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TECHNICAL NOTE 

An Elementary Proof of an Equivalence Theorem 
Relevant in the Theory of Optimization 

L. CESARI l AND P. PUCCI 2 

Abstract. The authors give an elementary proof of an equivalence 
theorem of analysis which is often used in optimization theory. The 
theorem asserts that certain conditions are equivalent to weak conver- 
gence in Lt. One is the Dunford-Pettis condition concerning absolute 
integrability. Two others are expressed in terms of Nagumo functions, 
and can be thought of as growth properties. The original proofs of the 
various parts of the theorem are scattered in different and specialized 
mathematical publications. The authors feel it useful to present here a 
straightforward proof of the various parts in terms of standard Lebesgue 
integration theory. 

Key Words. Weak convergence in L~, absolute integrability, equiab- 
solute integrability, Nagumo functions, absolute continuity, equiab- 
solute continuity, weak relative compactness in Lj, Ascoli's theorem, 
Lusin's theorem. 

L Introduction 

Recently, an equivalence theorem of real analysis has been often used 
in optimization theory. The theorem establishes conditions equivalent to 
weak convergence in L1 and was reported without proof, e.g., in the two 
books of  Ekeland and Temam (Ref. 1, p. 223) and Cesari (Ref. 2, p. 329). 
Since the proofs of  the various parts of  the theorem are scattered in different 
and specialized mathematical  publications, we feel it proper  to give here a 
plain and elementary p roof  of  the various parts of  the theorem. 

The theorem can be stated for Lebesgue measures in R n, or for abstract 
measure spaces, finite or or-finite, with or without atoms. We prefer to 
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present it here in its simplest and typical form, namely for Lebesgue measure 
and a finite interval in R' ,  and the proofs are based on sole Lebesgue 
integration for functions of one real variable. 

Theorem 1.1. Equivalence Theorem. Let {f(t) ,  a ~< t ~  < b} be a family 
of real-valued L-integrable functions on a fixed finite interval [a, b]. The 
following statements are equivalent: 

(a) The family {f} is sequentially weakly relatively compact in 
Ll[ a, b]. 

(b) The family {f} is equiabsolutely integrable on [a, b]. 
(c) There is a constant M and a real-valued function 4~ = ~b(~), 

0~< ~<+eo ,  bounded below, such that q S ( ~ ) / ~  +oo, as ~ +oo, and 

f b ~(tf(t)}) d t<~M, for a l l f~  {f}. 
a 

(d) There is a real-valued function 0 =  ~0(~), 0~<~:<+oo, bounded 
below, such that ~ ( ~ ) / ~  +oo, as ~ +0% and the family {O(] f l ) , f e  {f}} 
is equiabsolutely integrable on [a, b]. 

In (c), (d), it is not restricting to assume ~b, ~ nonnegafive, strictly 
increasing, continuous, and convex in [0, +co). Functions ~b or t), as above, 
are often called Nagumo functions. 

The equivalence of (a) and (b) was proved by Dunford and Pettis (see, 
e.g., Edwards, Ref. 3, p. 274). The implication ( b ) ~ ( c )  was proved by de 
la Vall~e-Poussin (for the statement, see, e.g., Natanson, Ref. 4, p. 164). 
The implication ( b ) ~ ( c ) ~  (d) was also proved directly by Candeloro and 
Pucci (Ref. 5). The implication ( c ) ~ ( b )  was proved by Tonelli (Refl 6, 
Vot. II, p. 283), for some particular ~b, and then by Nagumo in the general 
case (see, e.g., McShane, Ref. 7, p. 176). Here, ( d ) ~ ( c )  is trivial, and we 
shall prove directly that ( c ) ~ ( d ) .  

. b 

In the theory of optimization, say for funct~onals S~ G(t, u(t), u'(t)) dt, 
several parts of the above theorem are often used in proving the existence 
of  an absolute minimum. For instance, if G(t, x, p)>i 8(lpl), with ~b as in 
(c), then the conclusion ( c ) ~ ( b )  is used to guarantee that, for any minimiz- 
ing sequence [u~] in a bounded domain, the sequence of derivatives [u ' ]  
is equiabsolutely integrable; hence, the sequence [ u~ ] itself is equiabsolutely 
continuous, and Ascoli's theorem applies. For instance, the conclusion 
( a ) ~ ( d )  is often used to guarantee that if, for a minimizing sequence [un], 
the sequence of  derivatives [u ' ]  is weakly convergent in L1, then the same 
sequence [u~] also possesses property (d), which by closure theorems leads 
directly to the existence of the minimum. 

For the convenience of the reader, we recall here briefly the main 
concepts which are dealt with in the equivalence theorem. 
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A sequence [f , ( t ) ]  of L~-integrable functions in [a, b] is said to be 
weakly relatively compact in L1 provided there is an L~-integrable function 
f(t) in [a, b] and a sequence [nk] such that Sb (f,k(t)-f(t))g(t) dt~O, as 
k ~ oo, for every measurable and bounded function g(t). The family {f} of 
L~-integrable functions in [a, b] is said to be sequentially weakly relatively 
compact provided any sequence [f , ( t )]  of functions f ,  of the family is 
weakly relatively compact in L~. 

It is well known that any Ll-integrable function f(t) in [a, b] is 
absolutely integrabIe; that is, given e > 0, there is some 6 > 0, 6 = 6(e,f), 
such that, for any measurable subset B of [a, b] with meas B < 6, we also 
have IB ]f(t)l dt < e, A family {f} of Ll-integrable functions f in [a, b] is 
said to be equiabsolutely integrable provided, given e > 0, there is some 
3 > 0, ~ = ~(e), such that, for every function f of the family and for any 
measurable subset B of [a, b] with meas B < 6, we also have ~ If(t)l dt < ~. 
In other words, 6 may depend on e, but not on the function f of the family. 

2. Proof of the Theorem 

( a ) ~ ( b ) .  We assume that (a) holds, and we want to prove (b). The 
proof is by contradiction. Let us assume that (b) is not true. Then, there 
are a number e > 0, measurable sets Ek C [a, b], and functions fk C {f} SUCh 
that, for every k = 1 , 2 , . . . ,  

fE Ifk(t)ldt>3~andlEk]~O, ask-~+co. 
k 

By (a), there is a subsequence, say still (k) for the sake of simplicity, 
and an L-integrable function f such that fk--~f weakly in Ll. Since f is a 
fixed L-integrable function and IEkl ~0 ,  then, for k sufficiently large, we 
have SEk If(t)l dt < e, and hence IEk Ifk(t)-f(t)[ dt> 2e. By retabeling and 
replacing f k - f  by fk, we have a sequence (fk) vdth f k ~ 0  weakly in LI and 
such that ~ek lfk(t)l dt> 2e, for all k, and I Ekl ~ 0, as k ~ +co. If  E~ and E k 
denote the subsets of Ek where fk is nonnegative and fk is negative, respec- 
tively, we have either ~e~fk(t) dr> e or ~E~ (-f~(t)) dt> e. One of the two 
cases must occur infinitely many times, say the first case. By extraction and 
relabeling, we may always assume 

f fk(t) dt>e, forallk, E~[~O, as k~+co .  
E~ 

Since f~ is by itself absolutely integrable, there is some ~ > 0 such that 
Sc[a, b], ISl < ~, implies Ss Ifl(t)l dt < e/4. Thus, by discarding elements 
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assume IE~ I < 05/2 , s = 2, 3 , . . . ,  and  we take and  relabeling,  we m a y  well + "-~ 

E ~ = E( -  ~_] E+~ , 
S=2 

so that  l ug=2  E~ +] < o'~(2 -~ + 2 - 2 + " " '  ) = 00,, and 

I~ f'(t) dt=Ie fl(t) d t - fu  f,(t) dt>E-e/e=3e/4. 

Now,  we keep f~, E~ fixed, and  we note  tha t  ~Ei f~(t) dt ~ O, as s ~ + ~ .  
By d ropp ing  terms,  we can  well assume that  

IrE f~(t) dt[ < e/23, for  all s = 2, 3 , . . . .  

Since f2 is by itself absolutely  integrable,  there is some 0"2 > 0 such that  
S O [ a ,  b], ISl < ~= implies ~s IA(t)l dt < e/4.  Thus,  by discarding elements  

+ << s--2 and relabeling,  we m a y  well assume tE~ I o'z/2 , s = 3, 4 , . . . ,  and  we take 

E&= + ~ + Es - E ~ ,  

so that  1U%3 E~+I < o'2(2- '  + 2 - 2 + " ' "  ) = 002, and  

f~ A(t)dt=f~ f2(t, d t - Iu  f2(t) dt>e-e/4=3e/4. 

Now,  we keep f~, f2, E~, EL fixed, and we note that  5Ells( t)  dt->O, 
5u~f~(t) dt-> O, as s-> +oo. By dropp ing  terms,  we can well assume that  

lIE f~(t) dt[<E/2s, lIEf~(t) dtl<e/24 , f o r a l l s = 3 , 4 , . . . .  

We can repea t  this process.  At the kth step, we still have ~E~ J~(t) dt > e. 
Since fk is by itself absolute ly  integrable,  there is some 00k > 0 such that  
SC[a, b], IS[ < ~rk implies ~s [A(t)l dt< e/4. Thus,  by discarding elements  
and relabeling,  we m a y  always assume IETI < O'k/2 s-k, S = k +  1, k + 2 ,  . . . ,  
and we take 

s=k+l 

so that  I[,js~k+l E+t < O'k(2 - I  -t- 2 .2 + ' ' "  ) = O'k, and  

f~ ,A(t)ldt=f~ fk(t) dt--IU fk(t) dt>E--E/4=3~/4. (1) 
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Now, we keep f i , . . . , fk ,  E~,... ,E'k fixed, and we note that 
S~f~(t) dt-O, as s .  +oo, for o-= t, 2 , . . . ,  k. By dropping terms, we shall 
assume that 

Now, the entire sequence (J~) is determined together with the corre- 
sponding sets E'k, and the sets E'k, k = 1, 2 , . . . ,  are disjoint in [a, b]. 

Note that the present sequence (fk) is a subsequence of the original 
sequence (fk), but for the displacement fk " f k  - f  and the deletion of many 
terms, we have fk --~ 0, weakly in LI.  

Now we take g = g(t), a <. t <. b, as follows: 

g ( t ) = l ,  for t~E ' , , s=l ,2 , . . . ,  g ( t ) = 0 ,  otherwise. 

For any k, we have 

Io fk(t)g(t) dt = fk(t)g(t) dt 
s = i  's 

£ 
s=l ; ~ JUT~k+~E' 3 

where from (1) we have 

~ fk(t) dt> 3e/4.  

Since Ers C + ~ + E s ,  IU~=k+l we E~ ] < ~rk, also have 

fU fk(t) dt<-fu lfk(t)ldt<'/4" 

Finally,  by (2), we also have 

]rE fk(t) dtl<E/2s+2' s = l , . . . , k - 1 .  

Thus, 

f 'fk(t)g(t) dt> 3E/4 - E/4 - (e/23 + e /24+  • • • + e/2 k+t) > ~/4, 

and this holds for all k, a contradiction, since S~ fk( t )g ( t )  dt-~ O, as k ~ +0o. 
( b ) ~ ( a ) .  Since {f} is equiabsolutely integrable, given e > 0, there is 

6 = 8 ( e ) >  0 such that, for any measurable set E C[a,  b], with [E t < 6, we 
have je [f(t)l dr< E, for any f~{f} .  Now, we consider the family {F} of 
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the functions F(t )=j '~ f ( r )d~ ' ,  for f ~ { f } .  The functions F are equiab- 
solutely continuous. Indeed, given E > 0, for every finite system {[a~,/3~], 
i =  t , . . . ,  N} of  nonoverlapping intervals in [a, b], with ~ l  ( /3~-c~)< 3, 
we have, for E = (_j~|  [~i,/3s], 

IF(/3s) -F(o~s)] ~ Ie  If(t)J dt< •. (3) 
i = l  

Moreover, if N is any integer with N > ( b - a ) / 6 ,  then there is a 
subdivision of[a ,  b] into parts a = ao < al < .  • • < aN = b, each part of length 
as - as_~ < ~, such that 

fb 
If(t)l dt = lf(t)l dt < N•. 

o S = l  c q _  1 

Thus, Ib o I f( t )  I dt < M, for some constant M and all f e  {/}. Consequently, 
IFI<M,  as well as V ( F ) < M ,  for all F e { F } .  This last point can also be 
proved by noting that, for any further subdivision as ~= 0% < as, < " "  < 
o%, = o~s, we certainly have 

N '  

2 IF(~i~) - F(~is_~)l < e. (4) 

Thus, F has a total variation in [as-l ,  c~] which is less or equal to e and 
has a total variation V(F)  <~ E, in [a, b]. 

Let (fk) be any sequence of functions fk ~ {f}, and let F~ be the 
corresponding functions F. Then, the functions Fk are equibounded and 
equicontinuous; and, by Ascoli's theorem (cf., e.g., Ref. 7), there is a 
subsequence, say still (k) for the sake of simplicity, such that (Fk) converges 
uniformly in [a,b] toward a continuous function Fo=Fo( t ) ,  a<~t<~b. 
Actually, relation (3) holds for all F = Fk. By a passage to the limit, the 
same relation holds for Fo; that is, Fo is absolutely continuous. Also 
IFk(t)I < M, for all k and t; hence; IFo(t)[ <~ M. Note that, for any interval 
[~i - | ,  as] and any subdivision into parts as_| = a ~ < a ~ < " ' < a i ; = a ~ ,  
relation (4) holds for every Fk. Then, at the limit, as k o +ac, the same 
relation holds for Ft.  In other words, F0 has a total variation less or equal 
to • in [~i- | ,  as] and has a total variation V(Fo) <~ N•, in [a, b]. Thus, as 
before, we have IFo(t)J <- M, V(Fo) <~ M. 

Let J; = F~; thus, fo is Ldntegrable, and we shall prove that (fk) 
converges weakty to )Co in LI. 

Let g = g(t) ,  a <~ t <~ b, be any bounded measurable function in [a, b]. 
We must prove that f~ ( f k ( t ) - f o ( t ) ) g ( t ) d t ~ O ,  as k~+oo .  Let Mo be a 
number such that ]g(t)] ~< Mo, for a.a. te[a ,  b]. 
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Again, let e > 0 be any given number,  take Eo = e(I2Mo) -1, and let 
6 = 6(Eo) be the number  6 above relative to the equiabsolute integrability 
of  the functions f ~  {f}. 

By Lusin's theorem, we know that there is a compact  subset K of [a, b] 
such that g is continuous on K and I K I >  b - a - 6 .  Then, the open set 
G=[a, b ] - K  is the union of at most countably many intervals /j, j =  1, 

03 
2 , . . . ,  whose total length is [ G I = ~j= ~ I/jl < 6. Note that, for any finite system 
GN = Qfl~ I), we certainly have IGNt < 6 and 

v(G, o ~ ) = ~  fA(t)t dt<~0; 
N 

and, by the lower semicontinuity property of  the total variation (cf., e.g., 
Ref. 8), 

V(F0, Gu)<~liminfV(Fk, G~)~eo,  or f [f0(t)[ dt~eo. 
k , J G N  

As N-~ +oo, we have now 

v(G, G)= fo IA(t)l dt<~ ,o, V(Fo, O) = f~ lfo(t)l dt~ ~o. 

Let cr = e (6M)  i. 

The function g is continuous on the compact  set K, hence uniformly 
continuous on K, and there is some 61 > 0  such that ]g(t)-g(~)l <or, for 
all t, "rcK, I t -r]<61.  

Let a = a o <  a~ < . . .  < aN = b be any finite subdivision of [a, b] into 
equal parts, each of length less than or equal to min{6, 6~}; take Ei = 
[ai_~, a i ] -  K, K~ = [a~_~, a;]  c~ K, and choose any point c~ ~ K~, i = 1 , . . . ,  N. 
If, for some i, the set Ki is empty, let us drop the corresponding term in 
the sum below. Take ko large enough so that IFk(t)--Fo(t)I<e(6Nmo) -1, 
for all t ~ [a, b] and k > ko. Now, 

(A( t ) - fo( t ) )g( t )  dt = (fk(t)--fo(t))g(c~) dt 
i = 1  ai_ I 

+ S'~ (fk(t)--fo(t))(g(t)--g(c~)) dt 

+ ,~l (fk(t)--fo(t))(g(t)--g(ci)) dt 

= i~+ i2q- i3, 
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with Ig(ci)[~ Mo; and, for k >  ko, also 

[il'=l~g(ci)[Fk(ai)-Fk(ai-l)-F°(ai)+F°(ai-1)]li=l 

N 

Mo Fo(o,,)l + IFk(<- l ) - -  Fo(o ,-l)l] 
i = l  

< 2Mo Ne(6NMo) -1 = ~/3. 

Also, I g(t) - g(c,)l < ty, for t e Ki = [ o ~ i - i  , oQ ] O K ; hence, 

[i2[= ] ~=l fK (fk(t)--fo(t))(g(t)--g(ci)) dt I 

£, <~r (]fk(t)l+lfo(t)[)dt<2M~r-=E/3. 

Finally, [g(t)l <- Mo, a.e. in E,, and ~.J,~, E, = G, [G[ < 8, with So Ifk(t)l at < 
~o, S~ ]fo(t)l dt<~ eo. Hence, 

i = l  i 

<~2Mo 2 (Ifk(t)l+[fo(t)]) at 
" =  i 

= 2Mo I~ (]fk(t)l + ]fo(t)l) dt < 2Mo2eo = 4Moe(12Mo) -l = e/3. 

Thus, for k > ko, we have 

If,' dt (fk(t)-fo(t))g(t) < e / 3 + e / 3 +  ~/3 E 

We have proved that fk---~fo, weakly in L1. 
( b ) ~ ( c ) .  As before, we know that the family {f} is equiabsolutely 

integrable; in other words, given E > 0, there is 8 = 8 ( e ) >  0 such that, for 
any set S C [a, b], with IS I < a, we have Ss If(t)[ dt < e, for every f c  {f}. As 
before, we conclude that there is some M >  0 such that Sb if(t)l dt < M, for 
all f ~  {f}. 

Note that, if E ( a , f )  denotes the set E ( a , f )  = {t e [a, b]: If(t)l >1 a}, 
then AlE I <~Se If(t)l dt < M;  hence, IE(a , f ) l  < MA -1, for all a > 0 and f e  
{f}. Thus, given e >  0, we can take a = a ( e ) > 0  such that Ma-l<~ 8, and 
then I E ( a , f ) [  < 8, and ~e If(t)l dt < e, We have proved that, given ~> 0, 
there is a = )~ (e) > 0 such that a l E ( a , f ) l  <~ 5e{a,f)[f(t)l dt < e, for a l l f e  {f}. 
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We conclude that there are numbers h, > 0, such that, for Es = E(hs , f ) ,  
we have 

~lf(t)t dt<2 -s, As+l/As> 2, 

and hence A~IEsl ~<SE~ ]f(t)[ ds <2- ' ,  and IEsl <2-sA2 ~. 
Now, we define q~ = 4~ (~:), 0 ~ ~: < +oo, by taking q~ (~) = 0, for ( = A o = 0, 

cb(~:)=sA,, for ~=As, and let cb be linear in each interval [0, Ad, 
[ A I ,  A2] . . . .  , [As-l, As], s = 1, 2 , . . . .  

Note that As+~/As > 2 implies that A,+I(As+I - As) -~ < 2; in other words, 
for the slope hs of  $ between A~ and As+l, we have 

h, = [(s + 1)A,+, - sA,]/(As+, - A,) = s + A,+ J(A,+~ - A,); 

hence, s < hs < s + 2. Moreover, the inequality 

S -I" X s + l / ( Z s +  1 - A s )  ~.  s -1- l '1- l~s+2/(t~ks+ 2 - , ~ s + t )  

is equivalent to 

As+l/A,- 1 > 2 -  1 = 1 > 1-A~+1/As+2. 

In other words, h~ < h,+~. 
Thus, ~ is nonnegative, continuous, strictly increasing, and convex. 

Moreover, for A, <~ ~ < A,+~, we have hs > s and 

4)(~)/~=[sAs+hs(¢-As)]/(As+~-As)>s, As ~< ~:<As+~. 

This proves that 4~(~)/~:~ +o0, as ~:-~ +oo. 
Finally, if Fo={tc[a, b]: If(t)] <A~}, and Fs = { t 6 [ a ,  b]: A~ ~< ]f(t)[ < 

A~+l}, s =  1 , 2 , . . . ,  then 

If 
with O~ q~(¢)<A~, for O~¢<A~,  and b(¢)=sA~+hs(¢-As) ,  for A ~ < ¢ <  
As+1. ThUS, 

4,(If(t)l) dt<A,(b-a)+ ~ sA,lfst+ 2 hs(lf(t)]-&) dt 
a s = l  s = l  

< A , ( b - a ) +  ~. SAs(2-'A~q)+ ~ (s+2)2 -s 
s = l  s = l  

s = l  s = l  

Thus, Sa b ~b(tf(t)l ) dt< ml, for all f 6  {f}, where Ml is a fixed constant. For 
the argument above, cf. Ref. 5. 
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Remark 2.1. In (c) and (d), we can always choose $ and 0 functions 
which are nonnegat ive,  strictly increasing, cont inuous,  and convex. 

First, let us show that  we can take O t> 0 in (c). Indeed,  if $ has not  
this property,  let us take - L o  = inf qg(~:), and take ~bl(~:) = Lo+  th(~), so that  
~bl(~:) ~> 0, and 

thl(lf(t)[) dt = Lo(b - a )+  4~([f(t)] dt 

<~ Lo(b - a) + M = Ml  < +oo. 

Now, assume ~b(~:)/> 0. By induction,  we shall define numbers  0 = hi < h2 < 
• • . ,  0 = A ~ < A 2 < .  • • ,  h . ~ + o o ,  A. ~ +oo, h . + l > - h . + l ,  and take 

~o(~)=An_lq-hn(~-An_l), Xn_l~<An, 
) to=0,  A o = 0 ,  A1 = 0 ,  A.  = A . _ l + h . ( A .  - I . - 1 ) .  

Let 

h. = inf{[6 (~) - A . _ , ] / ( ~  - An-l) , ~ ) An-l} , 

SO that 

~b(~) ~> A._l  + h n ( ~ -  An_,), for all ~ >  An_l, 

and take A. so large that  

4 a ( ~ ) / ~ > ~ h . + l + ( A .  l - h n A . _ l - A . ) / , ~ ,  for all e ~> A.. 

Then, for ~:/> A., we also have 

(~(~) >1 (h.  + 1)~" + An-I - -  hnh,,_~- h,, 

= A . _ I + h . ( ~ - A . _ ~ ) + ~ - A ~  

= A~_, + h~(A. - A._~) + (hn + 1 ) ( ~ -  A.) 

= A.  + (h.  + 1)(~:-  An), 
and hence 

h.+l = inf{[4~(~) - A . ] / ( ~ -  A.),  ~ >- An} >1 h. + 1, 

that  is, h.+l >/h .  + 1. Now,  q~ is a nonnegative,  cont inuous,  strictly increas- 
ing, convex function. Since h. ~ +oo, given k > 0, there is some n such that 
h. <~ k < h.+l < -  • • ; and then, for all ~: sufficiently large, say A,. ~< s~<~ Am+i, 
m > n, since h.+l < h.+2 < • ' • < hm+l, we have 

q~(~:) = Am + hm+l(~:- A,.) 

= A .  + h.+,(A.+~ - 3..) + . , .  + hm(~. m - -  '~-m-1) + hm+l(~: - -  ~-m) 

An + hn+ l (~ -  An) = h.+ls ~ + A.  - h.+~A.. 
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Thus, 4~(~:)/~: ~ h,+i + (A, - h,+~)t,)~:-~ > k, for alI ~: sufficiently large. Thus, 

Analogous argument holds for 0 in (d). 
( c ) ~ ( b ) .  From the remark above, we can assume q5 to be nonnegative, 

and we know that ~ d~(If(t)l ) dt<~ M, for some constant m and a l l f ~  {f}, 
and q5 (sc)/~:-~ +oo, as ~-> +~o. Given e > 0, let o-= 2e-~M, and let )to> 0 be 
such that 05(Z)/)t > o-, for all a > )to. Let E denote the set of all t~[a, b] 
with tf(t)t > )to- Then, 

If(t)l dt <o'-I q~(tf(t)]) dt~o "-~ 4~(If(t)l) dt<~o'-lM= e/2. 

Now, let B be any measurable subset of [a, b] of  measure IB[ < E/2)t. Then, 
for any f ~  {f} and any fixed )t > )to, we have 

j f  [f(t)[dt= f ~  [f(t),dt 

+ I B - ~  [f(t)l dt<e/2+AlBl<e/2+)t(e/2)t)=E, 

that is, the family {f} is equiabsolutely integrable on [a, b]. 
( d ) ~ ( c ) .  Indeed, by (d), we easily have S b ~(l/(t)l) at<- M, for some 

constant M and all f ~  {f}. 
( c ) ~ ( d ) .  In view of the remark above, we assume heretofore that ~b 

is nonnegative, strictly increasing, continuous, and convex, that 
f b 4)(If(t)t) dt<~M, for all f ~  {f}, and that 4 ~ ( ¢ ) / ~  +ce, as ¢-~ +oo. 

For any ~ > 0 ,  take ~(~:)={q~(r), r4(r)= ~2}; cf. Ref. 9, p. 227. Then 
r -~ +oo, as ~: -~ +oe; r describes [0, +oe) as ~ describes [0, +oo) ; and 

0 ( ~ ) f ~ :  = ~(7)f ( ~4)( r) ) '/2 = ( ~( r)l r)~/2 
Moreover, fb(r)/r=(~/r)2; hence, r/~-~O, as ~ + c %  and 0 ( ~ ) / ~  +oe, 
as ~:~ +oe. Now, define K by taking ~b(s c) = K(dp(r)) = K(O(~)),  so that 

~ , ( ~ ) / 4 , ( ~ ' )  = K ( 4 , ( ~ - ) ) / , b ( ~ ' ) ,  

where ~b(~)/6(r)~ +o% K(~b(~'))/d~(r)~ +co, as ~:-~ +ce, or K()t)/)t -~+oe, 
as )t -~ +oo. Now 

f f  K(@(If(t)l) )dt = f f  ~b(lf(t)[ ) d t  <~ M. 

The implication ( c ) ~ ( b )  already proved shows that {O(tfl), f ~ { f } }  is 
equiabsolutely integrable on [a, b]. [] 
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