 
velocity at the point I. Hence, the boundary connecting the limiting 
points D and F using one switch is obtained by following the locus of the 
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Fig. 8. Switching-in bank angle. 

- - X  

point F when we roll without slide the arc OF on the arc OD, and then use 
a symmetry with respect to the x-axis. Flight paths with two switches 
can be obtained by using the same geometric discussion; but, in this case 
of optimal coasting flight in a horizontal plane, a trajectory involving 
more than one switching has not been detected. 
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