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On the Order of Singular Optimal Control Problems 1 

W. F. POWERS 2 

Dedicated to R. Bellman 

Abstract, In singular optimal control problems, the functional form of 
the optimal control function is usually determined by solving the 
algebraic equation which results by successively differentiating the 
switching function until the control appears explicitly. This process 
defines the order of the singular problem. Order-related results are 
developed for singular linear-quadratic problems and for a bilinear 
example which gives new insights into the relationship between singular 
problem order and singular arc order. 
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singular control order. 

1. Introduction 

The concept of order for singular problems was introduced in the mid- 
sixties when an extension of the generalized Legendre-Clebsch condition 
(GLC), developed by Kelley in 1964 in Ref. i,  was developed by Kopp and 
Moyer in Ref. 2. Problem-oriented definitions of order were then developed 
in Refs. 3 and 4. In 1971, a junction theorem for singular and nonsingular 
arcs was presented (Ref. 5) in terms of the genericity (i.e., even or odd) of 
singular problem order and continuity properties of the optimal control 
function. It should be noted that all of the authors of Refs. 1-5 were 
concerned with solving singular aerospace optimal control problems at the 
time of the theoretical developments, and the results of Refs. 1-5 were all 
applied to realistic engineering problems. 

In recent years, studies of order associated with singular problems per  se 

(Refs. 6 and 7) have been presented to develop a deeper understanding of 
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optimal control theory. In this same spirit, Lewis in Ref. 8 surveys the 
various definitions and implementations of singular control order. As shown 
in Ref. 8, basically two types of order are involved in Refs. 1-5: problem 
order and arc order (to be defined in Section 2). Lewis then presents a 
bilinear control example for which he claims the junction theorem of Ref. 5 
does not apply; and, based upon this fact, one should refrain (at least at the 
present time) from any claims involving genericity. However, a more 
complete analysis of this example, to be presented in Section 3, shows that 
the junction theorem of Ref. 5 is applicable to almost all nonsingular- 
singular junctions, and that genericity gives a great deal of engineering 
insight into the problem. Thus, Ref. 8 does not refute order and genericity 
arguments, which practitioners of optimal control have employed for 
insights into engineering problems over the last decade. 

Additional insights into the order of singular problems are presented in 
Section 4. In particular, results for a class of infinite-order singular problems 
are discussed. 

2. Definitions of Order 

Consider the following Bolza problem: minimize 

J = G(tr, xr) + x) +Lu(t, x)u] dt, 

subject to 

(1) 

= fo(t, x)+f , ( t ,  x)u, (2) 

Iu (t)l <- K(t) ,  t ~ [to, tr], (3) 

{to, X(to), t¢, x(tr)} ~ S, (4) 

where x is an n-vector, u is a scalar control variable, and K(t)  is a piecewise 
analytic function. The Hamiltonian for this problem is 

H = Lo(t, x) + Lu (t, x)u + h T[f0(t, X) +f~ (t, X)U], (5) 

and an optimal subarc on which the switching function vanishes, 

~b(t)=Lu(t, x*(t))+a r(t)f ,(t ,  x*( t ) )=H,[ t ,  x*(t), ,~ (t)] = 0, 

t ~ [tl, tz], tl ~ t2, (6) 

is called an optimal singular subarc; here, x*(t) and u*(t) denote the optimal 
state and control, respectively. In the previous section, a historical 
development of singular problem order w~s presented. The accepted 
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engineering concept of singular order is made precise in the following 
definition. 

Definition 2.1. Assume that the problem defined by Eqs. (1)-(4) 
contains at least one optimal singular subarc. Let  (d2q/dt2q)[H,(t, x, A)] be 
the lowest-order total derivative o f / 4 ,  in which u appears explicitly. Then, 
the optimal control problem is said to be a singular problem of order q. If u 
never appears explicitly in the differentiation process, then the optimal 
control problem is called an infinite-order singular problem. 

Comment 2.1. As is well known, it is necessary that the first 
appearance of u in the switching function differentiation process must occur 
in an even-order  derivative (see Ref. 4). It is implicit in the definition above 
that, if q <co,  then (d2q/dt2q)[H,(t, x, A)] is linear in u; in particular, 

(d2q/dt2q)[H,(t, x, A)] =A( t ,  x, X)+B(t ,  x, A)u. (7) 

Comment 2.2. This definition refines the definitions of Refs. 5 and 9 
to emphasize that the accepted concept of order is really associated with the 
problem, as opposed to an optimal subarc, and thus may be computed a 
priori. This distinction will become more important in Section 3. Lewis refers 
to this order as intrinsic order. 

Suppose that a singular problem is of qth order,  with q < co. As will be 
shown in the next section, such a problem may possess optimal singular 
subarcs with orders equal to or different from the problem order. Thus, the 
following definition is proposed for the order of a singular arc in Ref. 8. 

Definition 2.2. Let  u*(t), t e [h, t2], be an optimal singular control for 
the qth order singular problem defined by Eqs. (1)-(4). If q = oo, then the 
subarc is called an infinite-order, singular subarc. If q < o o  and 
B[t, x*(t), A *(t)] ¢ 0, on (h, t2), then the subarc is called a qth order singular 
subarc. If q < co and B [t, x* (t), A * (t)] ~- 0, t ~ (h, t2), then the subarc is called 
a p th  order singular subarc, where p is determined as follows. Differentiate 

(2q) Hu It, x*(t), A*(t), u*(t)] with respect to t until 

Bl(t)  - [(a/au)[H~ q+2pO (t, x, A, u)]]~,,~*(n.a~(~)..~(,)> ¢ 0, t e (h, t2). (8) 

Then, (i) if pl < oo, p = q +Pl ;  and (ii) if no finite value of Pl satisfies Eq. (8), 
p = o o .  

Comment 2.3. In general, the order of a singular arc cannot be 
determined a priori. However,  the arc order is the order of interest in the 
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development of necessary conditions which involve expansions about 
reference optimal solutions. 

Comment 2.4. In general, r.~r(2q+2p0rt -- u L., x, A, u] is a (2pl + 1)-poly- 
nomial in u, while H ~  q~ is linear in u. 

With the above definitions, the major theorem of Ref. 5 may be restated 
as follows. 

Theorem 2.1. Let tc be a point at which singular and nonsingular 
subarcs of an optimal control u*(t) are joined. If  the order of the singular 
problem and the singular subarc are equal, say q, i fB[tc,  x*(t,) ,  A*(t~)] ~ 0, 
and if the control is piecewise analytic in a neighborhood of t~, then q + r is an 
odd integer, where (dr/dtr)u*(t),  r >- O, is the lowest-order time derivative of 
u*(t) which is discontinuous at t~. 

At the present time, there does not exist a general junction necessary 
condition for singular problems in which the problem and arc orders differ. 
However, the insights to be discussed in Sections 3 and 4 may allow the 
generation of such a result in the near future. 

3. Finite-Order Considerations 

As noted previously, a survey of the various definitions and implemen- 
tations of singular order is presented in Ref. 8. Lewis presents an example, to 
be discussed below, which he claims represents a class of problems whose 
junction point behavior is not specified by Theorem 2.1. The example is as 
follows: minimize 

J = (xl _½)2 dt, (9) 
o 

subject to 

Ycl = x2u, x1(to) --- ~'1 ~ ~, (10) 

2z= u - x 1 ,  x2(to) = & ~ 0, (11) 

]ul_<l, ti fixed. (12) 

Lewis claims that the optimal solution from any initial point (~'1, ~'2) # (~, 0) 
comprises a nonsingular arc from ((1, ~'2) reaching (½, 0) at time to, followed 
by the singular arc 

x~(t)=½, x2*(t)=0, u*(t) =½, Al(t) =h2( t )=0.  (13) 
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Clearly, u*(t) = ½ is an optimal control if the point 
1 

X l = ~ ,  X2 ---'~ 0 

is on the optimal trajectory, since the positive semidefinite cost function 
along this subarc is zero. However, Lewis neglected to observe that u* = 0 is 
also an optimal control for this case. 

A thorough study of this problem shows that u* = 0 is a more robust 
singular subarc in this problem. Furthermore, there exists a large class of 
initial conditions for which u* = 0 is the only optimal singular control and, 
except for one point in the singular state space, Theorem 2.1 is applicable. 
Thus, this example does not diminish the applicability of Theorem 2.1. 
However, this is a very useful example for studying the interrelationship of 
problem and arc orders. Application of the definitions and procedures of 
Section 2 imply that the problem is first order, i.e., 

1 2  H = (xl -g) +2t lx2u +A2(U -x l ) ,  (14) 

21 = -Hxl  --- -2 (x l  -½)+t2 ,  .~2 = -A,u ,  (15) 
• 1 H .  = Alx2+a2, H .  =azX2--2X2(Xl--g)--)tlXl, (16) 

ISI. - 2 x l a 2 + 4 x 1 ( x l  1 .~ 1 2 = --~)~ [AZ--2(Xl--~)--2Xz--22tlXZ]U, (17) 

o r  

ffI, =-A(t, x, h) +B(t, x, A)u (18) 

implies that u first appears explicitly in/-)u (implying that problem order is 
equal to one). The Lewis singular arc of Eq. (13) is of the second order, i.e., 

fflu[t, x*(t), a*(t), u*(t)]= O, on (tl, tr], (19) 

Hu[t, x*(t), h*(t), u*(t)] = u * 2 ( - 3 h l -  6x2) * 

+ u*[mx ia 1 - 4AzX2 -b 8X2(X1 --  ½) 

4" 8XtX2]* ,  (20) 

o r  

o r  

f/'. =0-u*2+0. u*~[(O/ou)H~3~]*=O, 
H ,  [t, x*(t), ),*(t), u*(t)]= - 6 u  .3 

+ u*2[-  5a 2 + 6(xi - I) + 14xi + 8x~ + 4 t  lx2]* 

+ u * [ -  8x~ + 4x 1/~ z - 4 x l ( x l  - ~)]*, 

(21) 

(22) 

H(~ 4) --- - 6 u  . 3  + 7 u  . 2  - 2u*, (23) 
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which implies that 

[(O/Ou)Hl4,~] * = - 18u ' 2+  14u . 2 - 2  = 0.5 > 0. (24) 

In Ref. 8, it was not observed that there exists another singular control 
for this problem: 

= x**/t~ - x** ( t l ) -  0 .5 ( t -  tt), u * * ( t ) = 0 ,  x**(t) 0.5 ,  2 ~ j -  2 
(25) 

h 1'* (t) = A 2** (t) = 0. 

In fact, this singular control also allows the state of the singular arc defined in 
Eq. (13) with no increase in the cost function, and thus is a more robust 
singular arc. This becomes clear when one considers a phase plane analysis 
for this example. There exist four obvious optimal controls: u = +1 
(nonsingular), u = - 1  (nonsingular), u = 0 (first-order singular arc), and 
u = ½ (second-order singular arc). The state trajectories for the nonsingular 
arcs emanating from ((1, (2), with to = 0, are 

x l = ( ( 1 - 1 ) c o s t + ( z s i n t + l ,  u = + l ,  (26) 
Xa = - ( ( 1 -  1) sin t + &  cos t, u =  +1,  

x l = ½ ( ( 1 - ( 2 + l ) e t + ½ ( ( l + ( 2 + l ) e - t - 1 ,  u= - 1 ,  
(27) 

x 2 = - ½ ( ( 1 - f z + l ) e t + ½ ( ( i + f 2 + l ) e  -', u = - l .  

The following relations hold in the phase plane 

(x2-1)2+x22 = ((1 - 1) 2+ (~, u = + 1, (28) 
1 2 1 2 "1-11"2 1~2 
2X2~-2Xl'~X1 ~2~2 --  2~1 - -  ~'1), U = - - l "  (29) 

The resultant phase plane is shown in Fig. 1. 
This example illustrates an interesting phenomenon that gives insight 

into the order of a singular arc and singular control in general. In the phase 
plane of Fig. 1, nonsingular subarcs are optimal for the following set: 

(xl, x2) ~ $1 ---- {(xl, x2) lxa ~ 0.5}, (30) 

which is all of R z, except the line xl = 0.5. The first-order singular subarc 
u* = 0 is optimal for the set 

(xa, x2) C $2 ~ {(xl, x2) t xt = 0.5}, (31) 

while the second-order singular subarc u* = ½ is an optimal control only for 
the set 

(xl, x2) ~ $3 - {(xl, x2) Ix1 = 0.5, x2 = 0}. (32) 

Note that $2 is a one-dimensional subset of R 2, and Sa is a zero-dimensional 
subset of R 2. Thus, as the order of the singular arc increases, the dimension 
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Fig. 1. Phase plane for example of Section 3. 

of the space of possible states decreases, Intuitively, this is due to the 
algebraic constraints defined by the derivatives of the switching function in 
Definitions 2.1 and 2.2. 

Note that, just as the first-order singular arc defines a special subspace 
of R E for this bounded control problem, the second-order singular subarc 
defines a special subspace of SE. Thus, intuitively, the higher-order singular 
arc is a singular situation within the qth order singular optimal control 
problem, just as the qth order singular arc is a singular situation within the 
0th order, nonsingular optimal control problem. 

The question then arises: Is it ever necessary to employ the higher- 
order singular arc? In the example of Eqs. (9)-(12), the minimum cost can 
always be attained with a nonsingular arc (or multiple nonsingular arcs), 
followed by the first-order singular arc for sufficiently large tf. However, the 
problem has no terminal state boundary conditions. If the following terminal 
condition is added to the problem: 

x2(tr) = 0, (33) 

then, for many initial conditions and sufficiently large tf, the optimal control 
is 

u*(t)= +1 or - 1 ,  te[to, t'l), 

u*(t) =0,  t e  (tl, t2), 

u*(t) = 0.5, t e (t~, tf], 

(34) 
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Fig. 2. 
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Generalized Legendre-Clebsch function for example of Section 3. 

i.e., a nonsingular arc/first-order singular arc/second-order singular arc 
sequence. Note that there may exist initial conditions which require multiple 
nonsingular arcs before joining the singular arc. Thus, the addition of the 
boundary condition (33) causes u* = ½ to be a unique singular control. 

With respect to the junction condition of Theorem 2.1, the hypotheses 
of the theorem are satisfied at the junction of each nonsingular arc and the 
singular arc u* = 0, except when 

xl(tc) =½ and x2(tc) = 0. 

It is interesting to note that this is the only point in state space which admits 
two singular arcs with equal cost functions, and it is the only point on the 
first-order singular arc where the strengthened Legendre--Clebsch condition 
does not hold (see Fig. 2). Thus, Theorem 2.1 is applicable to most 
nonsingular-singular junctions for this example, and the only point in 
singular state space at which it is not applicable, because 

B[tc, x*(tc), A *(t~)] = 0, 

is a very special point in the problem. In this latter sense, the lack of the 
applicability of the theorem for particular conditions indicates to an 
investigator that further analysis of such conditions is required. 

4. Singular Linear-Quadratic Problem Considerations 

The example of the previous section indicates that a deeper engineering 
understanding of singular problem order must be developed. Thus, it is of 
interest to develop a complete theory of singular order for time-invariant, 
singular linear-quadratic problems (SLQP's), the most basic class of singular 
control problems. In this section, some properties of order associated with 
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SLQP will be presented without proof, because of space limitations (see Ref. 
10 for the proofs and other properties of the SLQP associated with compu- 
tation and functional analytic interpretations). 

Consider the following problem: minimize 

J = x r P x  dr, (35) 
,t 0 

subject to 

2 = A x  + bu, x (0) = Xo. (36) 

where (A, b) is a controllable pair, P is symmetric, u is scalar, P, A, b are 
constant matrices, and x is an n-vector. The controllability assumption is 
imposed so that the problem is a reasonable control problem; e.g., if (A, b) is 
not a controllable pair, then the cost function could be completely indepen- 
dent of the control action and independent of the path, since u does not 
appear explicitly in Eq. (35). 

It is straightforward to show that the order of the problem and  the order 
of the arc are always the same for the class of problems defined in Eqs. (35) 
and (36). Since the order of the problem can be determined a priori, alt 
order-dependent results for the SLOP can be determined a priori, which is 
not the case for more general classes of problems. Thus, order-dependent 
results for the SLQP are strictly a function of interrelationships between P, 
A, b of Eqs. (35) and (36). 

In linear-quadratic controller design, the matrix P is usually assumed to 
be positive semidefinite (at least). In this case, it can be shown that, if a 
singular optimal control exists, then the order of the singular problem is less 
than or equal to the dimension of the state space, i.e., q -< n. Thus, if P-> 0, 
one is guaranteed that the process of differentiation of the switching function 
will terminate in at most 2n steps. Actually, by employing properties of 
linear systems, one can develop a computer determination of order for this 
class of problems, as shown in Ref. 10, 

If P is not a positive semidefinite matrix, then it can be shown that the 
order of the problem is either less than or equal to n or infinity, i.e., q -< n or 
q = oo. Furthermore, an co-order SLQP can be characterized completely as 
follows. 

Theorem 4.1. The optimal control for the SLQP of Eqs. (35) and (36) 
is oo-order iff there exists a symmetric matrix F which satisfies 

P = A r F + F A ,  (37) 

Fb = 0. (38) 
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The proof of Theorem 4.1 shows that the conditions (37) and (38) are 
associated with the representation of the integral in Eq. (35) as an exact 
differential form. Thus, an oo-order SLQP (i.e., the control never appears 
explicitly in a derivative of the switching function) occurs only if the problem 
defined by Eqs. (35) and (36) is a disguised Mayer problem [for, if Eq. (35) is 
an exact differential, then it can be expressed as a function of Xo, t~, x(t  r) 
only]. In such cases, there exists an infinity of controls which will produce the 
same cost [since the system is controllable and only a function of t r and x (tr) 
must be minimized]. Finally, it can be shown that there exists a unique 
minimum-norm optimal control for the w-order SLQP. However, this 
control cannot be determined by differentiating the switching function (since 
u never appears explicitly). Methods for determining the minimum-norm, 
co-order singular control are presented in Ref. 10. 

Infinite-order singular optimal controls for SLQP's occur when the 
optimal control for the original problem is nonunique. Recall from Section 3 
that nonuniqueness problems were also associated with the order of the 
problem and the arcs. Intuitively, these properties indicate that there exists a 
strong connection between singular problem and arc order and uniqueness 
of optimal controls. 

5. Concluding Remarks 

Singular optimal control problem order properties have been presented 
for linear-quadratic problems and a bilinear example. These results indicate 
that the order and the genericity of the order are valuable engineering 
concepts in the analysis of singular optimal control problems, contrary to the 
conclusions presented in Ref. 8. Further work is required in the area of 
singular control order, especially the development of necessary conditions 
for junctions of optimal subarcs at points where the generalized Legendre- 
Clebsch condition is satisfied trivially (i.e., with equality, as opposed to strict 
inequality). 
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