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Abstract. A general first-order dynamic representation for discrete 
systems with several independent variables is proposed, based on the 
Dieudonn6-Rashevsky form for partial differential equations. This 
representation does not restrict consideration to causal systems. A 
minimum principle for such systems is proved, thus extending results 
known for discrete-time systems to the case of several independent 
variables. The proof requires only the classical implicit function 
theorem. 
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1. Introduction 

The widespread availability of high-speed digital computers  has 
sparked a renewal of interest in the use of difference equations for modeling 
dynamic systems. At  the same time, researchers in diverse scientific disci- 
plines are realizing that, in many  cases, difference equations give a much 
more  accurate representat ion of system dynamics than differential 
equations. Numerous  authoritative treatises defending the use of discrete 
mathematical  models have appeared  (Refs. 1-3), as have sophisticated 

1This research was performed at the University of Michigan and was supported in part by 
Grants Nos. NGR-23-005-017 and NGR-23-005-131 from the National Aeronautics and 
Space Administration. 

2Member, Technical Staff, Charles Stark Draper Laboratory, Cambridge, Massachusetts. 
3professor, Department of Aerospace Engineering and Program in Computer, Information, 

and Control Engineering, University of Michigan, Ann Arbor, Michigan. 

107 
0022-3239/83/0900-0107503,00/0 ~) 1983 Plenum Publishing Corporation 



108 JOTA: VOL. 41, NO. 1, SEPTEMBER 1983 

analyses of the dynamics of discrete models (Refs. 4-6). Moreover, advances 
in electronics are creating new dynamic systems for which a continuum 
mathematical model is decidedly inappropriate (Ref. 7). Until very recently, 
research in discrete system theory focused on systems with only one 
independent variable. However, the capability for high-speed digital signal 
processing (in particular, of two-dimensional images) has generated much 
interest in the development both of discrete models in several (in particular, 
two) independent variables (Refs. 8-10) and of associated discrete multi- 
parameter system theory (Ref. 11). 

In this paper, a general model for discrete multiparameter systems 
consisting of first-order nonlinear partial difference equations is proposed. 
This model is a discrete form of the Dieudonn6-Rashevsky (DR) equations 
used by Cesari (Ref. 12) and Suryanarayana (Ref. 13) in optimization 
studies with partial differential equations. The model has descriptor form 
(see Ref. 14), making explicit a property used by Cesari and Suryanarayana 
without comment. Most systems of partial difference equations encountered 
in applications (including noncausal systems) can be placed in this discrete 
DR form (Ref. 15). In particular, most state-space system models recently 
developed for linear two-parameter discrete (2-D) systems (Refs. 16-18) 
can be placed in this form. 

The main contribution of this paper is the statement and proof of 
necessary conditions for optimal control of multiparameter systems in the 
discrete DR form. The approach to the proof is motivated by the work of 
Baum and Cesari (Ref. 19) in simplifying the proof of the Pontryagin 
maximum principle. A notable feature is that only the classical implicit 
function theorem (rather than a fixed-point theorem) is required. The 
theory of optimization for discrete-time systems is mature (Refs. 20-25). 
Optimization with multiparameter systems involving discrete variables has 
proceeded in several directions with respect to the type of models used: 
discretization in time only (e.g., Ref. 26); discretization in space variables 
only (e.g., Ref. 27); and discretization in all variables (Refs. 28-31). Results 
in the present paper extend to fully discrete multiparameter systems the 
sharpest general minimum principle known for discrete-time systems (Ref. 
25). 

2. Optimization Problem 

Problem Definition. The optimization problem is in Mayer form with 
partial difference equations and static constraints defined over a finite 
rectangular array of multiindices. Given positive integers m and ks, a = 
1 . . . . .  m, denote by G the Cartesian product (array) I-[~=1 {0 . . . . .  k~}, and 
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by k the corner point ( k l , . . . ,  kin). For each index a,  denote by 1 ~ the 
unit displacement (0 . . . .  ,0,  1, 0 . . . . .  0) in the a th  variable, and by Gk(a) 
the subset 

{i==-(il . . . . .  im)~G: is #ks} .  

Assume that the following are specified: additional positive integers s~, 
a = 1 . . . . .  m, and n ; a nonempty set Uo; a family of subsets U(i),  i ~ G - k, 
of U0 (the symbo l -deno t e s  set-theoretic difference); a family of subsets 
X( i ) ,  i ~ G, of Euclidean space E " ;  a family of real matrices S ~" (i): s~ x n, 
i ~ Gk(a), a = 1 . . . . .  m;  a family of functions f~(i, •, • ) :E  ~ x Uo-~E'% 
i~ Gk (a ) ,  a =1  . . . . .  m; and a function f o : E n ~ E  ~. A pair (x, u), with 
x : G -e, E ~ and u : G - k ~ Uo is called admissible if it satisfies: 

S~( i ) x ( i + l~ )= f~ ( i , x ( i ) , u ( i ) ) ,  i ~ G k ( a ) , a  =1 . . . . .  m, 

u( i )~U( i ) ,  i ~ G ~ k ,  (1) 

x ( i ) ~ X ( i ) ,  i ~ G .  

The optimization problem is to minimize the functional 

(x, u)~--~ I(x,  u )Afo(x(k) )  

over the class of admissible pairs. A minimizing pair is called optimal. 

Discrete System Model. Equations (1) constitute the discrete 
Dieudonn6-Rashevsky form for multiparameter partial difference 
equations. Its relationship with proposed multiparameter state-space 
models for linear systems is briefly indicated for the 2-D case. Kung et al. 
(Ref. 32) have shown that the Roesser model (Ref. 17) is the most general 
of the models proposed in Refs. 16-18 (see Ref. 33 for an alternative 
viewpoint). Consider the 2-D Roesser model with horizontal and vertical 
local states xl: nl x 1 and x2: n2x 1, respectively (using the notation of 
the preceding paragraph), 

x l ( i + ( 1 , 0 ) ) = A l x l ( i ) + B l X 2 ( i ) + C l u ( i ) ,  i= ( i l ,  i2)eGk(1), 

x;(i+(O, 1 ) )=A2x l ( i )+B2x2 ( i )+C2u( i ) ,  i ~ Gk(2). 

See Ref. 17 for the distinction between local and global states in 2-D 
systems. These equations are easily expressed in the form (1) for the vector 

X & (X 1, X2) T 

by using 

and S2 [; 0] 
/-2 
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Here,  I o denotes the identity matrix, and the superscript T denotes matrix 
transpose. Recently, Chan (Ref. 34) has introduced a new multiparameter 
state-space model in which more general parameters replace the unit shifts 
1 ~. This model can be translated into a form similar to Eqs. (1) if Chan's 
generalized shifts are used in (1) instead of the shifts 1 ~. More importantly, 
it should be observed that the proposed form (1) is not restricted to use 
with causal systems as are all of the local state-space models. Some of the 
fundamental ditficulties associated with the development of multiparameter 
discrete linear system theory are outlined in Ref. 35. However,  a discussion 
of these matters, as they relate to the linear form of Eqs. (1), is beyond 
the scope of the present paper. 

3. Necessary Conditions 

Preliminaries. Several definitions facilitate the statement of results. 
With each point 

i - ~  ( i l  . . . . .  ira) 

of the array G are associated the index sets 

FJ(i)~{a ~{1 . . . . .  m } : i ~ ¢ j ~ } ,  j = 0 ,  k; 

and with each index a in { 1 , . . . ,  m} is associated the subset 

Go(a)  &{i ~ ( i l  . . . . .  i,~)~ G:  i,~ # 0}. 

The boundary of G is the set 

B A- {i = (il . . . . .  ira) ~ G:  3 a  ~ {1 . . . . .  m} with i~ ~ {0, k~}}. 

A Hamil tonian function, defined for i in G ~ k, x in E",  u in U(i) ,  
p~ in E ~, a = 1 . . . . .  m, is given by 

z~ ~ p '~ ' f ' ~ ( i , x , u ) .  H( i ,  x, u, p l  . . . . .  pro) = ~  (i) 

Here,  the symbol • denotes scalar product. 
Given a nonempty set A in E "  and a point x of A, a closed convex 

cone C is said to be a derived cone for A at x if, for each finite subset h o, 
p = 1 ,  . . . . .  r, of C, there exists a continuously ditIerentiable map 
o- : [0, 1] r ~ E "  such that: 

(i) o - ( t ) ~ A ,  for each t - ( h  . . . . .  tr) in [0, 1]'; 
(ii) o-(0) = x ;  
(iii) (Ocr/Otp)(O) = ho, p = 1 . . . .  , r. 

The polar of a closed convex cone in E n is denoted by the super- 
script ° 
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Theorem 3.1. M i n i m u m  Principle. Assume the following: 
(H1) f0 is continuously differentiable on (i.e., in a neighborhood of) 

X(k); 
(H2) for each triple a in {t . . . . .  m}, i in Gk(a) ,  U in U(i), the map 

f~ (i,-, u) is continuously ditterentiable on X(i) ;  
(H3) for each pair i in G - k, x in X(i) ,  the set f(i ,  x, U(i)), where 

f denotes (f~)~r~(i), is convex. 
Let (x*, u*) be an optimal pair; and, for each i in G, let C(i)  be a 

derived cone for X ( i )  at x*(i). 
Then, there exist po->0 and vectors p~: Gk(Ct)->ES% ot = 1 . . . . .  m, 

satisfying: 
(a) (po, p 1 . . . . .  p ro)#0;  

(b) ~ S~ T (i - 1 ~)p ~ (i - 1 ~) 
a = l  

--(OH/Ox)T (i, x*(i),  U *(i), p~(i) . . . .  , p~(i))  e [C(i)] °, i ~ G ~ B ;  

(c) H(i , x* ( i ) ,  u*( i ) ,p l ( i )  . . . . .  p~( i ) )  

= rain {H( i ,x*( i ) ,  u,p~(i) . . . . .  p m ( i ) ) } , i e G ~ k ;  
ueU(i)  

(d) ,~ ~ . )  S ~ (i - 1 ~)p ~ (i - 1 ~) 

--(OH/Ox )T (i, x*(i),  u *(i), p l ( i )  . . . . .  pm(i)) e [C(i)] °, i e B  ~ k ;  

S'~-~(k - l~)p ~ (k - i s ) --po(Ofo/Oxlr(x*(k)) e [C(k)] °. 
c e = l  

The sum over the empty set that occurs in (d) is assigned the value 
zero. 

4. Proof of Necessary Conditions 

Note that Eqs. (1) are equivalent to y scalar equations, Motivation. 
where 

3' & ~ s~ card Gk (a). 
c t = l  

The notation (z~)~ is used to denote vectors (Z~,~)~eGk(~), a = 1 . . . . .  ra, in 
E L  Consider the set ~ of elements (z0, (z~)~) in the augmented space 
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E "~+I defined by the conditions 

zo = fo(x (k )) - fo(x *(k  )), 

z i~=f~ ( i , x ( i ) , u ( i ) ) -S~ ( i ) x ( i+ l~ ) ,  i ~ G k ( a ) , a = l  . . . .  ,m,  

u ( i )~U( i ) ,  i c G ~ k ,  

x ( i )~X( i ) ,  i ~ G ,  

where (x*, u*) represents an admissible pair, and also the set 

~. A{(-n, O,..., O) ~E~+~: n >0}. 

Disjointness of ~ and ~ characterizes optimality of a pair (x*, u*). Proof 
of the necessary conditions follows from establishing the weaker condition 
that ~ is algebraically separated from a suitable convex approximation 
to ~. 

Proof.  For each triple o~ in {1 . . . . .  m}, i in Gk(a),  u in U(i),  denote 

A ~ (i) a= (Of~/Ox) (i, x *(i), u *(i)), 

F~(i, u) & f~(i, x*(i), u ) - f " ( i ,  x*(i), u*(i)), 

and also denote  

ao a= (Ofo/Ox )T (x *(k)). 

Denote  by ~ the set of points (z0, (zi~)i~) in E ~'÷1 defined by the conditions 

z 0 = a o  • h(k),  (2) 

zi~ =A"( i )h( i )+F~( i ,  u ( i ) ) -S" ( i )h ( i  + 1~), i ~ Gk(a) ,  a = 1 . . . .  , m, 
(3) 

u(i) ~ U(i), i ~ G ~ k, (4) 

h ( i ) c C ( i ) ,  i~G.  (5) 

In view of the hypotheses, it follows immediately that ~ is convex and 
contains the origin. To  show that ~. and ~ are separated, two cases are 
distinguished, depending on whether or not ~ has (topological) interior 
points. The interior of ~ ,  denoted by int(5~), is convex since 5~ is convex. 

Separation of ~ and ~ .  If ~ has empty interior, then the linear 
manifold in E r+~ generated by ~ is a proper  affine space that can be 
extended to a hyperplane, say p - z =f l ,  for some nonzero p in Er+~; the 
first component ,  say p0, of p can be assumed nonnegative. Since ~ contains 
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the origin and lies in the hyperplane, it follows that/3 = O. Then, for each 
z ----(-r/, 0 . . . . .  O) i n ~ ,  

p • z = -Po~7 < 0, 

which establishes separation for this trivial case. 
If Y~ has nonempty interior, it can be shown that ~ and the interior 

of Y~ are disjoint. Verification of this assertion entails technical arguments 
peripheral to the main thrust of the proof, and is therefore postponed to 
later in this section. Assuming that this assertion is true, it follows from 
well-known separation results that ~ and int(Y~) are separated by a hyper- 
plane, say p • z =/3 (p ~ 0); in particular, 

p • z -> fl, for z in int(~) ,  

p.z<-/3, f o r z  in~.  

But, since in t (~)  is nonempty, 

c l (~)  = cl(int(~)), 

where cl(.  ) denotes the closure (Ref. 36). Hence, ~ itself lies in the closed 
half-space 

p .z ->f t .  

Denote  by po the first component  of p, and let r / >  0 be arbitrary. Since 
the zero vector is in ~ ,  and since (-r/ ,  0 , . . . ,  0) is in 2 ,  the inequalities 

po(-n)<-/3 <-0 

hold. Hence, 

po~>0. 

Moreover,  since "0 is arbitrary, fl must be zero. 

Deduction of the Necessary Conditions. The preceding subsection 
shows that ~ lies in the half-space 

p "Z-->0, 

defined by a nonzero vector p --- (Po, (p~ (i))i~) satisfying 

p o - 0 .  

This proves assertion (a). 
Let  u: G ~ k ~ Uo and h : G ~ E "  satisfy Eqs. (4) and (5), respectively, 

but be otherwise arbitrary. This defines a general point of ~ given by Eqs. 
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(2) and (3), The separation inequality for such a point of ~ is the following: 

poao" h(k)+ ~, ~ A'~T(i)p~(i) " h(i) 
a = l  i~Gk(~) 

+ ~ E p'~(i)'F'~(i,u(i)) 
a = l  i~Gk(~) 

- ~ E S"~(i)p~(i) "h(i+l~) ->0. 
a = l  i~G~(a) 

Following some algebra, this inequality may be rewritten in a form that 
isolates the free parameter vectors u (.) and h (.): 

2 [S~(i- l~)p~(i- l~)-A~'( i)p~(i)]  . h(i) 

+ E [ ~ S'~(i-I'~)P'~(i-l~) 
i~B~{O.k} a~F)(i) 

- ~ A~'r(i)p'~(i)]'h(i) 
a~Fk(i) 

- Y~ [A '~T(O)p '~(0)]. h(O) 
aeFk(O) 

~-- F. 2 p~(i) . f~(i ,  u(i)). (6) 
i ~ G ~ k  o~Fk(i) 

Assertions (b)-(d) are deduced by writing Ineq. (6) with several judi- 
cious choices of the free parameter vectors. 

First, choose 

h(i)A0, i~G, 

select arbitrary points i in G - k  and w in U(i), and choose for u the 
mapping 

u(A)-a-- {:~ (A)' A=i .  A cG~{k , i } ,  

With this choice of free parameter vectors, Ineq. (6) reduces to 

Y, p'~(i) . F~(i, w)>_O, 
oc~Fk(i) 

which is equivalent to assertion (c). 
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Next, choose 

u(i)&u*(i), i ~ G ~ k ,  
select arbitrary points i in G and ff in C(i), and choose for h the mapping 

h(A)A_{0: A =i. 

With this choice of free parameter vectors, Ineq. (6) reduces to either 

{ ~= [S~T ( i - l~)p~( i - l~) -A~T (i)p~(i)]} . ~ <_O, (7) 

[ .  ~?o(i)S ̀~T ( i- l")p '~ (i - 1 " ) - ; ( , ) a  '~ (i)p~'(i)]'~<-O, (8) 

- Z • o, [,er~(o) A"r  (0)p" (0)] ~'_< (9) 

o r  

F ~  q 
[ ~ 1 S ~ r  ( i -  l~)p~ ( / -  l~)-poaoj  • ~" < : 0 ,  (10) 

according as the point i selected lies in 
(i) G - B ,  
(ii) B ~ { 0 ,  k}, 
(iii) {0}, 
(iv) {k}, 

respectively. Since ~" is an arbitrary element of C(i), Ineqs. (7)-(10) imply, 
respectively, that 

[S~T (i _ l")p" (i - l")--A"T(i)p~(i)]~ [C(i)] °, 
a = l  

S~r(i - l~)p~ (i - 1 ~ ) - ; ( ; ) A " ~ ( i ) P ~ (  i ) ~ [C (i)] °, 
a ~ F°(i) 

- y, A~T(O)p~(O)~[C(i)] °, 
aEF~(O) 

o r  

S ~ T ( i  -- l~)P~ (i -- 1 ~ ) - p o a o ¢  [C(i)]  °, 

which are equivalent, collectively, to assertions (b) and (d). The proof is 
complete, except for the verification that ~ and int(9~) are disjoint. 
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Dis]ointness of ~ and in t (~) .  The proof is by contraposition. Suppose 
that 

z = (Zo, (z~)~) ~ ~ c~ int(Yt). 

It will be shown that this implies that (x*, u*) cannot be optimal. On the 
one hand, since z ~ ~, it follows that 

~7 ~X-zo>O 

and 

zi~ = O, for each i in Gk (a ), a =1  . . . . .  m. 

On the other hand, since z ~ int(~), there is an open set N in E v+l with 
z 6 N C ~ .  Consider the vectors 

e°-a  ( 0 , . . . ,  0, 1, 0 . . . .  ,0),  p = l  . . . . .  3', 

in E v+~, with the unit in the (0 + 1 )th coordinate for each, and the sum vector 

2/ 

b A Y .  e °. 
0=1 

Then, there exists 6 > 0  such that the simplex with vertices z +Be", p = 
1 . . . . .  3", and z - 6 b  lies inside N, and hence in ~ .  Using Eqs. (2)-(5), it 
follows that: 

(i) for each p = 1 . . . . .  3', there exist u°: G ~ k ~  Uo and h°: G ~ E "  
such that 

Zo = ao" h ° (k), 

(zi~)i~ + (0 . . . . .  0, 8, 0 , . . . ,  0) 
= (A'~(i)h°(i)  +F'~(i, u°(i))  - S  '~ (i)hO(i + 1 ~))i~, 

u°(i)  e U(i) ,  i ~ G ~ k, 

h ° ( i ) 6 C ( i ) ,  i ~ G ,  

with each 6 appearing, respectively, in the pth coordinate; 
(ii) there exist u~'+l: G - k  ~ Uo and h~'+l: G ~ E "  such that 

Zo = ao" hV+l(k), 

(zi,~),~, + ( - 6  . . . . .  - 6 )  = (A~' (i)h ~'+'(i) + F "  (i, u ~'+l(i) ) -  S'~ (i)h ~'+l( i+  1~)),~, 

u~'+l( i )cU(i) ,  i e G ~ k ,  

h~'+l(i)~C(i) ,  i ~ G .  
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C o m p a r i s o n  of the  two express ions  for  the c o m p o n e n t s  of z shows tha t  

ao" h~(k)  = - n ,  p = 1 . . . . .  3 ,+1 ,  (11) 

(A s (i)h p (i) + F~'(i, u° (i)) - S  ~ (i)h ° (i + 1'~)),~ 

f ( o  . . . . .  o ,  8,  o . . . . .  o) ,  o = 1 . . . . .  3,, 
(12) I ( - 6  . . . . .  - 6 ) ,  p = 3, + 1. 

Le t  i e G be  arbi t rary .  Since hP(i) ~ C( i ) ,  p = 1 . . . . .  3, + 1, and  since 
C(i )  is a der ived  cone for  X ( i )  at  x*( i ) ,  there  exists a cont inuous ly  differenti-  
able C ~ - m a p  ~r(i;. ): [0, 1] v+a -> E "  such that  

o - ( i ; t ) ~ X ( i ) ,  for  each  t =- (tl . . . . .  tv+l) in [0, 1] ~+a , 

o ' ( i ;  0) = x*(i) ,  

and 

(OcrlOt o) (i, O) = h o (i), O = 1 . . . . .  y + 1. 

T h e  m a p  o-(i; • ) can be  ex t ended  to a C 1 m a p  & (i; • ) on  s o m e  ne ighbor -  
hood  of [0, 1] ~+a. L e t  D~ be  a ne ighborhood  of [0, 1] "~+~ in E v+~ on which 
each  extension &(i; • ), i ~ G,  is C a. For  each triple t - (ta . . . .  , tv+a) in D~, 
a in {1 . . . .  , m}, i in Gk(a) ,  define y~(i  + 1'~; t) as the sum 

.,/+1 ] 3~+1 
1-p~=~ to f ~ ( i , ~ ( i ;  t), u * ( i ) ) +  p=~' tp f~( i ,~( i ;  t), uP(i)). 

For  t = 0, it follows f rom Eqs.  (1) tha t  

y~( i  + lS;  0) = S~( i )x*( i  + 1~), 

Fo r  t satisfying 

then  

i ~ G k ( o ~ ) , a  = 1 , . . . ,  m. 

3'+1 
to>-O, 0 = 1  . . . . .  3"+1,  Y. t p -< t ,  (13) 

0=1 

~'(i; t) = o-(i; t) e X ( i ) ,  for  each  i in G. 

Hypo thes i s  (H3) of T h e o r e m  3.1 ensures  that  each of the sets f(i ,  o-(i; t), 
U(i) ) ,  i c G ~ k ,  is convex.  Hence ,  there  exist maps  u ( .  ; t ) :  G - k  ~ U0, 
with u(i;  t) e U( i ) ,  for  each  i in G - k ,  such tha t  

y ~ ( i + l " ; t ) = f ~ ( i , o ' ( i ; t ) , u ( i ; t ) ) ,  i ~ G k ( a ) , a = l , . . . , m .  

Each  m a p  y ~ ( i +  1~; .), i ~ G k ( a ) ,  a = 1 . . . . .  m, is C 1 on  some  ne ighbor -  
hood  of 0 con ta ined  in D1. On  such a ne ighborhood ,  

( O y ~ / O t o ) ( i + l ~ ; O ) = A ~ ( i ) h " ( i ) + F ' ~ ( i , u ° ( i ) ) ,  p = l  . . . .  , y + l .  
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Denote  by D a neighborhood of 0 in E "/+I on which each of the maps 
y~(i + 1~; • ), i ~ G k ( a ) ,  a = 1 . . . .  , m,  and fo(~(k ; • )) is C 1. Define the map 

O- - (0o ,  (O~)i,~): D x E  ~+1 -->E" 

by 

Oo(to, t)  & fo(d ' (k  ; t)) + t o - f o ( x  *(k  )), 

®i,( to,  t) a = y ~ ( i + l ~ ; t ) - S ~ ( i ) ~ ( i + l ~ ; t ) ,  i ~ G k ( a ) , a  = 1  . . . . .  m. 

Then, 19 is C a and 

19(0, 0) = 0. 

Moreover,  using Eqs. (11)-(12), it is easy to show that 

(019/Ot) (0, 0) = (-1) '+2r/(7 + 2) 3~'+1 ~ 0. 

By the classical implicit function theorem, there exist 3o > 0 and a C l - m a p  
T = (T1 . . . . .  Tv+l): D -~E "+1 satisfying 

T(0) = 0 and 19(to, T( to))  = O, - 3 o  < to < 8o. (14) 

Since T is continuous, there exists 3~ > 0, 3~ -<30, such that, for each p in 
{1 . . . . .  3, + 1}, if 

0 < t o < 3 o  1, 

then 

tTo(to)l < (3/+ 1) -1. 

Differentiating the second of Eqs. (14) and applying Cramer's rule yields 
expressions for the derivatives of the components of T on (-80, 80). In 
particular, 

(dTo/dto)(O) = rl-a(~/+ 2)-1 > 0, p = 1 ,  . . . .  3" + 1. 

It follows from the fundamental theorem of calculus that there exists 8o 2 > 0, 
82o-<801, such that, if 

0 < t o < 8 ~ ,  

then 

Choose to satisfying 

To(to) > 0 ,  p = l  . . . .  ,3 ,+1 .  

0 < t o < 8 ~ .  
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It is clear from the preceding that the components of T(to) satisfy 
relations (13). Hence, there exists a map u(-;  T(to)): G - k - ~  Uo, with 
u(i  ; T(to)) ~ U( i ) ,  i ~ G - k ,  such that 

y~(i + 1~; T( to ) )=f~( i ,  o'(i; T(to)), u(i;  T(to))), 

i E Gk(o~), ot =1  . . . . .  m. 

Thus, for each pair a in {1 . . . . .  m}, i in Gk(a), the condition 

®,~(to, T(to)) = 0 

implies that 

S ~' (i)tr (i + 1 ~ ; T(to)) = y ~ (i + 1 ~ ; T(to)) = f~ (i, cr (i; T(to)), u (i; T(to))); 

i.e., the pair (tr(. ; T(to)), u ( ' ;  T(to))) is admissible. Moreover, since 

®0(t0, T(to)) = O, 

it follows that 

I(tr(. ; T(to)), u( ' ;  T ( t o ) ) ) - l ( x * ,  u*)-- fo(~r(k;  T ( t o ) ) ) - f o ( x * ( k ) ) =  -t0 < O. 

In such a case, the pair (x*, u*) cannot be optimal. The proof is complete. 

Remarks. It is well known that some form of convexity hypothesis 
is needed to establish a global minimum principle for discrete-time systems 
(Ref. 20), except for a very restricted class of problems (Ref. 37). Simple 
counterexamples to Theorem 3.1 can be found if the convexity hypothesis 
(H3) is not satisfied (Ref. 15). 

The notion of a derived cone has been used in the present paper as 
a conical approximation to the state constraint sets. This notion was dis- 
cussed by Hestenes (Ref. 38) and was used by Hautus (Ref. 25) in develop- 
ing a general discrete-time maximum principle. The definition used in the 
present paper differs slightly from those used by the above-named authors 
(which also differ slightly from each other); the minor differences are 
discussed in Ref. 15. In a recent notable paper (Ref. 39), Martin et aL give 
an exhaustive comparison of the many types of convex conical approxima- 
tions that have appeared in the literature. 

There is a natural correspondence between the discrete multiparameter 
minimum principle of the present paper and the minimum principle 
developed by Cesari in Ref. 12 for partial differential equations in 
Dieudonn6-Rashevsky form. A detailed comparison is given in Ref. 15. 
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5. Applications 

Discrete multiparameter dynamic models, whether formulated ab initio 
as a discrete representation or obtained as a discretization of a continuum 
representation, frequently take the form of second-order or higher-order 
partial difference equations. These equations convey an insight into the 
underlying physical process being modeled, which may be obscured or 
destroyed by transforming the model into another representation purely 
for mathematical convenience. For example, one may produce some 
equivalent canonical set of first-order partial difference equations, or per- 
haps select an ordering of the independent discrete variables leading to an 
equivalent discrete-time system. The latter approach is often particularly 
undesirable; indeed, this fact has helped to motivate the development of 
discrete multiparameter linear system theory (Ref. 40). 

As mentioned previously, most discrete multiparameter models 
encountered in applications can be expressed in the general form proposed 
in Section 2. The minimum principle of Section 3 can thus be interpreted 
in terms of a physically motivated higher-order discrete model. Quite 
general optimization problems using a discrete representation associated 
with hyperbolic (causal), parabolic (semicausal), and elliptic (noncausal) 
partial differential equation models have been treated in this manner 
(Ref. 15). 
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