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Characterization of the Darboux Point 
for Particular Classes of Problems 1 

P. M. M E R E A U 2 A N D W .  F .  P O W E R S  3 

Communicated by J. V. Breakwell 

Abstract. A minimal sufficient condition for global optimality involv- 
ing the Darboux point, analogous to the minimal sufficient condition of 
local optimality involving the conjugate point, is presented. The Dar- 
boux point is then characterized for optimal control problems with 
linear dynamics, cost functionals with a general terminal state term and 
an integrand quadratic in the state and control, and general terminal 
conditions. The Darboux point is shown to be the supremum of a 
sequence of conjugate points. If the terminal state term is quadratic, 
along with a scalar quadratic boundary condition, then the Darboux 
point is also the time at which the Riccati matrix becomes unbounded, 
giving a characterization of the unboundedness of the Riccati matrix at 
points which are not in general conjugate points. 

Key Words. Calculus of variations, optimal control, global sufficient 
conditions, Darboux point, conjugate point. 

1. Introduction and Preliminaries 

The concept  of a Darboux  point  was formalized in Ref. 1, and several 
related propert ies  have been proved for a general class of problems (Refs. 
1-2). The  Darboux  point appears  as an extension to global optimality of the 
conjugate point concept,  in the sense that it allows a minimal sufficient 
condition for global optimality ( i .e ,  the gap between necessary and sufficient 
conditions is minimal). The following definition was proposed.  4 
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Definition 1.1. Let x*(t), t 
minimum principle. A point to 
following conditions are satisfiedS: 

(i) for all t2 ~ (to, t~), there 
x(t), t ~ [to, tr], with x(t2) = x*(t2), 
tional between t2 and t r than x*(t) 

(ii) for all tl ~ [to, to), there 

[to, t~], be a trajectory which satisfies the 
[to, t~) is called a Darboux point if the 

does not exist an admissible trajectory 
giving a smaller value to the cost func- 
between t2 and t~; 
exists an admissible trajectory £(t), t~ 

[t2, fr], with x(t l )=x*(t l ) ,  giving a smaller value to the cost functional 
between tl and fr than x*(t) between tl and t~'. 

It follows that a Darboux point on (to, t r) indicates nonglobal optimality. 
One can make a distinction between two types of Darboux points: Type-1 
Darboux points, indicating only the loss of global optimality; and Type-2 
Darboux points, indicating also the loss of the existence of a solution to the 
problem (see Refs. 1-2 for details and examples). 

In this paper, a method is proposed to characterize Darboux points for 
problems with linear dynamics, quadratic cost functionals, and analytic 
terminal constraints. A sufficient condition for global optimality will be 
presented in Section 2, and several formulas for the Darboux point will be 
obtained in Sections 3-6 for various classes of terminal conditions. Exam- 
ples will be given to illustrate pertinent aspects of the Darboux point and its 
characterizations. 

We shall consider problems of the following form: minimize the func- 
tional 

J = g(xr)+- ~ [xrC(t)x + u rE(t)u] at, (1) 
0 

subject to 

where 

Y¢ = A( t )x  +B(t)u,  t ~ [to, tr], (2) 

X(to) = Xo, (3) 

¢,(xr) = 0, (4) 

x e R n ,  u ~ R " , r n < _ n ,  4J~RV, p<-n, to and t r are prescribed, 
A(t) ,  B(t),  C(t), and E(t)  are continuous matrices on [to, tr] of dimensions 
consistent with the dimensions of x and u. The matrices C(t) and E(t)  are 
symmetric. The following assumptions are made. 

(A.1) The problem is normal (Ref. 3). 
(A.2) The matrix E(t)  is positive definite on [to, tr] (strengthened 

Legendre-Clebsch condition). 

5 When to = to, condition (ii) can be verified only if the trajectory x*(t) can be extended on a 
small interval [to-e, to). 
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(A.3) The system (A, B)  is completely controllable, i.e., the matrix 

w(tl, t2)= 4~(tl, t)B(t)Br(t)4)(tl, t)dt 
:t 

is positive definite for all t~, t2, with to---tl < t2<-tr, where ~b(t, to) is the 
transition matrix of 2 = A (t)x. 

(A.4) The functions g( .  ) and Oj(. ), ] = t . . . . .  p, are analytic on the 
terminal set 0 g{xf: O(xl) = 0}. 

Because of Assumption (A.2), there is no loss of generality in assuming 
no mixed term in the integrand of (1) (see Ref. 4). 

First-order necessary conditions for an admissible pair (u, x) [i.e., con- 
straints (2), (3), (4) are satisfied] to be optimal are that there exist an 
absolutely continuous function ,~ (t) ~ R ~, t ~ [to, tr], and a constant ~ ~ R p 
such that 

,~(t) = -C( t )x ( t ) -Ar( t )A( t ) ,  t6 [to, tt], (5) 

E(t)u (t) + t3 7"(t)a (t) = 0, (6) 

A (t f)  = [dg(xf) /dxf]  T + [ d ~ ( x f ) / d x f ] T ~  ,. (7) 

Suppose that we have an extremal pair (u*(t), x*(t)), t ~ [to, re], and let 
/~ *(t), t ~ [to, tf], and ~,* be the associated multiplier function and constant 
Lagrange multiplier. The definition of a Darboux point given above implies 
the following sufficient condition for global optimality. 

Theorem 1.1, Sufficient Condition. An admissible pair (u*(t), x*(t)), 
t ~ [to, tr], is a globally optimal pair if 

(i) the first-order necessary conditions are satisfied; 
(ii) E(t) is positive definite on [to, tr]; 

(iii) there is no Darboux point on x*(t) for t e  [to, tf). 

This sufficient condition is minimal, since the only difference with 
necessary conditions lies in (ii), where E(t) is required to be positive 
semidefinite on [to, tr], and in (iii), where a Darboux point is not allowed on 
(to, tf) for global optimality. In this paper, we shall develop a characteriza- 
tion of the Darboux point which allows a test of (iii). 

Define the n × n matrix F(q) and the p × n matrix T(q) as 

F ( q ) = 2  ~ (1/k!)(dk/dx~)[G(x~, z,*)](q-x~) k-z, (S) 
k=2 

rr(q)  = [r~(q) . . . . .  rp (q)], (9) 

T~(q)= ~ (1/k!)(dk/dx~)[C,~(x~?)](q-x~') k-a, / = 1 , . . . ,  p, (10) 
k = l  
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in tensor notation, xf  = x*(q), q is a constant n-dimensional vector with 
values in the terminal set 0, and G(x~, u*) is defined as 

O(x , g(x ) + TO(x3. (11) 

Note that, for any q ~ 0, Assumption (A.4) and Eqs. (8)--(10) imply that 
~: 1 ~ T  G(q, z,*)= G(x~, ~,*)+ (d/ dx¢)G(x~, ~,*)(q- xr )+ ~(q- xr ) F(q)(q- x~), 

(12) 

O(q) = d/(x~f) + T(q)(q - x~). (13) 

Now, let the matrices S(t, q), R(t, q), and Q(t, q) be the solutions of 

S=-SA(t)-AT(t)S-C(t)+SB(t)E-I( t)Br(t)S,  S(tr, q)=F(q), 
(14) 

1~ = -[Ar(t)-S(t ,  q)B(t)E-t(t)BT(t)]R, R(t r, q ) =  TT(q), (15) 

0 = R T(t, q)B(t)E-'(t)BT(t)R(t, q), Q(t¢, q) = 0, (16) 

and define 

M(t, q) a=S(t, q)-R~(t, q)Q-l(t, q)RT(t, q). (17) 

Let t~ and tcq designate the first times when the matrices S(t, q) and M(t, q) 
become infinite 6 when integrated backward from tr (t~ and tcq may be equal 
to -eo).  Notice that, when q = x*(tr), 

F(q) = (d /dx )[O(xL T(q) = 

and the matrices S(t, q), R (t, q), Q(t, q) reduce to the usual S, R, Q matrices 
used to test for conjugate points (see Ref. 5, Chapter 6). Thus, the first 
backward conjugate point on x*(t) is given by tcq., where q* = x*(tr). 

We shall close this section by presenting a property which will be used 
later. 

Lemma 1.1. Given an extremal trajectory x*(t), t ~ [to, tr], if there 
exists another extremal trajectory going through x*(tl) for some tl e (to, tr) 
and giving the same value to the cost functional between tl and tf as x* 
between tl and t r, then the trajectory x* is not globally optimal on [to, tr]. 

A proof of this lemma is given in Ref. 2, Appendix D. 

2. Sufficient Condition for Global Optimality 

Using the assumptions and notation defined in Section 1, we have the 
following property. 

6 A matrix is infinite if at least one of its elements is infinite. 
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Lemma 2.1, If, for a given q ~ 0, the matrix M(t, q) is finite on [to, tf), 
then the trajectory x*(t), t ~ [to, tr], gives a strictly smaller value to the cost 
functional than any other admissible trajectory terminating at q [i,e., 
x ( t r )  = q].  

The proof of this lemma is given in Appendix A. A consequence of 
Lemma 2.1 is the following sufficient condition for global optimality. 

Theorem 2.1. Sufficient Condition. An admissible pair (u*(t), x*(t)), 
t e [to, tf], is a proper globally optimal pair if 

(i) the first-order necessary conditions are satisfied; 
(ii) E(t) is positive definite on [to, tr]; 

(iii) to > SUpqso tc~. 

Proof. Condition (iii) implies that M(t, q) is finite on [to, tf) for all 
q ~ 0, and Theorem 2.1 follows from Lemma 2.1. D 

We will see in the following sections that the sufficient condition of 
Theorem 2.1 is equivalent to the minimal sufficient condition of Theorem 
1.1 under certain conditions. 

3. Case of Linear Terminal Constraints 

Suppose that g(xf) and ~9(xr) have the following form: 

g ( x i )  1 r = gxfFx t, (18) 

~b(xr) = Txf+Oo, (19) 

where F is a symmetric n x n matrix, T is a p x n matrix of maximal rank, 
and 0o is a p-dimensional constant vector. The problem defined in Section 1 
is then a linear-quadratic problem (LQP), and the properties of a conjugate 
point (Ref. 4), together with Definition 1.1 of a Darboux point, imply the 
following theorem. 

Theorem 3.1. For a linear-quadratic problem, a Darboux point on an 
extremal trajectory occurs at the first backward conjugate point. 

Note that the matrices F(q) and T(q) of Section 1 reduce respectively to 
F and T, and M(t, q) is independent of q. Thus, we have 

sup tcq = tc = to, 
q~O 

a Darboux point. This result will be generalized in the next section. 
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4. Case of n-1 Terminal Constraints 

Suppose that p = n - w  and g(xr), Oj(xf), ] = 1 . . . . .  n - 1, are arbitrary 
analytic functions on 0. We make the following assumption: 

(A.5) rank[T(q)] = p  for all q in 0. 
We will now show that SUpqs0 tcq is a Darboux point on x*. Theorem 2.1 

indicates that condition (i) of Definition 1.1 is satisfied, and it remains to be 
shown that condition (ii) is also satisfied. Given q ~ 0, consider the following 
(LQP): minimize 

1 T lift I" Iq = 5yfF(q )y :+~  [yrC(t)y + vrE(t)v] dt, 

subject to 

1) = A (t)y + B (t)v, y (to) = y0 T(q)yf = 0. 

This problem is denoted by the abbreviation (LQP)q. 
We have the following lemma. 

Lemma 4.1. If, for a given q E 0, the matrix M(t, q) becomes infinite at 
tcq ~ (to, tr), then there exists an extremal trajectory of (LQP)q going from 
y = 0 at t = tcq to q -x*( tr)  at t = ft. 

Proof. Obviously, tcq is a conjugate point of (LQP)~ on the trajectory 
y * =  0. It can be shown (Ref. 2, Theorem 3.1) that there exists at least a 
one-parameter family of external trajectories y~(t), t~ [tcq, tr], of (LQP)q 
going through y*(tcq) = 0 at t = t~, Now, because of Assumption (A.5), the 
terminal set 

0q a.{y:: T(q)y: = 0} 

of (LQP)q is an (n-p) -d imens ional  hyperplane in R " ;  since p =  
n - 1, q -x*(t:) ,  and y*(t:) = 0 are in G, this set reduces to the line (0, q -x} ' )  
in R ~. Thus, the vectors y~(t:)-y*(tr)  and (q -x~ ' ) -y* ( t : )  have the same 
direction and a, which is proportional to the magnitude of y~ (t:)-  y*(t:) (see 
Ref. 2, proof of Theorem 3.1), can always be chosen, say a = ~7, so that 

Ya (tr) = q - x~. [] 

The trajectory 

xq(t)& y~(t)+ x*(t), 

where y~ has been defined above, is such that xq(tr) =q and is admissible on 
[t~q, t t] for the original problem, since both ya(t) and x*(t) satisfy (2) and q 
satisfies (4). We have, furthermore, the following lemma. 
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Lemma 4.2. For a given q ~ 0, the trajectory xq(t) defined above gives 
the same value to the cost functional J (of the original problem) between tcq 
and t r as x* between tcq and tf. 

The proof is given in Appendix A. 
Now, we can show that x* is no longer globally optimal if one of the 

matrices M(t, q) is infinite on (to, tr). 

Theorem 4.1. If there exists q c 0 such that tcq c (to, tr), then the 
trajectory x*(t) is not globally optimal on [to, tr]. 

Proof,  If the trajectory xq(t) (defined before Lemma 4.2) is extremal 
on [tcq, tr], then the result follows from Lemmas 4.2 and 1. t. If xq is not 
extremal on [tcq, re], it is certainly not globally optimal from (x*(t~q), t~q), and 
one can find an admissible trajectory from (x*(t~q), t~q)) giving a smaller 
value to the cost functional than xq. Then, Theorem 4. t follows from Lemma 
4.2. 

Finally, Theorems 2.1, 4.1, and Definition 1.1 imply the following 
theorem. 

Theorem 4.2. For the class of problems defined in Section 1 with 
p = n - 1 terminal constraints, a Darboux point on the trajectory x* occurs 
at 

tD = sup tcq. 
qEO 

This theorem implies that the sufficient condition of Theorem 2.1 is 
equivalent to the minimal sufficient condition of Theorem 1.1. 

Example 4.1. 
n = m - - 2 ,  

A( t )=C( t )=[ ;  ~], 

xoI l 0 

Consider the case when 
to=0 ,  tr = 1, 

O(xr) 3 -~ X 2 f - - X 2 f - I - X I [ - -  1 

in Eqs. (1)-(4). Actually, this example is a minimum distance problem from 
the point xo to the curve 

O(xr)=o. 
An extremal solution is 

, t 
u * ( t ) = [ l  ], x ( t ) f l _ t  l ,  A*(t)=-u*(t),  u * = - l ,  
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and it can be shown that, for any 

q =  qz 

we have 
0 

S(t'q)=[O0 - 1 / ( t - l + l / 2 q 2 ) ] '  

1 
M(t, q) - (1 - t )[ t -  1 + (1 + (q2_ 1)2)/2q2] 

' t -  1 + 1/2q2 (q2_ 1)/2q2 ] 

x _  (q2a_ 1)/2q2 t -  1 + (q~-  1)2/2qzJ 

Then, 7 

tsq = 1 - 1/2q2, tcq = 1 -  ( l + ( q  2 -  1)2)/2q2, 

to = sup tcq = sup tcq = 0.523 (given by q2 = 1.1). 
qEO q2E[0, +00) 

Note that a conjugate point on x* is given by t~q., that is, 

t~q* = (tcq),2=o = -co,  

which illustrates the possibility of the existence of a Darboux point without 
the existence of a conjugate point. 

Example 4.2. Consider the case when 

n = m = l ,  p = 0 ,  

A ( t ) =  0, C ( t )=  - 1 ,  B ( t ) = E ( t ) =  1, t~ [to, 7r], 

Xo = O, g(xr) = ½x~[exp(-x~)- 1] 

in Eqs. (1)-(4). An extremal solution is 

u*(t)=x*(t)=X*(t)=O, t~[to, cr], 

and we have 

F(q) = e x p ( - q ) -  1. 

This can be obtained by using the relation 

exp( -x t )  = ~ ( - l lk (x~/k l ) .  
k=O 

7 By definition, tcq < t¢ = 1 and we can restrict q2 tO belong to [0, +co). 
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Then, 

and 

tan_l[  exp(q) ] 
= = m - e-i-ffp ( q ) i J 

tD = sup t~q = 3~r/4. 
q~(-oo, +c~) 

It can be proved that the problem does not have a solution when 
to< 37r/4. The choice 

u = const = a, x = a (t - to) 

makes the cost functional as small as desired when a is large enough. This 
indicates that to is a Type-2 Darboux point. 

We notice that, in Example 4.1, sup t~q was attained (given by q2 = 1.1), 
while it was not attained in Example 4.2. This observation holds in general. 

Theorem 4.3. For a Type-1 Darboux point, the supremum of tcq is 
attained, i.e., 

to = max t~q. 

Proof. Suppose that to is a Type-1 Darboux point on x*. If to is a 
conjugate point on x*, then to = t~q. (see Section I) and 

sup t~ = tD = t~q. 
q~O 

is attained with 

q = q* = x*( t t ) .  

If to is not a conjugate point on x*, then a property of Type-1 Darboux 
points (Ref. 1, Theorem 4.1) implies that there exists a trajectory £(t), t 
[to, tr], distinct from x*, globally optimal on [to, tr]. Let q = $(tr). We have 

tc~ -< sup tc~ = tD. 
q~O 

But, if tc~ < to, Lemma 2.1 implies that x* gives a smaller value to the cost 
functional J than ~ between to and tr, which is in contradiction with the 
optimality of £ between to and t r. Thus, we have 

tc~ = to = sup tcq, 
q~e 

which completes the proof. [] 

Remark 4.1. For a Type-2 Darboux point, the supremum of tcq may 
be attained (see Section 3) or may not be attained (see Example 4.2). 
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5. General Case 

Suppose now that p is an arbitrary integer, O<-p~n, that 
g(xf), ~i(xf),] = 1 . . . . .  p, are arbitrary analytic functions on 0, and that 
Assumption (A.5) is satisfied. We wish to investigate a generalization of the 
result of Theorem 4.2. The approach used in Section 4 to show that the 
trajectory x* is not globally optimal on [to, tf] when to < to is no longer valid, 
since Lemma 4.1 is not necessarily true, as shown in the example below. 

Example 5.1. Consider the case when 

n = m = 2 ,  p = 0 ,  

a ( t ) = [ ~  00] ,  B ( t ) = - C ( t ) = E ( t ) = [ I o  ~], t~[to, zr], 

I 0 ]  3 _ 1 4 Xo = g(xr) = 0 ' X l f - t ' 2 X I f  

in Eqs. (1)-(4). An extremal solution is 

u*( t )=x*( t )=A*( t )=[~] ,  t~ [to, ~-], 

and we have 

I [q~+2ql+ tan t ]  
M(t ,q )= S(t, q) = L[~ ~ 2-~1) ~an t] 0 

tan t 
It follows that 

tcq = suP{ 2, tan-~[1/ (q ~ + 2q~)]} 

and 

f o r a l l q = [ q l ] ~ R  2. 
q2 

/ } sup = sup q-, sup tan-l[1/(q 2 + 2q,)] --- 3~r/4. 
qeO ~ ~ ql~(-oo, +oct) 

It can be shown (Ref. 2, Example 5.3) that the trajectory y~ (t) in the proof 
of Lemma 4.1 is 

y,~(t) = [ - a  
sin(/ 

0 -- tcq)].  

It follows that a can be chosen such that y 1~ (ty) has a given value ql - x*(tf), 
but Y2~ (t¢) cannot be made to have an arbitrary value q2-x*(tf) .  This shows 
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that Lemma 4.1 is not necessarily true when the number p of terminal 
constraints is arbitrary. 

Notice, however, that 

is such that 

and that ys(tf), where 

tco = tcq 

d = - q l / s i n ( f f - t c q )  

satisfies Lemma 4.1 with q = q. Then, Theorem 4.1 holds with q = q, and 

to,7 = tcq 

implies that x* is not globally optimal when to < t~a. It follows that the 
Darboux point is still given by supq~0 t~q. This result can be checked by 
noticing that the problem considered can be separated into two independent  
problems of the type considered in Section 4 (i.e., p = n - 1). 

In general, for a given q ~ 0, there does not necessarily exist a q as above 
(i.e., satisfying Lemma 4.1 and t~ = t~q), and we cannot say a priori  that the 
Darboux point is given by supq~0t~a. For a given q in 0, let V~, i =  
1 . . . . .  n - p  - 1, be a set of vectors in the (n - 1)-dimensional subspace of 
R n orthogonal to the line (q, x~), such that the vectors Tj(q), f = 1 . . . . .  p, 
and V~ are linearly independent  [this choice is always possible, since the 
vectors T/(q) are linearly independent,  from Assumption (A.5)]. Let  (LQP)q 
be the problem similar to (LQP)q defined in Section 4, but with the extra 
terminal conditions 

Vqyf = 0, i = 1  . . . . .  n - p - l ,  

and define ~~q as follows. 

Definition 5.1. fcq is the first backward conjugate point of (LQP)q on 
the trajectory y*( t )=  0. 

We have the following theorem. 

Theorem 5.1. For the class of problems defined in Section 1 with an 
arbitrary number p, 0-<p-< n, of terminal constraints, a Darboux point on 
the trajectory x* occurs at 

tD = sup fcq. 
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let 

Proof. Suppose that 

sup  r~,, ~ (to, q); 
q~O 

tl = sup l'cq - ~; 
q~O 

then, for e small enough, there exists ~ ~ O such that 

From Lemma 4.1 [note that (LQP)q has n - 1 terminal constraints], there 
exists an extremal trajectory ~(t) of (LQP)q such that 

; ( r ~ )  = 0 and 37 (tr) = ~ -  x*(tr). 

The trajectory 

£(t) a=](t)+x*(t) 

is admissible on [tl, q] for the original problem, since £(t) satisfies (2) and 
£(tr) = ~ satisfies (4). Then, Lemma 4.2 and Theorem 4.1 hold, and condi- 
tion (ii) of Definition 1.1 is satisfied. 

Now, let 

t2 > sup ~c~; 

it follows that the trajectory 

y*(t) = 0, t ~ [to, q], 

is proper globally optimal on [t2, q] for all (LQP)q, q ~ 0. Suppose that 
condition (i) of Definition 1.1 is not satisfied; then, there exists a trajectory 
£(t), admissible on [t2, q], of the original problem giving a smaller value to 
the cost functional between t2 and tr than x*. The trajectory 

)~(t) a=£(t)-x*(t) 

is obviously admissible on [t2, q] for (LQP),~, where ~ = £(t¢), and ~ gives a 
smaller value to the cost I4 of (LQP),~ than y* between tz and q, which is a 
contradiction with t2>t~,~. To show that )3 gives a negative value of 1,~ 
consider 

AJ = G(~, u*)-  G(x*, u ) -  h * r (q ) Axr+½ [q  (Ax rC Ax + A u r E  Au) dt, 
at 2 
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where AJ is the difference between the values of the cost functional given by 
£(t) and x*(t) between t2 and tr, 

Ax(t)&2(t)--x*(t), Au(t) ~=a(t)--u*(t) 

(see Appendix A, proof of Lemma 4.2). Then, 

AJ =½y fF(~)y:+ ½ j!i' (yTCy + vrEv ) dt, 

where 

y (t) = Ax (t), v (t) = d~u (t) 

have been used. Therefore, 2w r is the value between tz and t r of the cost 
functional I,~ of (LQP),~, and the result follows from ~ J  < 0. The proof of 
Theorem 5.1 is thus complete. 

Remark 5.1. It can be shown (Ref. 2) that/'~q -< tcq for any q ~ 0, and it 
follows that 

to = sup ~cq -< sup t~q. 

For the problem of Example 5.1, it can be shown that 

Fcq=SUP{2, tan-lr, 2+ 2,- 2; 2+2 ,1] ttql qz)/qltql ql)l~ 

and that 

tD = sup fcq = 3~r/4 = sup tCq, 
q~O qE8 

as expected. 

Remark 5.2. ~cq is the first time when the matrix ~/(t, q) becomes 
infinite when integrated backward. _M(t, q) is defined as 

M(t, q) = S(t, q ) -  R (t, q)Q-l(t, q)R V (t, q), 

where S(t, q), R(t, q), and Q(t, q) are solutions of Eqs. (14)-(16), when 
R(t r, q) is replaced by 

_R(ff, q)=[Tr(q)i VAT], vqr  = [V7 . . . . .  Vq~-v-l]. 

Thus, for an arbitrary number of terminal constraints, a Darboux point to is 
less than or equal to supq~0 tcq. A case when 

tD = sup tcq 
qE0 
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will be investigated in the next section. The particular structure is such that a 
Darboux point is easily calculated and, furthermore, is related to the Riccati 
matrix of the LQP. 

6. Case of One Quadratic Terminal Constraint 

Suppose that g(xf) and O(xf) have the following form: 

g(xr)=½xfFoxr, (20) 

O(xf ) = ½x FFlxf + Tx~ + 60, (21) 

where F0 and f l  are symmetric n x n matrices, F1 ¢ 0 (i.e., e rFle ~ 0 for all 
e e R",  e ¢ 0), T is a 1 x n vector (p = 1), and 6o is a scalar. The matrices 
F(q) and T(q) are 

F(q)=Fo+u*F1, u*~R ~, 

and 

T(q) = ½(q + xf)TF1 + T, 

respectively; thus, S(t, q) does not depend on q. Accordingly, we shall 
designate S(t, q) by S(t) and t,q by t,. 

The major result of this section is that ts is a Darboux point. In this 
direction, the following corollary of Theorem 2.1 implies that condition (i) of 
the Darboux point definition (Definition 1.1) is satisfied. 

Corollary 6.1. A sufficient condition for an extremat trajectory 
x*(t), t ~ [to, tr], to be proper globally optimal is that to> t~. 

Proof. It can be shown (Ref. 2, Theorem 3.7) that ts -> tcq for all q ~ 0. 
Thus, 

to> t~ ---sup tcq, 
q~0 

and the result follows from Theorem 2.1. [] 
We will now follow several steps to show that condition (if) of Definition 

1.1 is satisfied, Let l)(t, to) be the 2n x 2n transition matrix of 

[ A(t)  -B( t )E- l ( t )Br( t )]  
= [ - C ( t )  _ A t ( t )  ix, 

and denote by Ft~j(t, to), i, ] = 1, 2, the block of ll(t, to) partitioned into four 
n x n blocks. Suppose that ts ~ (to, tt). Then, there exists a nonzero vector 
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e ~ R "  in the null space of 

S(t~, tt)= f~22(tr, t , ) -  S(q)l~a2(tr, t~) (22) 

(see Ref. 2, Section 3.3). Let (x~(t), A~(t)) be the solution on [& tt] of Eqs. 
(2), (5), where (6) and Assumption (A.2) have been used to eliminate u, with 
initial conditions 

x(t ,)=x*(t,) ,  A(t~)=A*(t)+~e, (23) 

where a is a scalar parameter. We have 

x,,(t) = sq11(t, t~)x*(t~)+ Ut~z(t, t~)A (t,) = x*(t)+ aF~z(t, t,)e, 
(24) 

A,~ (t) = lq21 (t, t~)x*(t~)+ ~22(t, t~)A (t,) = A*(t) + aFt22(t, t~)e, 

and the following lemma. 

Lemma 6.1. If there exists a ~ 0  such that x~(q)~ 0, then the trajec- 
tory x~ (t), t ~ Its, tr], is extremal. 

Proof.  Since (x~, A,,) satisfies Eqs. (2), (4), (5), and (6), we only need to 
show that (7) is satisfied with A~ (tr) and x~ (q) for some v,~. Using (24), we 
have 

A~ ( q ) -  (Fo + u~Fa)x~ (tr)- u~ T r = A *(q) -  (Fo + v*F1)x*(t~)- v* T T 

- (v~ - v*){F1[x*(q)+ alqx2(tr, t~)e] + T T} 

+ a[C*22(q, ts)-(Fo+ ~*F1)~q~2(tt, t~)]e. 
Then, the satisfaction of (7) with x,, (tt), A~ (t~), v,, foItows from the definition 
of e, the choice u~ = v*, and the satisfaction of (7) with x*(tr), h*(t~), u*. [] 

Next, we examine the existence of an a ¢ 0 such that x~ (tr) ~ 0. This 
requires, using (24), that 

0 = ¢[x~(tr) ] = ½[x*(tt)+oll)12(tt, t~)e]TF~[x*(t~)+a~Iz(ti, t~)e] 

+ T[x*(t~)+al't12(t t, t~)e] + ¢to = O, 

or  

0 = ~[x*(tf)] +½o~2[~12(tf, ts)e]TFl[~12(tb ts)e] 
+ a[x*r  (tt)F1 + T]t212(tt, t~)e, 

with O[x*(tt) ] = 0. Let v represent the vector l~lz(tr, t,)e. Then, a must be the 
solution of 

a(vTFlv)+ 2(x'fTFl + TT)v = O. 
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We have four cases: 
Case (i): vrF lv  ~ 0 and (x~7:F~ + T)v ~ 0; then, the solution is 

ol = -2 (v rF lv ) - l ( x~TFt  + T)v ¢ O. 

Case (ii): vrFlv  ¢ 0 and (x~TFI + T)v = 0; then, the only solution is 

0/~0,  

Case (iii): v rFlv = 0 and (x~rF1 + T)v ~ 0; then, the only solution is 

C~ = -Fo0. 

Case (iv): vrF lv  = 0 and (x~rF1 + T)v = 0; then, 

ot = any real number. 

Case (iv) corresponds to the case where 0 consists of two hyperplanes (4/ 
is the product of two affine functions), one of them containing v. Case (iii) 
corresponds to the case where x= (tr) is at infinity (for instance, if 0 is a 
parabola and v is in the direction of the principal axis) and is not realistic, 
since it means that x= (tr) is attained in the finite amount of time t r -  t~ from 
x*(t,), with 

l lx ,( t / )-  x*(ts)tl = ~ .  

However, we will consider this case and view the corresponding trajectory as 
the limit of x,  (t) as a goes to infinity. Case (ii) corresponds to the case where 
ts is a conjugate point, as shown below. 

Lemma 6.2. If there exists a nonzero vector e in the null space of 
S(t,, tr) such that 

(x~rF1 + T)f~12(t:, t,)e = O, 

then t, is a conjugate point on the trajectory x*. 

Proof. 

where 

Consider 

V(r)  = [f~22(r, t ,)-M(~)f~12(z, t,)]e, 

M(z )  = M(':, q = x~) 

is the matrix used to test for conjugate points on x* (as noted in Section 1). 
Using (17) and the definition of e, we have 

V(~') = [f~22(r, t s ) -  S(r)f~12('r, ts)]e + R (7)Q-I(~')R r(r)f~12(~', ts)e, 

V(~') = - R  ( ' :)Q-I(z)R r(z)f~12(~', ts)e. 
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Define 

we have 

R toe; 

6 (r)  = R r~q~2('r, t~)e + R T~I2(r, t~)e 

= - R  r (A - B E - I B  TS)~12(% gs )e 

+ R T[A f~I 2(% ts) -- B E  - 1 B  T~'~22(% t s)]e 

= - R  T B E - I B  T[I~22(r, t s ) -  S(r)s')12(r, t,)]e = 0, 

where the expression for 

fi( , = 

is easily derived from the defni t ion  of f~(t, to). Thus, we have 

p ( r )  = p(tt)  for all r ~ (t~, t•], 

but 

p(tt)  = R T(tt)flx2(t~, t,)e = R r(tr, q = xT)1212(tr, ts)e = T(q  = x~)Ft12(tt, t~)e, 

or 

p(tt)  = (x~rF~ + T)fhz(t¢, t,)e = O. 

Since R ( r ) O - ~ ( r )  is finite s for all ~-~ (t~, re), it follows that 

V ( r )  = 0 for all r ~ (t,, tr). 

Then, M(t~) is infinite (see Ref. 2, Section 3.3), and the result follows, since 
M(t~)  infinite implies a conjugate point (Ref. 6). [ ]  

Remark  6.1. Lemma 6.2 gives a sufficient condition for t~ to be a 
conjugate point; however, this condition is not necessary, as will be seen in 
Example 6.2. 

Thus far, we have seen that either t, is a conjugate point on x* or there 
exists an extremal trajectory x~(a ~ O, o~ may be unbounded),  distinct from 
x*, with associated Lagrange multiplier v~ = ~,* and going through x*(t~) at 
t = ts. We have, furthermore,  the following lemma. 

Lemma 6.3. If two extremal trajectories with the same Lagrange 
multiplier v go through the same point at some time tl, then they give the 
same value to the cost functional between tl and t r. 

g R(r)O-l(r) is finite for all ~- ~ (t~., re), see Ref. 6, and the result follows from t2 -> tcq*. 
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Proof. Let  :~(t) and x*(t), t ~ [tl, if], be two extremal trajectories such 
that 

~(tl) = x*(tl) and 17 = v*. 

The argument used at the beginning of the proof of Lemma 4.2 (see 
Appendix A) is applicable, with xq(t) replaced by ~(t), and we have 

AJ = ½ AxTF(q = $(tt)) ax t -½ AA r(tf) Ax t, 

where AJ is the difference between the values of the cost functional between 
tl and tr given by $ and x*, 

ax(t)  a--X(t)-x*(t), aA(t)& i ( t ) - t t  *(t), 

A(t) being the multiplier function associated with :~(t). But 

)t(tt) = (Fo + ~F1)$(tr)+ ~T, 

A* (if) = (Fo + v*F1)x*(tr) + v* T, 

17=v* 

imply 

Then, 

follows from 

AA r(tt) Ax t = AxT(Fo + v*F~) Axf. 

AJ = 0 

F(q) = Fo + e *F1. [] 

In the case (iii) mentioned earlier, ~(t) is the limit of a 

since 

A J =  lim A J= = lim -v*g,(x,,(tr)) = 0, 

lim x,, (t¢) c O. 

Remark 6.2. 
sequence of trajectories x~(t) as a goes to infinity. For each x,,(t), the same 
argument as in the proof above would give 

aJ~ = -v*¢,(x=(tr)).  

Since x~,(tf) is not in 0, the term -v*~(x~,(tr) ) ~ 0 must be added to compen- 
sate for G(x~,(tt), v*) used in A J,, ; see proof of Lemma 4.2 in Appendix A. 
At  the limit, 
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Recapitulating the varous results obtained, it can be seen that the 
trajectory x*(t) is not globally optimal on [to, tr] when to < ts, Indeed, either ts 
is a conjugate point and x* is not even locally optimal on [to, q], or ts is not a 
conjugate point and the result follows from Lemmas 6.1, 6.3, and 1.1. Then, 
Corollary 6.1 and Definition 1.1 imply the following theorem. 

Theorem 6.1, For the class of problems considered in this section, a 
Darboux point occurs on an extremal trajectory at t~, that is, when the 
corresponding S-matrix becomes infinite. 

Note  that we have 

to = ts = sup too. 
q~0 

Indeed, tcq -< t~ (see Ref. 2) implies 

sup tcq -< ts, 
q~8 

and the result follows from: 

to = sup rcq --< sup tcq -< ts 
qEO clio 

(see Section 5). We shall now present two illustrative examples. 

Example 6.1. Consider the ease when 

n = m = 2 ,  to=0 ,  t r = l :  

_o.~ 

in Eqs. (1)-(4) and (20)-(21). This example is a minimum-distance problem 
from a point to a parabola. An extremal solution is 

' ~ ( t - 3 )  ' t ~ [0,  1], 

~ * ( t )  = - u * ( t ) ,  ~* = -~ 
We have 
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and 

for all 

1 [ t -½  ½(q2+ 1) 
M ( t ,  q ) =  (1 - t ) [ t -  ½-+-~ (q2 + 1) 2] 1_½ (q2 + 1) t -  1 + ~ (q2 + 1) 2] 

It follows that 

Note  that 

The  Darboux point 

q=U 0 
1 1 6 = ½ and tcq = ~ - ~ (q2 + 1)2  

sup tcq = sup tcq = ½ = ts. 
q~O qzE(-~,  +co) 

1 
to  = ts = ~ 

is of Type-1. Also, note that  there exists a trajectory £, distinct from x*, 
giving the same value to the cost functional between to and tr as x* between 
to  and tt (see Fig. 1). 

Now, suppose that 

x0=[00] 

×2 

-1 _.,5 

I I / i  

J 

×1 

Fig. 1+ Darboax  points in Example 6.1. 
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An extremal solution is 

~7(t) = , 

We have 

Then, 

0 

where S is defined in (22). This matrix becomes singular when 
i t~ =3, 

and a unit vector in its null space is 

It follows that 
2_ 

(dTFl+T)~t12( t , , t~ )e=[2 ,0][ ;3  0 0 

It may be shown that the Darbous point 

on £ is also a conjugate point, as expected from Lemma 6.2 (see Fig. 1), thus 
providing an illustration of a Darboux point which is also a conjugate point. 

Example 6.2. Consider the same problem as Example 6.1, but with 

~ -0 .5 ]  

The terminal set 0 is now a circle. The pair (u*(/), x*(t)) of Example 6.1 is 
also extremal for this example with the same multipliers ~*(t), u*. The 
Darboux point is still 

1 tD = ts = g, 

but it is also a conjugate point. We have 

S(ts, re)= [1 
0 ] 

0 1 - t , ) J  L 



558 JOTA: VOL. 22, NO. 4, AUGUST 1977 

When 
1 ts =5, 

becomes identically zero, and any vector e ~ R 2 is in its null space. In 
particular, choose 

it follows that 
2 

(xfTFI + T)l}12(tr, ts)e=[2,2][-i]=-8 ~O, 

which shows that the condition of Lemma 6.2 is not necessaryfor ts (the 
Darboux point) to also be a conjugate point. 

7. Conclusions 

In this paper, characterizations of the Darboux point for particular 
classes of problems (linear dynamics and quadratic integrand in the cost 
functional, along with certain analyticity assumptions) have been deter- 
mined. The Darboux point was shown to be the supremum of a sequence of 
conjugate points. This approach allows a connection between the conjugate 
point and the Darboux point on an extremal trajectory, namely, that a 
conjugate point is a first-order approximation to a Darboux point. When the 
terminal constraints are limited to a single quadratic constraint, a Darboux 
point occurs when the Riccati matrix (i.e., the S-matrix) associated with the 
trajectory becomes unbounded. This notable property makes the Darboux 
point test very simple for this type of problem. To the best of the authors' 
knowledge, it is the first time that S ~ c~ has been characterized in problems 
with terminal constraints. 

The various results concerning the characterizations of the Darboux 
point for the classes of problems considered are summarized in Table 1, 
where tc is the first backward conjugate point, ts is the time when the Riccati 
matrix becomes infinite, and tcq, T~q, q, 0 are defined in the text. 

Table 1. Darboux point characterizations. 

Terminal constraints (number and form) 

O<_p<_n, 0<_p___n- 1, p = n - 1 ,  p = l ,  
linear arbitrary arbitrary quadratic 

Darboux point occurs at t~ sup ?cq sup tcq (~ 
q~O q~O 
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8. Appendix A: Proof of Lemmas 2.1 and 4.2 

Proof of Lemma 2.1. 9 Given q, let :~(t), t ~ [to, ty], be an admissible 
trajectory starting at ~(to) = Xo and terminating at ~(tr) = q. It can be shown 
from (1) that 

= g(xt)-g(xf)+½ f "  (AxrC Ax + A u r E  Au) dt y_j ,  
a t  o 

f t  tf + (x*TCAx+u*TEAu)dt ,  
o 

where J and J* are the values of the cost functional given respectively by the 
trajectories $ and x*, 

Ax(t)& $(t)-x*(t),  Au(t)& ff(t)-u*(t), 

a(t), t ~ [to, tr], being the control associated with ~. Add the identically zero 
quantity 

i 
t 

0 =-- v*r(~O($f) - ~b(xf)] +~ AxTM(t, q)(A Ax +B Au -b.~) dt 
o 

+ [½AxTS(t,q) 
1 

+.~R~(t, q)](a zXx+B ±u-~X~c)dt+½/[O(tl, q)+ O(t, q)dt],,, 
1 

(25) 

where v e R p is a constant to be chosen later and tl ~ (to, tr) is such that the 
matrix S(t, q) is defined on [h, q]. The existence of such h sufficiently close 
to t t is implied by the existence of S(tr). It follows from (15) and (16) that 
R(t, q) and Q(t, q) are defined on [h, tr]. Thus, (25) is well defined, since 
M(t, q) is finite on [to, tl]. After integrating by parts and using [through 
necessary conditions (5), (6), (7), and Eq. (11)] 

I I tf ( X * T C  A X  + u ' r E  Au) dt = - (d/dt)(A , r  Ax) dt = -A*r(tr)  Ax r 
o o 

= -(d/dxr)G(x~, u*) Axf, 

9 This proof was suggested by similar proofs due to McReynolds (Ref. 7) and Wood (Ref. 8). 
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we have 

y - J *  = G(2r, v*) -G(x~ ,  v*)-(d/dxt)G(x~, u*)Axr-½ Ax~M(tl, q)Axl 

-½AxfS(q, q) AX r 

-- vrR T(t t, q) Axr+ ½ Ax TS(h, q) AXl + vrR r(tl, q) Ax 1 

+ ½ vrQ(t,, q)v 

+½ II' [AxT(C + MA + ATM + iVI)Ax + AxTMBAu + AuTBrMAx 

+AurE Au] dt 

f,, 
+½ [Axr(C+$A+ArS+S)Ax+AxrSBAu+AurBrSAx 

+ AurE Au 

+ 2vr (R rA +1~ r) Ax + 2vrR rB Au + vrOv] dr, 

where Axl=Ax(h) and M,S,R,Q in the integrands stand for 
M(t, q), S(t, q), etc. Then, using (14)-(16), we have 

i - J *  = G(q, v*)- G(x~, u*)- (d/ dxf )G(x~, v*) Axr- ½ Axf F(q) Axf 

- vTTT(q) Ax¢ 

+½ Ax~R(tl, q)Q-~(h, q)RT(t, q) Axl + vTR T(tl, q) AXl 

1 T +~v O(h, q)v 

+!2 [Au +E-1BrM(t, q) AxlrE[Au + E-IBrM(t, q) Ax] dt 

+½ [" {Au + E-~Br[ S(t, q) Ax + R (t, q)v]}rE{Au 
o¢ o 

+ E-1Br[S( t ,  q) Ax + R(t, q)v]} dt. 

Now, using Assumption (A.4), Eqs. (12}-(13), the condition 

~,(q) = q,*(x~) = o, 
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which implies 

and choosing 
TT~)Axr=0,  

v = -O- l ( t l ,  q)R r(tl, q) ?ax(tl), 

we are left with the two integrals appearing in the above expression of 3 " - J*  
Then, Assumption (A.2) implies 

Y-J*>-O. 

Also, the first integral above, between to and tl, cannot be zero; this would 
imply that 

Au(t) = -E-~BrM(t ,  q) Ax(t) a.e. on [to, h], 

which, together with (2), M(t, q) finite on [to, tl], and Ax(to) = 0 would imply 

Ax( t ) -  O, t~ [to, tl], 

a contradiction. Hence the result of Lemma 2.1 follows. Z] 

Proof of Lemma 4.2. Let 

~J ~ J~[tc,, tr]-J*[tc~, tr] 

be the difference between the values of the cost functional given by the 
trajectories xq and x* between tc~ and tr, and define 

Ax(t)~xq(t)-x*(t) ,  Au(t)~ uq(t)-- u*(t), 

where uq(t) is the control associated with xq(t). Note that Ax and Au are the 
quantities ya and va in the proof of Lemma 4.1. since xq(tr) = q and x*(tr) are 
in 0, we can write 

= G(q, ~*)- G(x?, ~*) + 1 ~" (~x ~c ~x + Au rE ~ . )  dt bY 
.lJ teq 

+ (x*rCz~x+u*rEz~u)dt, 
t~q 

where G(xr, v*)was defined in (11). 
By construction, z~x (t) satisfies the first-order necessary conditions for 

optimality of (LOP)q with some multiplier function AA (t). It follows that 

~xu (t) = - E - ~ ( t ) B  ~(t) Aa (t) 
and 

AxrC ax +Au rE Au = -(d/dt)[AA r Ax], 

x*rC Ax + u ' r E  AU = -(d/dt)[A , r  Ax]. 
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Then, 

AJ = G (q, v *) - G (x 7 , v*) - h * (t:) Ax: - ½ AA r(t:) Ax:; 

and, using (7), (11), and (12), we have 

AJ = ½ AxTF(q) Ax: -½ AA r(t:) Ax:. 

Using 

Ah (tr)= F(q)  Ax(q)+ TT(q)~ ,, 

for some v, yields 

AJ = - ½ v rT(q ) A xr = - ½ v rT(q )(q - x f )  = O. []  
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