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Geometric and Analytic Views in Existence Theorems 
for Optimal Control. III. Weak Solutions 1 

L. C E S A R I  2 

Abstract. Existence theorems are proved for weak optimal solutions 
of problems of optimization with distributed and boundary control. 
Many examples are given. Application is made of recent remarks on 
closure properties of linear and nonlinear operators. Recent geometric, 
topological, and analytical views are brought to bear on the underlying 
seminormality conditions. 
Key Words. Existence theorems, weak solutions, distributed and 
boundary controls, seminormality, analytic criteria, closed operators. 

1. Introduction 

In the present paper, we discuss optimal solutions of problems of 
optimization with distributed and boundary controls, with application of 
recent remarks on closure properties of linear and nonlinear operators, and 
geometric, topological, and analytic views concerning seminormality con- 
ditions. The latter type of requirements are indeed drastically reduced or 
completely eliminated in the present paper. 

The present paper completes the previous ones (Refs. 1, 2) where we 
limited ourselves to strong solutions only. For the sake of brevity, we refer to 
Ref. 2 for some of the notations and definitions. 

2. Problem of Optimization with State Equations in the Weak Form 

As pointed out in 
functionals of the form 

Ref. 2, we are interested in the minimum of 

z=Ej l fo, v,d j 
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on measure spaces (Gj, Aj,/xj), j = 1 . . . . .  N, under constraints of the form 
~ x  = Nj[x, uj], each involving a certain/xj-measurable control function uj 
on Gj, while the unknown x is an element of some abstract topological space 
X. As in Ref. 2, to be specific and for the sake of simplicity, we assume that 
one of the spaces is a subset G of E ~ of point t, with Lebesgue measure dr, 
and a functional relation 5~x = Nix ,  u] to satisfy, involving a measurable 
control function u with values in N m, and that there is only another space, 
namely, a measure space (F, sO, Ix) of points ~', with measure /x, and a 
functional relation to satisfy J x  = N'[x, v], involving a/x-measurable  con- 
trol function v with values in Em'. Actually, in most applications and 
examples, G is a Morrey-type domain, F is a part of the boundary of G of 
some dimension 1 -< o--< Y - 1, and/x is simply the o--measure (area, length, 
or in general o--area subsumed by G on F). Then, X is a Sobolev space 
W~p(G) on G, and Sobolev's imbedding theorems may have a fundamental 
role. 

In the present paper, we are interested in the case where the functional 
relations on G and on F may be written in weak form as is usual in partial 
differential equation theory. 

Let G be any measurable subset of E ~ with finite Lebesgue measure 
I GI < 0o. For every point t e G, let A (t) denote a given subset of N s and let A 
denote the set 

A =[(t,  y)] te  G, y e A ( t ) ] .  

e A, let U(t, y) denote a given subset of E m, and let M denote For every (t, y) 
the set 

M =[(t,  y, u) l tE  G, y c A(t),  u e  U(t, y ) ] C E  ~+s+m. 

Let  fo(t, y, u), f ( t ,  y, u) = (fl  . . . . .  fi) denote given functions defined on M 
with values on E 1 and E r, respectively. 

Let  (F, d) be a given metric space which is also a finite complete 
measure space (F, M,/X) such that the o--algebra M contains the Borel sets of 
(F, d). For every point ~-e F, let B(~-) denote a given subset of E s', and let B 
denote the set 

B =[(T, 33)1~-e F, ~ e  B(T)]. 

For every (~-, 33)c B, let V(I-, 33) denote a given subset of Em', and let/V/ 
denote the set 

/~/= [(~', )3, v)l~'e F, 33 e B(~-), v e Y(~-, 33)]CFx E s'+m'. 

Let go('r, 33, v), g(~, 33, v) = (gl . . . .  , gr') denote given functions defined on A~/ 
with values in E 1 and E r', respectively. 

Here,  y, 33 are the state variables, u and v the control variables, the sets 
U(t, y), V(~', 33) the control spaces, on G and on F, respectively. 
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We shall assume that fo, f, A, M satisfy a Carath6odory condition (C), as 
stated in Ref. 2. Thus, in particular, fo, f are measurable in t for every (y, u) 
and continuous in (y, u) for almost all t. Analogously, we assume that go, g, 
B, M satisfy a Carath6odory condition (C). 

Let (X, J-) be a given topological space and S a given subset of X. Let At 
and Y( be operators, not necessarily linear, mapping S into (Lp(G))  r and 
(Lp(F))", respectively, 1 -< p - oo. 

To state the general weak form of the state equations, we need first the 
space W of test functions w = (wl, w2), 

W C (Lq(G))  ~ × (Lq(r))  r', 

with 
- I  p + q - l =  1, l_<q_<oo, 1 <_p__oo. 

Namely, we shall assume that W is a normed space with norm ll IIw 
satisfying a relation 

Ilwlllq+llw21lq<_gllwllw for alt w --(wl, W'z)C W, (1) 

and some constant K, where fl t[q are the Lq-norm in G or F. Let W* denote 
the dual space of W, so that 

W* D (Lp( G))  r x (Lp(F)) r'. 

Let T denote the set of all measurable functions u • G ~ E m and 7~ the 
set of all /z-measurable functions v • F ~ Em'. Let ~ "  S ~ W* be a given 
operator, not necessarily linear; and, for any (x, u, v), x e S, u ~ T, v ~ T 
[under the usual restrictions Atx( t) e A ( t), u( t) c U( t, Atx(  t) ), t ~ G, Y{x(.c) c 
B('r), v(  r) ~ V(r ,  Yl?x('r) ), "c ~ F], let 

f ( t ,  Atx(t), u(t)) ~ Lo(G) ,  g(r, Y£x(r), v(~')) ~ (Le(F)), 

let ~, or/~x.o, or ~(x, u, v) be the linear operator ~ • W ~ E  1, defined by 

=/~(wb w2) = f~ f (t, Atx(  t), u(  t)) " wl( t )  dt 

fr g(r, ~x(r), v(r)) • w2(z) d/z, + 

where f .  w~ and g • w2 denote usual inner products in E ~ and E / ,  respec- 
tively. The weak form of the state equation is now 

o r  

o~(x)w = ,~(x, u, v)w,  
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o r  

~(X)(W1, W2)~xuv(W1, W2) for all w c W. 

We are now in a position to state the problem of optimization we are 
concerned with in the present paper. Namely ,  we are concerned with the 
problem of finding elements x ~ S, u ~ T, v ~ T, which minimize the func- 
tional 

I[x, u, v] = Io fo(t, Alx(t), u( t ) )dt+ Ir go0-, ~x(T), v0"))dg,  

with state equation 

~ w  = g(x, u, v)w for all w e W, 

(2) 

(3) 

(~LPx)(t) =f(t, ( J/lx)(t), u(t)) in G, 

and 

(JCx)(t) = g(z, (5~x)(z), v0-)) on F, 

as in Ref. 2. In any particular situation, it is understood that Eq. (3) is a 
generalization of the corresponding strong form, [that is, whenever x, u, v 
satisfy ~ x  = f, J x  = g, then they satisfy necessarily Eq. (3)]. Many examples 
have already been given in Ref. 3. In Ref. 3, we showed also that the case 
where controls appear in ~ and ~, and therefore in ~, does not present 
difficulties (see Remark 3.1 below and examples). 

For every t e G and y c A(t) ,  we shall denote by O(t, y) the set 

l)(t, y ) = [ ( z  °, z)lz°>-fo(t, y, u), z =f(t ,  y, u), u~ U(t, y ) ] C E  r+l. 

For every ~- 6 F and )3 6 B(r) ,  we shall denote by /~  05 )3) the set 

)3)= [(z °, )3, v), z )3, v), )3)] c E 

As in Ref. 2, we need properties of the sets 0(t ,  y),/~(t, )3). We restate here 
only properties (K), (Q), (P), and (P') with respect to y for the sets 0(t ,  y). 

The only functional relation, Eq. (3), replaces here the two strong form 
state equations usually written as 

and constraints 

AAx(t)~A(t),  u(t)~ U(t, Atx(t)), t~ G, a.e., (4) 

5gx0-) ~ B0-), v0-) ~ V0-, Y~'x (z)), z ~ F, /x-a.e. (5) 
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Topological Properties (K) and (Q). The sets O(t, y) are said to 
satisfy property (K) at (to, Y0) with respect to y provided 

O(to, Yo)= r ]  cl U O(to, y), 
e:>O u~N.(Yo) 

where 

(b) 
that 

N,(yo) = [y c A(t), t Y - yo]-< E]. 

The same sets are said to satisfy property (Q) at (to, yo) with respect to y 
(Ref. 4) provided 

()(to, Yo)= ~ clco U ()(to, y). 
,E>O y~ N~(Yo) 

Any set O(t, y) satisfying property (K) is dosed; any set satisfying property 
(Q) is closed and convex. 

A number of criteria have been proved in Refs. 5-8, which guarantee 
property (Q) of the sets ()(t, y). We mention here only one which we shall 
need below. 

For any given to c G and Yo c A (to), a function O(to, y, u) is said to be of 
stow growth with respect to fo(t, y, u) at Yo, provided 

(a) for some 8 > 0 and M-> 0, we have 

fo(to, y, u) >- - M  for all y cA(to) ,  [ y -  yol-< ~, u c U(to, y), 

given e > 0, there is ~ -> 0 (which may depend on e, & M, to, Yo) such 

implies 

y cA(to), ]Y-YoI-& u cU(to,  y), ]u]>-f~ 

l~(to, y, u)[<-e[fo(to, y, u)+M].  

It was proved in Ref. 4 under different notations that, if fo(to, y, u), 
f(to, y, u) are continuous in (y, u), and both 1 andf(to, y, u) are of slow 
growth with respect to fo(to, y, u) at Yo, then the sets O(to, y) if convex, have 
property (Q) with respect to y at (to, Yo). 

Geometrical Property (P). First, let us note that the projection of the 
set ()(t, y) on the z-space E r is the set 

O(t, y) = [ z l z  =f(t,  y, u), u E U(t, y ) ] a E  r, 

and thus Q(t, y) is convex whenever ()(t, y) is convex. For every t c G, 
y cA(t) ,  z c Q(t, y), we denote by T(z; t, y) the scalar function 

T(z; t ,  y )= in f [ z ° l ( z ° , z ) c ( ) ( t ,  y)], - m < - T ( z ; t ,  y )<  +m.  

For every N > 0 ,  we denote by V(0, N) the closed ball [z c Er[[z[<-N]. 



190 JOTA: VOL. 19, NO. 1, MAY 1976 

We say that the sets 0(t ,  y) satisfy property (P) with respect to y 
provided 

(P1) there is a measurable bounded function/5(0 = (p°(t), p(t)), t ~ G, 
p°(t)c E~, p(t)c E r, say Ip°(t)l<-c, Ip(t)l<-o -, t e G, such that ~(t)c Q(t, y), 
T(z ; t, y) >- - c for all (t, y) 6 A, t ~ G -  To, [To] = 0, and z ~ O(t, y) with 
Izl- , 

(P2) for every N>o- ,  the sets 0(t ,  y) n (E 1 × V(0, N)) have property 
(Q) with respect to y at every (to, y) c A, to 6 G - To, [To[ = 0 (Ref. 9, Remark 
8, p. 396). 

A remark is needed here. Property (P2) implies that the sets 

O(t, y)c~[EI× V(O,N)], N>-o ", 

are closed and convex, and hence the sets 0(t ,  y) themselves are closed and 
convex. Conversely, if we assume that the sets 0( t ,  y) are closed and convex, 
then the sets 

O(t, y) h i E 1  x V(0, N)], N-->cr, 

are also closed and convex. Because of their special structure, property (K) 
of the same sets 

()(t, y) n [E 1 x V(0, N)] 

implies property (Q) of the same sets (Refs. 7, 10). Thus, if the sets ()(t, y) 
are closed and convex, it suffices to require property (K) in (P2) above. 
Finally, if we know that, for every to fixed, to ~ G -  To, [ To[ = 0, we have 
if(to, y, u)[--> +0o as lu[--> ~ ,  u e U(to, y), uniformly on every compact sub- 
set of A(to), then the sets 

O(to, y) EElx v(0, 
certainly have property (K) with respect to y at every (to, Yo), Yo c A(to) [a 
consequence of the continuity of fo(to, y, u), f(t, y, u) with respect to (y, u)]. 
If the sets (~(to, y) are closed and convex, then the sets 

()(to, y) nEE ~ x V(0, N)] 

have also property (Q) with respect to y at (to, Yo) (Ref. 9, p. 395). 

Property (P'). The following variant of property (P) is of interest (Ref. 
10; see also Ref. 2). It will be expressed in terms of sequences of functions 
yk(t), t~H,  k = 1, 2 . . . . .  In applications, this will be any minimizing se- 
quence of state functions. 

We say that the sets 0(t ,  y) satisfy property (P~) provided, for any 
sequence yk(t), t ~ G, k = 1, 2 . . . . .  with yk(t)~ A(t),  yk(t)-~ y(t) strongly in 
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(LI(G)) ' ,  there are other functions /z(t), /xk(t), p(t), pk(t), t~  G, k = 
1, 2 , . . . ,  Ix, Ixk ~ LI (G) ,  p, Pk ~ (LI(G))  r, such that 

(txk(t),pk(t))C~)(t,  yk(t)), t c G ,  a . e . , k =  l , 2  . . . . .  

txk ~ / z  weakly in L~(G), or/xk ~ /x  in measure in G, 

Pk -~ P strongly in (LI(G))  r as k ~ oo. 

We shall say that the sets O(t, y) satisfy condition (P') provided the same sets 
satisfy conditions (P~) and (P2)- 

Control Spaces U(t), V(¢) Independent ot the State Variables. When 
the control spaces U(t) depend on t only and V0-) depend on ~- only, the 
Nemitsky operators 

[y, u ] ~  f (  . , y( . ), u ( .  )), [~, v ] ~  g( . , ~( . ), v( . )), 

and the analogous ones with fo, go, have relevant properties which have been 
studied in detail in Refs. 11-13. Some of the results have been reported in 
Ref. 2. 

On the basis of properties of the Nemitsky operators above, it has been 
proved in Refs. 12-13, for instance, that, if Yk ~ Y in measure in G and uk is 
bounded in the Ll-norm, say Ilukll-< L [or f satisfies some natural analytic 
conditions as (F), or (G), or (H) of Refs. 11-12], then the differences 

8k(t) =f( t ,  yk(t), uk( t ) ) - f ( t ,  y(t), uk(t)) 

approach zero in measure in G as k ~ oo. Then, the lower closure and lower 
semicontinuity theorems hold without requiring the verification that the sets 
0(t ,  y) have property (Q), or (P), or (P'). We refer to Ref. 2 for properties 
(F), (G), (H). 

3. Existence Theorem 

Let p be given, 1 _<p_<oo, and let q such that 
--1 q + p - l =  1. 

A triple (x, u, v) is said to be admissible provided x c S, u ~ T, V~ T, 
provided relations (4)-(5) hold, provided 

fo(t, d~x(t), u(t)) c LI (G) ,  go(r, Ygx(z), v(z)) ~ LI(F), 

f(t, ~ x ( t ) ,  u( t ) )e(Lp(G)) ' ,  g(r, Yfx(r), v( 'r))e(Lp(F)) r', 
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and the state equation (3), or 

~ w  = ,~(x, u, v)w,  
holds for all u ~ W. 

We shall consider below nonempty closed classes f~ of admissible 
systems (x, u, v). A class 12 of admissible triples is said to be closed if the 
following occurs: if (xk, uu, vk) e 1), k = 1, 2 , . . . ,  xk ~ x  in (X, 9-) as k ~oo,  
x e S, if I[Xk, Uk, Vk]~a<O0 as k ~ o o ,  and there are admissible triples 
(x, u, v) such that I[x, u, v] <- a, then there is also some triple (x, ~, 5) e 1) 
with I[x, ft, 5] <-a. This definition is justified by lower closure theorems 
(Refs. 4, 6, 9, 14, 15). 

For the operators ~ ,  Y(, o~ introduced above, we shall need the property 
of closure in S, the closure graph property in S, and the convergence 
property that we introduced in Section 7 of Ref. 2. 

Given a nonempty class ~ of admissible triples (x, u, v), we shall denote 
by ~o the nonempty subset of only those (x, u, v) c II with I[x, u, v] <- Mo for 
some constant Mo. We shall also denote by Ao, A, A the sets 

Ao ={X}~o ={x e Xl(x, u, v) e ao}, 

A ={(x, u)}ao = {(x, u ) e X x  Tl(x, u, v) e no}, 

h ={(x, v)}~,o = {(x, v)exx f ' l (x, u, v) ~ ao}. 

The vector functions f(t, y, u), g(r, ~, v) actually define Nemitsky-type 
operators F, G: 

Fix, u](t) =f(t, Mx(t),  u(t)), t~ G, 

G[x, v](~') = g(r, Kx('r), v(~')), "r e F, 

F : A-'> (LI(G)) r, G : ~t--> (Ll(r))/. 

We shall need below the requirement that the images F(A) of A and 
G(/~) of A are relatively sequentially weakly compact subsets of (LI(G))" 
and (LI(G))/ .  This is certainly the case if f0, f, and go, g satisfy the following 
growth condition 

(H) For p = 1, we assume that, given any E > 0, there are functions 

49,>-0, ¢b, eLI (G) ,  and q~,_>0, ~,->LI(F),  

such that 

]f(t,y,u)[<-4),(t)+Efo(t,y,u) f o r a l l ( t , y , u ) e M .  

Ig(~',~,v)l<-~b,(t)+ego('r,~,v) for all (r, 13, v) e ~I. 

If p > 1, we assume that there are functions 

4)0>-0, CkoeLl(G), and 4~0--- 0, ~o e LI(F), 
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and constants a > 0, b > 0, such that 

If(t, y, u)l p <- 4,o(t) + afo(t, y, u) for all (t, y, u) ~ M, 

Ig(%~,v)tP<-C~o(t)+bgo(~',~,v) for all (%)3, v) ~/~/. 

This condition, for p = 1, has been consistently used by Cesari (see, e.g., 
Refs. 6, 9, 14), as a suitable extension of previous more restrictive growth 
hypotheses used by Tonelli and McShane. 

We say that fo, f satisfy condition (a) on G if there is some function 
qJ(t)>-O, t~  G, ~O~LI(G) such that 

/o(t, y, u) --> - qJ(t) 

for all (t, y, u) ~ M. We say that f0, f satisfy condition (/3) on G if there are a 
function qJ(t)>-O, t~  G, O ~ L I ( G ) ,  and a constant y---0 such that 

fo(t, y, u)>- - ~ O ( t ) -  y[f(t ,  y, u)j 

for all (t, y, u) ~ M. Analogous properties hold for go, g on M. 
Finally, let ~ / b e  an operator, not necessarily linear, from a set S of a 

topological space (X, 3-) into a topological space Y-= (Y, :~). We say that the 
operator 

~ / :  S ~ ( Y ,  ~) ,  S C (X, 3-), 

is closed on S, provided xk ~ S, k = 1, 2 . . . . .  x ~ S, xk -> x in (X, if), .ffxk ~ y 
in (Y, Y), implies y = sex. We say that 

~:s-~(Y,y), sc(x ,y) ,  

has the closed graph property provided xk ~ S, k = 1, 2 . . . .  , x ~ X,  xk ~ x in 
(X,  3-3, ~/xk --> y in (Y, ~) ,  implies x ~ S and y = J x .  

We say that the operator 

.ff : S ~  (Y, Y), S C (X, 3-), 

has the convergence property [with respect to S, (X, 3-3, ( Y, :~)] provided, if 
xk ~ S, k = 1, 2 , . . . ,  x c X,  xk ~ x in (X,  i f ) ,  then the sequence s~xk, k = 
1, 2 . . . . .  has a convergent subsequence in (Y, Y), that is, there is some y e T 
and a subsequence [ks] such that xks ~ y as s->ac in (Y, Y). 

If S is the whole space X,  then closure and closed graph properties are 
identical. In Ref. 2 we have given examples and criteria for some of these 
properties. 

Theorem 3.1. Existence Theorem for Opt imal  W e a k  Solutions. Let 
us assume that A, M, f0, f satisfy conditions (C) on G, that B0, )V/, go, g satisfy 
condition (C) on F, that f0, f satisfy condition (/3) on G, and go, g satisfy 
condition (/3) on F. Let us assume that the sets ()(t, y) in E r+l satisfy 
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property (Q) with respect to y only at all (t, y) e A, t 6 G -  To, 17'0[ = 0, and 
the sets /~(r ,  )~) in E r'+l satisfy property (Q) with respect to ~ only at all 
(z, ~ )e  B, z e  F - T o ,  ~ (To)=  0. Let us assume that relation (1) holds, and 
that ~ ,  Y(, ~ have the closure property in S, that 3 / a n d  5'{ have the strong 
convergence property in S, and that at least one of the operators ~ ,  5"{, ~ h a s  
the closure graph property. Let 11 be a nonempty closed class of admissible 
systems (x, u, v) such that Ao is sequentially relatively compact in (X, 3-) and 
that the images F(A) of A and G(A) of/~ are relatively sequentially weakly 
compact subsets of (Lp(G)) r and (Lp(F)) r', respectively. Then, the functional 
I[x, u, v] has an absolute minimum in ~.  

If fo, f satisfy condition (H), then certainly)C0, f satisfy condition (/3), and 
the image F(A) of A is a relatively sequentially weakly compact subset of 
(Lp(G)) r. If go, g satiSfYoCOndition (H), then certainly go, g satisfy condition 
(/3), and the image G(A) of A is a relatively sequentially weakly compact 
subset of (Lp(F)) r . 

Alternate Assumptions. Property (Q) above can be replaced by prop- 
erty (P), or by property (P'), for the sets (), or /~,  or both. If the sets U(t) 
depend on t only, and one of the conditions (F), or (G), or (H) holds for ]o, f 
then conditions (Q), or (P), or (P') need not be verified. The same holds for 
the sets V(z) and the functions go, g. Again, if U(t) depends on t only, and 
we know that, for (x, u) e A, u is bounded in norm, then the sets ()(t, y), if 
convex and closed, need not verify conditions (Q), (P), (P'), and fo need not 
verify conditions (F), (G), (H). Analogous statements hold concerning V(z), 
%,/~ (T, ~3), go. 

Remark 3.1. As often occurs, control variables may appear in the 
expressions of the operators ~,  J ,  ~ ,  5g, and therefore in o~. Existence 
theorems analogous to Theorem 3.1 hold, as we have already shown in Ref. 
3, Section 5. They are obtained by treating such controls as state variables. 
We shall see this situation in examples below (Section 4). 

Conversely, it may occur that state variables, appearing in the functions 
fo, f, go, g, are better treated as control variables (for instance, derivatives of 
state variables). Again, we shall see this situation in examples below. 

Proof ot Theorem 3.1. As usual, let ," denote the infimum of I[x, u, v] 
in the class f~, and hence also in the class f~0, - ~  -< i -< M0 < +c~. We write 

I[x, u, v] = I~ + I2, Ii = fc fo dt, I2 = fr go dp~. 

Let (xk, uk, vk), k = 1, 2 . . . . .  be a sequence of elements in t2o with 

Ik = I[ xk, uk, vk ] --> i as k --> oo. 
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Let I l k  , [2k be the values of I1, 12 computed on the elements Xk, Uk, Vk. Since 

xk E Ao = {X}ao C S C X, k = 1, 2 . . . . .  

and Ao is relatively sequentially compact as a subset of (X, 3-), there is a 
subsequence, say still [k], and an element x e X such that Xk ~ X in (X, 3).  
Let zk, 2k denote the functions 

zk(t)=f(t ,  yk(t), uk(t))eF(A), te  G, 

Zk (T) = g(r, ~k (r), Vk (r)) ~ G(A), r ~ F, 

where 

and 

k = l ,  2 , . . . ,  

yk(t) c A ( t ) ,  

)~k ('r) E B(r),  

uk(t) ~ U(t, yk(t)), t 6 G, a.e. ,  

vk(r) c V(r, Yk (r)), r ~ F,/x-a.e., k = 1, 2 . . . . .  

Since F(A) and G(A) are relatively sequentially weakly compact subsets 
of (Lp(G))" and (Lp(F))", there is a subsequence, say still [k], and elements 

r o r '  • • o o z ~ (Lp(G)), z ~ !Lp(F)) , such that Zk -->Z weakly m (Lp(G)) and zk -->z 
weakly in (Lt,(F)) 'as k ~ oo. Thus, [Izkl[1 and Ilzkl[1 are bounded. By property 
(/3), we have now 

fo(t, AgXk(t), uk(t)) >- --O(t)--yzk(t), t c  G, 

go(~, Xxk0-), vk(r))-> - 0 ( ~ ) -  v~k0-), ~ r ;  

hence, 

f 
Ixk >- - Jo ~ d t -  7][zk]ll, 

This proves that 

I[xk, uk, vk] =I lk  +I2k 

is bounded below, that is, i is finite. If w = (Wl, w2) is any element of W, then 
by relations (1) we know that 

wlE(Lq(G)f ,  

Hence, 

iG zk(t) " Wl(t) dt-~ fG z(t) " wl(t) dt, 

I2k --> - Ir 4~ d/z - 7j]zkl]l- 

Ir ~k('r) • wl(z) dlz 

-~ [ ~(r) " w:(T) d~ 

W 2 E (Lq (I~))r'. 
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as k -~ 0o. Since 

~ ( x ~ ) w  = ,~(x~, u~, v~ )w  

for all k, we conclude that o%(xk)w converges as k-~ oo, namely, 

(~Xk)W~f  z ' w ,  d t+ f r~ 'W2d /x  as k ~oo. 
JG 

We have assumed that J/t and Y{ have the convergence property. Thus, 
Xk ~ X in (X, if') implies that, for some subsequence, say still [k], we have 

~ r s o m e  

y E (LI(G)) r, )~ e (L,(F)) r. 

Finally, we have assumed that the operators J//, YC, ~ have the closure 
property in S, and at least one has the closed graph closure property in S. 
Thus, x 6 S, and then 

and 

~ x  = y, ~ x  = ~, 

(~x)w= I z " wl dt+ Ir z " w 2 d t z  for all w = (wl, w2) ~ W. (6) 

Here,  the sets 0(t ,  y) have property (Q) with respect to y in A(t) for 
almost all t, and the sets/~ (~-, 13) have property (Q) with respect to 13 in B(~-) 
for/x-almost all t. Then, by lower closure theorem (7.1) of Ref. 14, there are 
elements u ~ T, v ~ T such that 

y(t)6A(t) ,  

~(r) ~ B('r), 

u(t) ~ U(t, y(t)), 

v(7)e VO', ;(t)), 

z(t) =f(t, y(t), u(t)), t~ G, a.e., 

~(~) = g0", Y0-), v(r)), r e  F,/x-a.e., 

fo(t, y(t), u(t)) ~ Lx(G), 

where 

go(r, )S 0"), vO')) ~ LI(F), 

y = ~ x ,  13 = Y{x; 

and, by comparison with Eq. (6), we also have 

(~x)w = h(x, u, v)w, w ~ W. 

I[x, u, v]-<,, 
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Thus, system (x, u, v) is admissible; and, since ~ is closed, there is also some 
admissible system (x, fi, ~5) in ~ with I[x, ~, ~] <- i. The same system (x, a, 15) 
belongs to 12, hence 

l[x, (~, ~] >-i, and /Ix, a, 15] = i. 

Theorem 3.1 is thereby proved under the main hypotheses. The proof is the 
same under the alternate hypotheses, by using the corresponding lower 
closure theorems in Refs. 9 and 15. 

4. Examples 

Example 4.1. Let G be an open bounded connected subset of E ", 
u -> 1, of class K. We are concerned with the minimum of a functional 

u] = Io fo(t, x(t), Vx(t), u(t)) dt, (7) I[ x, 

x, u scalars, with state equations which we wish to be a weak form of 

i O2x/(Oti) 2 = f(t, x(t), Vx(t), u(t)), (8) 
i=1 

and with constraints 
x ( t ) 6 A ( t ) ,  u(t) 6 U(t, x (t)). (9) 

Here, x and u are functions on G. Thus, go = 0, we have no boundary 
conditions on x, we can take g =0 ,  ~ = 0 ,  Y{=0, and need make no 
references to F, B, V, ~/. 

By introducing the increased control 

~7(t) = ( u  1, . . . ,  u v, u ) ,  

we have the equivalent problem of minimizing the integral 

I[x, a] = Jo fo(t, x(t), fi(t)) dr, 
1 .  

with differential equations (8) in weak form and 

Ox/O{ =~ = u i, i = 1, . . . ,  v, (10) 

and constraints 

x ( t ) c A ( t ) ,  f i ( t ) eE~×U( t , x ( t ) ) .  (11) 

We shall think of W as being (C~o (G)) ~+1, with 

W=(W, 0)~l¢~% W=(W 1, . .  W~,W), a n d w  1 . . . . . .  , w , w e C~o ( G ) .  
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As a weak form of the present  system of differential equations, we now take 

I~ (Ox/Od)(wi(t)) dr -  fc ~ (Ox/Od)(Ow/Ot') dt 
i=1 i=1 

= fc f(t, x(t), fi(t))w(t)dt+i=li fO ui(t)(wi(t))dt (12) 

for all 

= (w '  . . . . .  w ~, w)c  (C~0 (G)) ~+'. 

It is easy to verify that any strong solution x, u of the original system of 
equations, say x c W~(G), u ~ T, is certainly a solution of (12). Instead, we 
take S = W~(G) with the weak topology, thus x e S = WI(G), u --- T, p = i, 
or equivalently x ~ S = WI(G), and t] measurable  in G. 

We shall take in W = (C~o (G)) ~+1 the topology defined by the norm 

[l~[Iw=max]w(t)[+ ~ maxlow/ot'[+ ~ maxlw'(t)]. 
i=I i=1 

We have here r=v+l; and, if we denote by I]~II~ the norm of ~ as an 
element  of (L~(G)) ~ × W~(G), then ll ll  = It llw for every e lement  ff e W. 
Also, 

(Loo(G))'D(Loo(O)) ~ x WL(G) DW, (Ll(O))rc W ~:, 

and relation (1) holds with K = 1, since 

and 

We have here 

.Atx =x, ~ : S ~ L 1 ( G ) ,  

~ : S~(LI(G))r  C W* 

is the opera tor  defined by the first member  of (12). Now, if x, xk ~ S- -  
WI(G),  k = 1, 2 . . . . .  and xk ~ x weakly in S = W~(G), then xk ~ x as k -~ 
in LI (G) ,  and 

OXk/Ot  i --~ Ox/Ot i 

Hence,  

for every 

ask ~ooweaklyin L1(G), i= 1 . . . . .  v. 

(.~xk ) ~ -" ( ~x  ) ~, 

~, e (L~( G)) ~ x W~( G), 
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and then certainly for every 

ff e W = (C~(G)) ~+1. 

Thus, ~ has the closure property in S as well as the closed graph property in 
S. By Sobolev's imbedding theorems, xk ~ x strongly in LI(G),  or ~xk ~ ~ x  
strongly in Ll(G).  Thus, ~ • S ~ L I ( G )  has the strong convergence property 
as well as the closure and closure graph properties. 

Note that here R C E 2~+2 is the set of all (t, y, if) with 

t E G ,  y e A ( t ) ,  f i E ( J ( t , y ) = E ~ x U ( t , y ) ,  

and that fo(t, y, a),/~(t, y, i i )= ( f t , . . . ,  f~, f )  are defined on ~ with f~ = u ~, 
i = 1  . . . . .  u, f = f ( t , y , u ) .  For Z = ( Z  l . . . . .  Z ~ ) ,  f i = ( u  1 . . . .  , u ' , u ) ,  the 
sets Q(t, y) are the subsets of E ~+2 defined by 

O(t, y)=[ (z  °, z, Z)lz°>-fo(t ,  y, ;~), z =[( t ,  y, ~), z ~= u ~, ;~ ~ (J(t, y)] 

=[ (z  °, z, Z)lz°>-fo(t ,  y, Z, u), z =[( t ,  y, Z, u), u e  U(t, y), Z ~ E ' ] .  

Now, let A ( t )  = E ~, U = E ~, 

[o=)l'~(x2+lVxf +u2), f = l + u + 2 - 1 1 u [ ,  0 < o ~ <  v. 

Let us prove first that/o,  f satisfy condition (H) with p = 1. Indeed, for every 
0 < e - 1, we take 

0 , ( t )  = E<ltl -~ + 1 -> 1, ~, 6 L I ( G ) ,  

and we note that 

Now, either 

2-11ul ~ ru + 2-11ul I ~ (3/2)1ul. 

( 3 /2 ) t u t>_e - l l t l  -~, 

and then 

lf t <_ (3/2)1u I + 1 = (3/2)tut - l u 2 +  1 <- (9/4) ~ t t t~u2+ 1 -  0~(t)+(9/4) fro, 

o r  

(3 /2 ) tu l<_e-x l t t  -'~, 

and then again 

Ill <- 0~ (t) + (9/4) efo. 

An analogous statement holds for each function 

fi = u i, i = l ,  . . . , v. 



200 JOTA: VOL. 19, NO. 1, MAY 1976 

Let us prove that the class Ao = {X}no is sequentially relatively compact 
in W~(G). It is enough to prove that, for (x, u) ~ ~2o, the functions 

dP(t)=lx(t)l+ ~ IOx/Ot'], t 6 G ,  
i=1 

are equiabsolutely integrable in G. Indeed, either 

c - l l t l  

and then 

o r  

and then again 

= ~-x~2 ~ E It] = (~, + l)(x 2 + IVxl 2) ~ t#, (t) + E(v + 1)/o, 

' 

-< 0, (t) + e(v 6 1)fo. 

Thus, qb, )Co satisfy a growth condition (H) with p = 1, and again the functions 
qb are equiabsolutely integrable in G. 

For all t 6 G, t # 0 (thus, certainly for almost all t ~ G), the sets 0(t ,  y) 
are closed and convex, and all functions 1, f, fi = u i, i = 1 , . . . ,  u, are of slow 
growth with respect tO)Co as l u[ ~ ~ .  Thus, for almost all t ~ G, the sets (~(t, y) 
have property (Q) with respect to y only in A( t )  = E 1. However,  property 
(Q) is not needed here. Indeed, for almost all t~  G, the (1,+ 1)-vector 
function f = @  . . . . .  f~, f )  has the property that ITI- +  as l a l - ~ ,  
uniformly for y in any compact subset of A( t )  = E. Thus, the convex closed 
sets t~(t, y) have property (P2) (Section 2). For the same sequence [xk] 
above, let us take 

tzk(t) = Jtl"x2(t), pk(t) = -- 1, 

So that 

(;Xk(t),pk(t)) ~ O(t, xk(t)), ~ G, k = 1, 2 , . . . .  

Here, Xk( t )~x ( t )  in L1, and, therefore, by taking a suitable subsequence, 
also Xk(t )~  x(t) in measure. Thus, 

It I~x2k ( t) ~ I tl~x 2( t) 

in measure in G. Thus, property (P'I) holds, and (P') holds. 

Example 4.2. This is the same as Example 4.1, with A ( t ) = E  1, 
U = E  1, fo(t ,x,  Vx, u), f ( t , x , u )  defined as follows. For ~'->0, if->0, let 
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q)(~', r) denote the real-valued continuous function defined by 

qb(ff, "r)= -- r - 1 / 2 +  ~ if r~2 ~ 4, 

(I)(g T) = 2-2'/'1/2~ 2 if "r~2 ~ 4 .  

ThUS, 

Now, for 

we take 

that is, 

0(~ ,  "r) ~ qb(0, "r) = _ ~.-1/2 for  all ~'->0, r - > 0 .  

x e A ( t ) = E  1, u ~  U = E  1 

f ( t , x , u ) = u ,  fo( t ,x ,u)=~( l[ I ,  ItD, 

fo(t, x, Vx, u) = O((]Vxl 2 ÷ u2) 1/2, ]tl). 

Let us prove that fo, )r satisfy property (H) with p = 1. For every ~" > 0, 
r > 0 fixed, let us consider the function of e only: 

~(E) ~- -- E-2T-1/2-~- E-I~, O < e - 1 ,  

which is continuous in (0, 1], with 

h (0 +)  -- -oo, h(1) = --T--I/2"{- if, 

and thus A (e) has a maximum hmax in (0, 1]. For r~ "2 -< 4, a (e) is increasing in 
(0, 1]; hence, 

Am,x = h (1)  = --  , r - l / 2  -~- ~;  

f o r  ,/.~2 > 4, we have 

Thus ,  

arnax = A(2r -1 /2~  -1) = 2 - 2 r l / 2 ~  2- 

- e-2r-1/2 + e-l~" < 0(~', "r) (13) 

for all 0 < e -< 1, ~ > O, r > O, and the same relation holds actually for all 
0 < e -< 1, ~" -> O, r -> O, and obvious conventions. With 

qJ~ (t) = E-l[t[ -1/2, 

we derive from (13) that 

ff -- I[(t, x, u)l <- 4,,(t) + efo(t, x, •), 

and this relation holds for all 0 < E <- 1, t c G, x e A ( t). Thus, condition (H) is 
satisfied with p = 1. 
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Note that, for r > O ,  qb(ff, z) is a continuous convex function of ~', 
O-- ~" < + oo, namely, 

qb(~, r) = - r - 1 / 2 + ~  for 0_< ~_< 2 r  -1/2, 

qrp(~, "r) = 2-2T1/2~ "2 for 2r -1/2 <- ~ < + ~ .  

For t # 0, the sets 0( t ,  x) are closed and convex. Indeed, for fixed t # 0, the 
point z = ( z  1, ~ u+1\  gl . . . .  +1 . . . .  z , z  ), with = a  1 , . . . , z  = u ,  z =u ,  (tT, u ) c  

~7 ~+1 describes tgY +a while 

0 
z =fo(t, x, a)--~'( lal ,  Itl). 

Again, as in Example (4.1), the sets 0( t ,  y) satisfy property (Q). 
However,  we do not need this property. Here,  If(t, y, + ~ as 1~71-~ + 

uniformly for x on every compact subset of A(t) ,  and the sets 0( t ,  y) 
certainly have property (P2). Here,  Q(t, x) = E ~+~ ; and, for p(t) = 0, cer- 
tainly p( t) c Q( t, x) all t c G, x cA( t ) .  Moreover,  

-- 7 -1/2 <-- To(z ; t, x) <- 2-2r  1/2 + 1 

for Izl-- < 1 and all t c  G, x cA( t ) .  Thus, property (P1) also holds. In other 
words, the sets O(t, x) satisfy property (P). 

Example 4.3. Let  G be an open bounded connected subset of E ~, 
v -> 1, of class K. We are concerned with the minimum of a functional 

I~ fo(t, x(t), Vx(t), u(t)) dt, (14) I[x, U] 

x scalar, u an m-vector,  with state equations which we wish to be a weak 
form of 

02x/ (Oti) z = f l( t, x(t), u( t) ), (15) 
i = l  

i Ai(t, x(t))(3x/Ot i) = f2(t, x(t), u(t)), (16) 
i=1  

and with constraints 

x ( t ) cA( t ) ,  u ( t )  = (/g 1 . . . . .  u " ) c  U(t, x ( t ) )CE  m. (17) 

As in Example 4.1, g = 0, ~ = 0, Y{ = 0, and we need make no reference to F, 
B, V, M. Here,  the functions Ai(t, x) are assumed to be continuous in 
cl G × E  ~. 

By introducing the increased control 

a ( t ) = ( a  1, a ~ u 1 -,) 
o . . ,  , , . . . ~  U , 
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and differential equations 

Ox/Ot i= ~,  i = 1 , . . . ,  v, (18) 

we have the equivalent problem of minimizing the integral 

t[x, ;,] = Io fo(t, x(t), ;,(t)) ,it, 

with differential equations (15), (16), (18) in suitable weak form, and 
constraints (17). We shall think of W as being (Co(G)) ~+2, with 

w=( , ; , , 0 )~  W, ~ = ( g ¢ 1 , . . . ,  ~,", w 1, w2), and v~ ' 1 , . . . ,  w2~C~0(G). 

As a weak form of the present system of differential equations, we now take 

i f (Ox/Ot~)(~'(t))dt- f i (Ox/Ot')(Ow~/Ot ') dt 
i=1  dG '/G i=1  

+ f [  ~ Ai(t, X(t))(OX/Oli)]w2(t)dt= f fl(l, x(t), l~(t))wl(l)dt aG i = t  ao 

+ f f2(t, x(t), u(t))wZ(t)dt+ i f ffti(t) ~i(t) dt, (19) 
aG i=1  J~ 

for all 
=(#~  . . . . .  #~, w 1, w2) ~ (C~o (G)) ~+2. 

We take here S = W~(G) with the weak topology, thus, x s S = W~(G), 
u ~ T, p = 2, or equivalently x e S = W~(G), ~ measurable in G. We shall 
take in W = (C~o (G)) ~+2 the topology defined by the norm 

ItWlIw = maxiwl(t)l + F. maxiowl/o{t +maxlwZ(t)l + ~ maxlwi(t)l. 
i=1  i=1  

We have here r = v + 2 ;  and, if we denote by I1~11~ the norm of r? as an 
element of W~(G) x (L~(G)) ~+1, then II~lr~ = I1~11~ for every element ff e 
W. We have here p = q = 2, and 

II ~ l b ~ ) " - <  IIw 111 w ~  + II wZll~=~ + II ~11(,~)) ~ -Ial~/=llwll~, 
Hence, 

W C W~( G) x (L2(G)) ~+~ C (Lz( G)) ~, 

and relation (1) holds with K = IGI ~/2. 
Here, 

J/lx = x, ~ : S ~ Lz( G), s = 1, r = 2 .  
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If xk --> x weakly in S, then xk -> x strongly in L2(G), or ~/xk -> J//x strongly in 
Lz(G), and thus ~ has the strong convergence property, and also the closure 
and closed graph properties in S. 

Again, if xk --> x weakly in S, thus Oxk/Ot i ~ Ox/Ot i weakly in Lz(G), and 
xk --> x strongly in L2(G); then, for a suitable subsequence, say still [k], xk ~ x 
in measure on G, Ai(hxk(t))->Ai(t, x(t)) in measure in G, i =  1 . . . . .  v, 
because of the continuity of the functions Ai. If we know that 

zk(t) = i Ai(t, xk(t))(Ox~,/Ot) 
i = 1  

converges weakly to some z(t) in LI(G), then, by statement (9.2) of Ref. 2, 
we conclude that 

z(t) Z i = A,(t, x(t))(Ox/Ot). 
i = l  

We have proved that the operator 0%2 defined by the third integral in the first 
member of Eq. (19) has the closure and closed graph properties. Finally, the 
operator ~1 defined by 

= f i (Ox/Oti)(Ow~/Oti) dt (~lx)w (20) 
aG i = 1  

has the closure property as well as the closed graph property in S = W~(G) 
by the same argument as used for o% in Example 4.1. Then, the operator :T 
defined by the first member of Eq. (19) has the closed graph property, 
provided we know that [zk] converges weakly in LI(G). 

We take here A (t) = [ -  L, L] for some L > 0 finite, m = 1, U(t, y) = E 1, 
and 

fo-=[tl2+lxl2+[Vxl2+Ix[[ul, f , = l + u ,  f2=xu. 
Here, 

f = ( L , . . . , L , f ,  f2), i=l , . . . , v ,  fo-0, 

and thus fo,/r satisfy conditions (a) and (/3) with ~b = 0, 3, = 0. 
Let M1 > 0 be a given constant, and let 12 denote the set of all pairs 

x, u, x e W~(G), u e L2(G), with 

llulh-<Mx, fx(t)l<-g, 

satisfying Eqs. (17) and (19) and such that 

fo(t, x(t), Vx(t), u(t)) e LI(G). 

Let Mo>O be a constant sufficiently large so that the subset 12o of all 
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(x, u ) e  f /wi th  I[x, u] <-Mo is nonempty. Then, for (x, u ) e  ~o, we certainly 
have [[x([~, tit/I[2, [[u[12GM2 for some constant M2, and thus A={x}n. is 
relatively weakly compact in S -- W~(G), and 

Ao -- {ti(t), u(t), x(t)u(t)} 

also is relatively weakly compact in (L2(G)) p+2, since Ix (t)I ~< L Then, some 
subsequence of [Zk] is also weakly convergent in L2(G) as we required 
above. 

Here, the subsets 0( t ,  y) of E ~+3 are defined by 
v - v  v + t  v + 2  l~(t, y ) = [ ( z ° , z ) l z ° > - f o ( t ,  y, Ft ) , z l=Ft  1 . . . .  , z  = u  , z  = u , z  

=xu, ae , 
where 

5 = ( e , - ~ + ~  z "+~) . .  " "+~ ~+:), . , - ~  , -=(z  1, . , z , z  , z  a = ( a , . ,  u,u)eO=E "*~, 
and these sets are obviously closed and convex. They do not satisfy property 
(Q) at any (t, y), t e G, y = 0. Indeed, if we take 

a = O ,  t ~ G ,  x=:t:rl ,  ~t>O, u = + ~ ?  -1, 

we see that the points 

p~=[z°= l t t 2+  l, 5 = 0 ,  z ~+1 = +71 -~, z ~+2= 1] 

belong to 0( t ,  ± ~/), respectively; hence, the point 

P = [ z ° = l t l 2 + l ,  5 = 0 ,  z "+~ =0 ,  z "+2= 1] 

belongs to QJI~_<~ 0(t ,  y) for any a~ > 0 ;  and the same point P belongs to 

[~,>o [,.-Jtyl~. 0(t ,  y), while 

P ~ O ( t ,  y )= [z°~ttJ  2, 2 =  fi, z ~+1= u, z'+2 = O, a ~ E  ~, acE1] .  

However, the sets O(t, y) satisfy property (P'). To prove this, first we note 
that, if 

(xk(t), ilk(t)), t e (9, k = 1, 2 . . . .  , 

is any minimizing sequence, we can always assume, by extraction, that xk ~ x 
as k -> oo weakly in S = W~(G) to some x c W~(G), and then xk ~ x strongly 
in L2(G) by Sobolev's imbedding theorem. Now, we take 

ak(t) = O, uk(t) =0,  ~k(t) = t2+x~(t), t~(t) = tZ+xZ(t), 

pk(t) = (gk(t), Uk(t), Xk (t) uk(t)) = (0, O, 0), p(t) = (0, O, 0), t ~ G, 

k = 1 , 2 , . . . ,  

so that t~k -~/x strongly in LI(G),  Pk ~ P  strongly in (LI (G))  ~+2, and 

(txk(t), pk(t)) ~ Q(t, xk(t)), t ~ G, k = 1, 2 . . . . .  
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Thus, property (P~) is satisfied. Also we note that, for any t c G, we have 

Iil = 1(~ ', . . . ,  a~, u, xu)l-~ + ~  
as ]J l~oo uniformly for x in any compact subset of A(t).  Thus, the sets 
0(t ,  x) satisfy property (P2), and hence (P'). We conclude that the specific 
problem under consideration has an absolute minimum. 

Example 4.4. Let G be a subset of the t~:-space E v+l, ~ = (~1 . . . . .  ~v) 
of the form G -- (0, T) × G'  is an open bounded connected subset of E ~ of 
class K. Thus, u + 1 replaces u, and F = 0(7 is made up of parts 

F1 ={0}×cl G', F2 = [0, T]xoG' ,  F3 ={T}×cl  G'. 

On F1 and F3, we have the Lebesgue u-dimensional measure, or I I, and we 
shall use the symbol d~- in integration. In F2, we have the product measure 
or = I I ×/~ of the one-dimensional measure on [0, T] and of the hyperarea t~ 
on the boundary OG' of G', and we shall use the symbol dtdl~ in integration. 
Given a function x in G, say belonging to some Sobolev space WIp(G), we 
shall denote by ~/x the boundary values, or traces, of x on F = OG; specific- 
ally, we shall denote by yix the boundary values of x on Fi, i = 1, 2, 3. We 
also denote by T, ~ the families of all measurable functions on G, Fi, 
i = 1, 2, 3, respectively. 

We are concerned with the minimum of a functional 

t[x, u, v~, ~2, v~] = I~ fo(t, ~, x(t, ~), (Vx)(t, ~), u(t, ~)) cttcl~ 

f g0(~, (~,3x)(~), v~(~)) d~, + (21) 
a F  3 

with state equations (on G and F2) which will be a suitable weak form of the 
system of equations 

Ox/Ot- ~ oZx/(O£~) 2 =fk(t, ~, x(t, ~), (Vx)(t, £), u(t, £)) in (7, (22) 
i = 1  

v 

ao(t, ~, x(t, ,~))(Ox/Ot) +-Z ai(t,  ,~, x(t, ,~))(c3x/O,~ i) 
i = 1  

-- rE(t, ~, x(t, ~), (Vx)(t, ,~), u(t, ~)) in G, (23) 

Ox/Ort q- ~2(t, ~)y2x(t, ~:) = 0 on I~2, (24) 

and constraints 

x(t, ~) ~ A(t,  ~;), 

(y3x)(~) ~ B(~), 

u(t, ~) ~ U(t, ~, x(t, so)) a.e. in G, (25) 

v3(~) E V(~:, (y3x)(~)) a.e. in F3. (26) 



JOTA:  VOL. 19, NO. 1, MAY 1976 207 

Here, 

X, U " G ~ E  1, ~2 : F2 -->U1, v3 " F 3 ~ E  1 

denote real-valued functions, x state variable, u, v2, v3 controls. In other 
words, we are interested in the determination of a function x(t, ~) in G [in 
particular, of its initial values, say vl(~)= x(0, ~) on F1, and of controls 
u(t, ~) in G, ~2(t, £) on F2, v3(~) on F3, such that the functional (21) has its 
minimum value, under constraints (25), (26), and a suitable weak form of 
state equations (22), (23), and (24). 

Above, the functions f0, fl, f2, go will be assumed to satisfy 
Carath6odory's condition (C), though, in the actual examples, they will be 
taken to be continuous in their variables. The functions A0, A1, • . . ,  A~ are 
assumed to be continuous in their arguments, and uniformly Lipschitzian 
with respect to x. (In Example 4.5, we shall asnume the same functions Ai 
only continuous.) 

By introducing the increased control 

flU, £) = (171, -~+1 . . . , U ~ /~), 

we have the equivalent problem of the minimu n of the integral 

I[x, t~, vl, z,2, v3] -=- f~ fo(t, ~, x(t, ~), t~(t, ~)) dtd~ 

f ~o(~, (y3x)(~), v3(~)) dE, + 
"F 3 

with differential equations 

Ox/Ot- ~ 02x/(O¢i) 2 = fl(t, s c, x(t, ~), t~(t, s~)) in G, 
i = 1  

Ao(t, ~, x(t, ~))(Ox/Ot)+ i A,(t, ~, x(t, ~))(Ox/O~') 
i = 1  

=f2(t, ~, x(t, #), a(t, ~)) in G, 
Ox/On + v2(t, sc)y2x(t, ~:) = 0 on r2, 

OX/O~ i -~ f i  - i  v + l  = u,  i = 1 , . . . ,  v, Ox/Ot = u in G, 

with constraints (25), (26), and 
i 1 u ~ E ,  i = l , . . . , v + l .  

We take for W the space of all pairs w = (o3, yo3), with 

o3--(03 1, . . .  ,o3 ~+1, to 1, to2), o3i c C~o (G), i = 1 ,  . . . ,  v + l ,  
1 to ~ C~(cl G), o92~ C~o (cl G). 
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Then, 

3,o3 = (0 , . . . ,  0, 3,oJ). 

As a weak form of (22)-(24), we take the equation 

f ~ (Ox/O,')(Owl/O, i) dt d ,+ f (Ox/Ot)~o~(t, , ) d t  dE 
i = l  aG 

+ [  ~2(t, #)3,2x(t, ~)3,2~o~(t, ~) dtdt~ 
• t F 2 

+~.= (Ox/O~i)~i(t, ~) dtd~+ (Ox/Ot)~+l(t, ~) dtd~ 

f~ [Ao(t, (;, x(t, ~))(Ox/Ot) + 

+ ~ A,(t, ~, x(t, (f)) (Ox/O~i)]~o2(t, ~) dtd~ 
i=1 

= j~ fl(t, ~, x(t, ~), t~(t, ~))to~(t, ~) dtd~ 

+f6 f2(t, ~, x(t, so), t~(t, ~))toz(t, ~) dtd~ 

v+l ~0 + 2 u'(t, ~)a'(t, ¢) dtd¢ (27) 
i=1 

for all 

o3 = (o31,. . . ,  o3 ~+1, oJ 1, oj 2) ~ (C~o (G)) "+1 × (C ~ (cl G)) 2. 

Here, O~w, or ~(x, v2) w, that is, the operator ~ is defined by the first member 
of (27). It is easy to verify that any strong solution x, u, vz or (22)-(24), with 
x ~ W~, u ~ T, v2c Lq(Fz), is certainly a solution of (27) for all w ~ W. 

Note that, for every x, ~z, (t for which (27) holds for all o3, that is, for all 
o~ 1, o5 ~, i = 1 . . . . .  v +  1, ~o z arbitrary, then necessarily 

Ox/at - v + ~  Ox/O~'= -' =u , u,  i = 1  . . . . .  v + l ,  a.e. in G, 

and Eq. (23) is satisfied also a.e. in G. We denote by ~ ,  ~ ,  i = 1 . . . . .  v + 1, 
~2 the single operators in the first member of (27) as expressed in terms of 
w I, ~ ,  i = 1 , . . . ,  v + l ,  to 2, respectively. 

Now, M is here the set of all (t, ~, y, ~) ~ E 2~+4 with 

( t ,~)~clG=clG'×[O,T],  y~A( t ,~ ) ,  fi ~ 0(t ,  ~, y). 

Let fo(t, £, y, fi), f(t, £, y, fi) be real-valued continuous functions on M. 
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Then, 0( t ,  ~, y) are the subsets of E ~+3 defined by 

O(t, ,f, y )=[ (z  °, z, Z )  l z °>-fo(t, ~, y, fi), z = f(t, ~, y, fi), Z ~= u ~, 

a e gr(t, ~, y)] 

=[ (z  °, z, Z) l z °>-fo(t, ~, y, Z, u), z =f(t, ~, y, Z, u), 

U E U(t, ~, y) ,  Z E  E~ '+I ] ,  

where 
Z = ( Z  1, . ,  Z ~+1) a n d  b~ = (li  I v+l . .  ~ . . . ~ U  ~U). 

We shall take here S = W~p(G) with the weak topology, thus, x 6 S = 
Wlp(G), p>-2, u~ T, v2e 7"z, with T2 a weakly closed subset of Lq(F2), 
1/p+ 1/q = 1, which is bounded in the norm of Lq(F2). We take in W the 
topology defined by the norm 

Ilwllw = II(o~, ,/o~11 = maxloJl(t, ~)1 +maxlao)l/ot] + ~ maxlao~l/a~i[ 
i=1 

+maxlo)2(t, ~)1+ Z maxlo5% ~)[, 
i=1 

where all max are taken in cl G. With r = ~,+2, we have 

{lo~ll(Lo(o~, + llv.~ llLq(r~ ___ i 1 
i = I  

_ (!GI 1/~ + Ir l~/~)l lwl l~. 
From this we deduce that 

W C Wlq (G))'( Lq (F) x ( Wq (G)) ~+2 C (Lq (G)) "+~ × (Lq (F)), 

and that relation (1) holds with 

K=IGI1/q +IFI'< 
We have here 

x e S =  W1v(G), A~x=x, Jd :S-~Lp(G), 

Ygx = y3x, Y[ : S ~ Lp (F3), s = s' = 1. 

Also, xk ~ x  weakly in S implies ~tXk ~AAX strongly in Lp(G), 72Xk ~ y2X 
strongly in Lp(F2), Y(Xk ~ YgX strongly in Lv(F3), Oxk/Ot~Ox/Ot, O x k / O ~  
Ox/O~ i weakly inLp(G), i = 1 , . . . ,  v. Furthermore,  if v2, vZk, k = 1, 2 . . . . .  
are elements of T2 C Lq(F2) with V2h ~ v2 weakly in Lq (Fz), then the products 
v2k(72Xk) converge weakly in LI(F2) to ~2(72x). Finally, from the definition 
of ~1(x2, ~2), we conclude that 

~l(Xk, ,U.2k)(. 0 1 ..~ ~ 1  (X, ,O2)03 1 as k ~ oo for every to .1 
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Again, if we assume that X k ~ X  weakly in & then ~ ( x k ) g / - ~ i ( x ) ~  i, 
i = 1 , . . . ,  v + 1. Finally, if we assume that, for some constants C, D, we have 

tAb(t, ~, x)l <- Ctxl, IAi(t, ,~, x) - A,(t ,  ~, Y)I -< Dlx  - Yl, (28) 

for all ( t , ~ ) ~ G ,  x, y ~ E  1, then x k ~ x  strongly in Lp(G),  p>~2>>-q~ l ,  
implies that Xk "~" X strongly in Lq(G),  and 

A,(t,  ~, Xk(t, ,~))-~ A,(t ,  J~, X(t, l~)) 

strongly in Lq(G).  If, in addition, 

Oxk/Ot ~ Ox/Ot, Oxk/O~' ~ Ox/O~ 1, i = 1 . . . . .  v, 

weakly in Lp(G),  then the products appearing in the expression of ~2 
converge weakly in LI (G)  toward the corresponding products, and 

~2(x~)o~  ~ --, ~ ( x ) o ~  ~. 

Thus, combining the various parts, we have 

~(xk, v2k)w--" ~(x, v2)w 
for every w e W. 

We may take p = q = 2, 

fo 

fl 

h 

go 

u c U  

= t2+l~lZ+x2+lVxt2+ u 2, 

= - 1 + t + l ~ t + x  + u +2-11u1,  

= ( - 2  +t  +l~l)2x +u,  

= (1 + ]~12)xZ + (1 + Ixl), 
= E  ~, v3~ V 3 = E  1, ~2e V 2 = E  1. 

We take for f~ the set of all pairs x, u, x ~ W~(G),  u, t23 measurable, 
v2 e L2(G), I1v2112-<1, satisfying the constraints and the functional relations 
already mentioned. Note that the ~7 ~, i = 1 . . . .  , v + 1, are assumed to be only 
measurable, but since the equations 

Ox/Ot = f~+l, Ox/O~ i = f~, i = 1 . . . .  , v, 

hold a.e. in G, we see that 

tii c Lz(G), i = l , . . . , u + l .  

For Ao, A1 . . . . .  we may take functions as 

a o  = 1, Ax,----]xl, a 2  = ]tl Ixt, 

a 3  = Ixl sinlxl, A4 = Ix12(1 + Ixl)--', 
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and analogous ones satisfying (28). Here, condition (H) for p = q  = 2 is 
satisfied since 

tfll 2, th[2--- C+Dfo 

for suitable constantsC, D. 
The sets O(t, ~, y) are obviously closed and convex. These sets satisfy 

property (O) (because 1, f l ,  f2 are of slow growth with respect to fo)- 
However,  this is not needed here. Indeed, for every (t, ~)e  G, tfl  +oo as 
lul-~ +oo uniformly for x in any compact subset of A(t, ~). Moreover, if [xk] 
is any minimizing sequence of state functions, x~-~ x as k ~ ee weakly in 
S = W~(G), then, by Sobolev's imbedding theorem, xk, x e Lx(G), Xk-~ X 
strongly in L~(G) for any 

, ~ < 2 + 0 , + 1 )  -I. 

If we take 

pk(t) = - l+t+{~l+xk( t ,~) ,  p ( t ) =  - l+ t+I~ l+x( t ,~ )  , 

we see that/xk-->/~ strongly in L~(G), Pk-->P strongly in LI(G), and that 

(tXk(t,~),pk(t,~))CO(t,~,xk(t)), t~G,  k = l , 2  . . . . .  

as we can see by taking ti = 0, u = 0. Thus, the sets 0( t ,  ~, x) satisfy property 
(P'). On F3, g = 0 ,  go->0, hence the corresponding sets/~(t ,  ~, y) are half 
straight lines, and certainly convex and closed. The continuity of go guaran- 
tees that property (Q) is satisfied. The condition (H) is also trivially satisfied. 
On l?b F2 we have both g = 0, go = 0, and no further discussion is needed. 

If i denotes the infimum of I[x, ~, Vl, v2, v3] in f~, and ~Qo denotes the 
subset of 12 with I__< i + 1, then Ilull , Ital12, Ilxtl  -< c for some constant C, and 
the set A---{x}ao is certainly relatively sequentially weakly compact. The 
integral (21) has an absolute minimum in fL 

Note that the same argument above would hold if f l ,  f2 are replaced by 

f l  = Oll(t, ~:, X)+/31(t, ~:)(VX)+ yl(t, s c, X)U, 

f2 = a~(t, ~, x ) +  132(t, ~)(Vx)+, /2(t ,  ~, x)u, 

with a l ,  aS continuous functions in el G x E  ~, /3~(t, sc)=(/3.1 . . . . .  /3~.), 
s =  1,2,[/3~] a 2 x l ,  matrix with entries continuous in cl G, of rank 2 
everywhere in cl G, and y b  ~/2 continuous functions in cl G x E ~ with 

2 y~+yzz>0 in cl G x E  ~. 

Example 4.5. This is analogous to Example 4.4 and concerns the same 
problem (21)-(26). However,  we do not assume condition (28) nor 
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condition (H). Here, the functions Ai(t, ~, x) are assumed only to satisfy 
Carath6odory's condition (C). Thus, we can take for A0, A1,.  • •, functions 

as 

Ao = t -~/2, A1 = t -w, A1 = ]xl 2, 

A2 = It I Ix/a, A3 = exp(Ixl), A 4  = t -1 exp(Ixl), 

and analogous ones. We may take here 

fo = t +l¢12+x2+tVxt2+Ixltul, 

f l = - l + t + l ~ l + x + u ,  

f 2 = ( - 2  + t +l l)2x + xu, 

go=(l+l 12)x +(l+lxl) onr3, 

UC U = E  1, 1)3 E V 3 = E  1, ~2c  V2=E 1. 

We take for f~ the set of all pairs x, a, x c W~( G), I) 3 measurable, u • L2( G), 
• Z2(a), Ilull=-Zo, 11 21/-< El, with Lo, L1 given constants, satisfying the 

constraints and the functional relations as in Example 4.4. Again, the a ~, 
i = 1 . . . . .  ~, + 1, are assumed only measurable; but, since 

Ox/Ot = ~+~, Ox/O,~ i = t7 ~, i = 1, . . . .  v, a.e. in G, 

we that 
~iEL2(G), i = 1  . . . . .  u + l .  

Since )Co- O, certainly fo, f~, f2 satisfy properties (a) and (/3) with 0 = 0 amd 
y = O .  

Let i denote the infimum of I in 12, and let ~o be the subset of 12 with 

I[x, /~, 1)1, 1)2, /)3] ~ i + 1 "  

Then, llxtl2,1IVxll2, llull, ]l~21l -< c for some constant C, as well as tlfitl2 ~ C for 
elements (x, fi) in f~o. Thus, Ao ={x}~o is relatively weakly compact in 
S = W~(G). Since 

Ilxll=- c, ItVxll=  c, Ilull=<- c, 

by Sobolev's imbedding theorem, we see that, from any sequence [(Xk, t~k)] 
in f~o, there is a subsequence, say still [k], such that xk ~ x strongly in L2(G), 
uk ~ u weakly in L2(G), and hence X, Uk ~ XU weakly in LI(G).  This shows 
that fl(A), f2(A) are relatively sequentially weakly compact in La(G). We 
shall apply Theorem 3.1 with p = 1, q = o0. Relation (1) holds for q.--- o0 by 
the same argument as in Example 4.4. 

It remains to prove that ~2 has the closure property, but this is a 
consequence of our statement 9.2 of Ref. 2 (the convergence property that 
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we verified in Example 4.4 is not needed in Theorem 3.1). For any (t, ~) ~ G 
and X e  E 1, obviously the sets 0( t ,  ~, x) are convex and closed. They do not 
satisfy property (Q) as it can be seen by the same argument as in Example 
4.3. However, they have property (P') as proved for Example 4.3. 

We conclude that the functional (21) has an absolute minimum in ~ in 
the specific case under consideration. 

Example 4.6. This is analogous to Examples 4.4 and 4.5, but now we 
replace Eq. (23) with the equation 

x div x =f2(t, ~, x(t, ~), Vx(t, ~), u(t, ~,)). 

The same arguments hold as for Examples 4.4 and 4.5 with )Co, f~, f2, fo 
chosen as stated there. The operator -~2 becomes 

~2(x)w 2= f x(t, ~)[Ox/Ot + i Ox/O~i]w2( t, ~) dtd~, 
aG i=1 

and the closure property of this operator was proved in Theorem 9.2 of 
Ref. 2. 
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